Effect of Soil Washing with an Amino-Acid-Derived Ionic Liquid on the Properties of Cd-Contaminated Paddy Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Reagents
2.2. Cd Removal Percentage of Soil Washing
2.3. Analysis of Soil Properties
2.4. Rice Cultivation in the Soil
3. Results
3.1. Effectiveness of Cd Removal and Wastewater Treatment
3.2. Impact on Soil Properties
3.3. Potential Cd Removal Mechanism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, L.; Sun, J.; Yang, Z.G.; Wang, L. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China. Environ. Monit. Assess. 2015, 187, 731. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Ma, Z.W.; van der Kuijp, T.J.; Yuan, Z.W.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Ma, F.J.; Zhang, Q.; Peng, C.S.; Wu, B.; Li, F.S.; Gu, Q.B. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils. Chemosphere 2017, 173, 368–372. [Google Scholar] [CrossRef]
- Kim, M.S.; Koo, N.; Kim, J.G.; Lee, S.H. Effects of Washing Solution, Washing Time, and Solid-Solution Rate on the Maximum Heavy Metals Removal Efficiency. Appl. Sci. 2021, 11, 6398. [Google Scholar] [CrossRef]
- Ke, X.; Zhang, F.J.; Zhou, Y.; Zhang, H.J.; Guo, G.L.; Tian, Y. Removal of Cd, Pb, Zn, Cu in smelter soil by citric acid leaching. Chemosphere 2020, 255, 126690. [Google Scholar] [CrossRef] [PubMed]
- Assawadithalerd, M.; Phasukarratchai, N. Optimization of Cadmium and Zinc Removal from Contaminated Soil by Surfactants Using Mixture Design and Central Composite Rotatable Design. Water Air Soil Pollut. 2020, 231, 329. [Google Scholar] [CrossRef]
- Wang, G.Y.; Pan, X.M.; Zhang, S.R.; Zhong, Q.M.; Zhou, W.; Zhang, X.H.; Wu, J.; Vijver, M.G.; Peijnenburg, W. Remediation of heavy metal contaminated soil by biodegradable chelator-induced washing: Efficiencies and mechanisms. Environ. Res. 2020, 186, 109554. [Google Scholar] [CrossRef]
- Semer, R.; Reddy, K.R. Evaluation of soil washing process to remove mixed contaminants from a sandy loam. J. Hazard. Mater. 1996, 45, 45–57. [Google Scholar] [CrossRef]
- Yi, S.W.; Li, F.; Wu, C.; Wei, M.; Tian, J.; Ge, F. Synergistic leaching of heavy metal-polycyclic aromatic hydrocarbon in co-contaminated soil by hydroxamate siderophore: Role of cation-pi and chelation. J. Hazard. Mater. 2022, 424, 127514. [Google Scholar] [CrossRef]
- Isoyama, M.; Wada, S.I. Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil. J. Hazard. Mater. 2007, 143, 636–642. [Google Scholar] [CrossRef]
- Kuo, S.; Lai, M.S.; Lin, C.W. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Environ. Pollut. 2006, 144, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Tampouris, S.; Papassiopi, N.; Paspaliaris, I. Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. J. Hazard. Mater. 2001, 84, 297–319. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. On the use of biosurfactants for the removal of heavy metals from oil-contaminated soil. Environ. Prog. 1999, 18, 50–54. [Google Scholar] [CrossRef]
- Wan, X.M.; Lei, M.; Chen, T.B. Review on remediation technologies for arsenic-contaminated soil. Front. Environ. Sci. Eng. 2019, 14, 1–14. [Google Scholar] [CrossRef]
- Dolev, N.; Katz, Z.; Ludmer, Z.; Ullmann, A.; Brauner, N.; Goikhman, R. Natural amino acids as potential chelators for soil remediation. Environ. Res. 2020, 183, 109140. [Google Scholar] [CrossRef] [PubMed]
- Gusiatin, Z.M.; Kulikowska, D.; Klik, B. New-Generation Washing Agents in Remediation of Metal-Polluted Soils and Methods for Washing Effluent Treatment: A Review. Int. J. Environ. Res. Public Health 2020, 17, 6220. [Google Scholar] [CrossRef]
- Klik, B.; Kulikowska, D.; Gusiatin, Z.M.; Pasieczna-Patkowska, S. Washing agents from sewage sludge: Efficiency of Cd removal from highly contaminated soils and effect on soil organic balance. J. Soils Sediments 2020, 20, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Klik, B.K.; Gusiatin, Z.M.; Kulikowska, D. Simultaneous Multi-metal Removal from Soil with Washing Agents of Waste, Plant and Microbial Origin. Soil Sediment Contam. 2019, 28, 773–791. [Google Scholar] [CrossRef]
- Hughes, D.L.; Afsar, A.; Laventine, D.M.; Shaw, E.J.; Harwood, L.M.; Hodson, M.E. Metal removal from soil leachates using DTPA-functionalised maghemite nanoparticles, a potential soil washing technology. Chemosphere 2018, 209, 480–488. [Google Scholar] [CrossRef]
- Yang, Z.H.; Dong, C.D.; Chen, C.W.; Sheu, Y.T.; Kao, C.M. Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environ. Sci. Pollut. Res. 2018, 25, 5231–5242. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Mukherjee, S.; Adnan, N.F.; Hayyan, A.; Hayyan, M.; Hashim, M.A.; Sen Gupta, B. Ammonium-based deep eutectic solvents as novel soil washing agent for lead removal. Chem. Eng. J. 2016, 294, 316–322. [Google Scholar] [CrossRef]
- Lu, L.; Xie, Y.H.; Yang, Z.; Chen, B.L. Sustainable decontamination of heavy metal in wastewater and soil with novel rectangular wave asymmetrical alternative current electrochemistry. J. Hazard. Mater. 2023, 442, 130021. [Google Scholar] [CrossRef] [PubMed]
- Makino, T.; Maejima, Y.; Akahane, I.; Kamiya, T.; Takano, H.; Fujitomi, S.; Ibaraki, T.; Kunhikrishnan, A.; Bolan, N. A practical soil washing method for use in a Cd-contaminated paddy field, with simple on-site wastewater treatment. Geoderma 2016, 270, 3–9. [Google Scholar] [CrossRef]
- Rogers, R.D. Materials science-reflections on ionic liquids. Nature 2007, 447, 917–918. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Jones, C.L.; Baker, G.A.; Xia, S.; Olubajo, O.; Person, V.N. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J. Biotechnol. 2009, 139, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Gras, M.; Papaiconomou, N.; Schaeffer, N.; Chainet, E.; Tedjar, F.; Coutinho, J.A.P.; Billard, I. Ionic-Liquid-Based Acidic Aqueous Biphasic Systems for Simultaneous Leaching and Extraction of Metallic Ions. Ange. Chem. Int Ed. 2018, 57, 1563–1566. [Google Scholar] [CrossRef]
- Deng, Y.; Beadham, I.; Yang, T.Y.; Wang, G.; Song, F.Y.; Ruan, W.Q. Recovery of palladium using 1-cyanopropyl-3-methylimidazolium chloride based aqueous biphasic system combined with electrodeposition. Mater. Chem. Phys. 2023, 297, 127387. [Google Scholar] [CrossRef]
- Ghosh, K.; Lahiri, S.; Sarkar, K.; Naskar, N.; Choudhury, D. Ionic liquid-salt based aqueous biphasic system for rapid separation of no-carrier-added Pb-203 from proton irradiated (Tl2CO3)-Tl-nat target. J. Radioanal. Nucl. Chem. 2016, 310, 1311–1316. [Google Scholar] [CrossRef]
- Deng, Y.; Besse-Hoggan, P.; Sancelme, M.; Delort, A.M.; Husson, P.; Gomes, M.F.C. Influence of oxygen functionalities on the environmental impact of imidazolium based ionic liquids. J. Hazard. Mater. 2011, 198, 165–174. [Google Scholar] [CrossRef]
- Tao, G.H.; He, L.; Sun, N.; Kou, Y. New generation ionic liquids: Cations derived from amino acids. Chem. Commun. 2005, 28, 3562–3564. [Google Scholar] [CrossRef]
- Deng, Y.; Beadham, I.; Ghavre, M.; Gomes, M.F.C.; Gathergood, N.; Husson, P.; Legeret, B.; Quilty, B.; Sancelme, M.; Besse-Hoggan, P. When can ionic liquids be considered readily biodegradable? Biodegradation pathways of pyridinium, pyrrolidinium and ammonium-based ionic liquids. Green Chem. 2015, 17, 1479–1491. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Lu, R.K. Analytical Methods for Soil and Agrochemistry; Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Sakurai, K.; Huang, P.M. Influence of potassium chloride on desorption of cadmium sorbed on hydroxyaluminosilicate-montmorillonite complex. Soil. Sci. Plant. Nutr. 1996, 42, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Makino, T.; Takano, H.; Kamiya, T.; Itou, T.; Sekiya, N.; Inahara, M.; Sakurai, Y. Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification. Chemosphere 2008, 70, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Traina, S.J. Cadmium in Soils and Plants; McLaughlin, M.J., Singh, B.R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; Chapter 2; pp. 11–37. [Google Scholar]
- McBride, M.B. Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1989; Volume 10, Chapter 1; pp. 1–56. [Google Scholar]
- Wang, Y.; Whalen, J.K.; Chen, X.; Cao, Y.; Huang, B.; Lu, C.; Shi, Y. Mechanisms for altering phosphorus sorption characteristics induced by low-molecular-weight organic acids. Can. J. Soil Sci. 2016, 96, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Abumaizar, R.J.; Smith, E.H. Heavy metal contaminants removal by soil washing. J. Hazard. Mater. 1999, 70, 71–86. [Google Scholar] [CrossRef]
- Liang, F.; Guo, Z.H.; Men, S.H.; Xiao, X.Y.; Peng, C.; Wu, L.H.; Christie, P. Extraction of Cd and Pb from contaminated-paddy soil with EDTA, DTPA, citric acid and FeCl3 and effects on soil fertility. J. Cent. South Univ. 2019, 26, 2987–2997. [Google Scholar] [CrossRef]
- Smolders, E.; McLaughlin, M.J. Chloride increases cadmium uptake in Swiss chard in a resin-buffered nutrient solution. Sci. Soc. Am. J. 1996, 60, 1443–1447. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, W.; Zhuang, L.; Wang, S.; Tsang, D.C.W.; Qiu, R. Two-stage multi-fraction first-order kinetic modeling for soil Cd extraction by EDTA. Chemosphere 2018, 211, 1035–1042. [Google Scholar] [CrossRef]
- Mancini, G.; Bruno, M.; Polettini, A.; Pomi, R. Chelant-assisted pulse flushing of a field Pb-contaminated soil. Chem. Ecol. 2011, 27, 251–262. [Google Scholar] [CrossRef]
- Sun, B.; Zhao, F.J.; Lombi, E.; McGrath, S.P. Leaching of heavy metals from contaminated soils using EDTA. Environ. Pollut. 2001, 113, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Y.; Zhang, S.R.; Xu, X.X.; Zhong, Q.M.; Zhang, C.E.; Jia, Y.X.; Li, T.; Deng, O.P.; Li, Y. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility. Sci. Total Environ. 2016, 569, 557–568. [Google Scholar] [CrossRef]
- Begum, Z.A.; Rahman, I.M.M.; Tate, Y.; Sawai, H.; Maki, T.; Hasegawa, H. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants. Chemosphere 2012, 87, 1161–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukwaturi, M.; Lin, C.X. Mobilization of heavy metals from urban contaminated soils under water inundation conditions. J. Hazard. Mater. 2015, 285, 445–452. [Google Scholar] [CrossRef]
- Li, B.; Tester, M.; Gilliham, M. Chloride on the move. Trends Plant Sci. 2017, 22, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Im, J.; Yang, K.; Jho, E.H.; Nam, K. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties. Chemosphere 2015, 138, 253–258. [Google Scholar] [CrossRef]
- Guo, X.F.; Zhao, G.H.; Zhang, G.X.; He, Q.S.; Wei, Z.B.; Zheng, W.; Qian, T.W.; Wu, Q.T. Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties. Chemosphere 2018, 209, 776–782. [Google Scholar] [CrossRef]
pH | OM (%) | Particle Size Distribution | ||
---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | ||
6.20 ± 0.26 | 12.42 ± 0.12 | 29.60 ± 0.14 | 55.04 ± 0.43 | 16.36 ± 0.21 |
Salt | pH | Salt | pH | Salt | pH | Salt | pH |
---|---|---|---|---|---|---|---|
[Phe][Cl] | 1.49 | [Gly][Cl] | 1.51 | [Glu][Cl] | 1.47 | [Lys][Cl] | 1.66 |
[Phe][NO3] | 1.60 | [Gly][NO3] | 1.62 | [Glu][NO3] | 1.53 | [Lys][NO3] | 1.72 |
[Phe]3[PO4] | 1.61 | [Gly]3[PO4] | 1.65 | [Glu]3[PO4] | 1.55 | [Lys]3[PO4] | 1.73 |
Fraction | Reagents | Methods |
---|---|---|
EXCH | 8 mL 1 mol L−1 MgCl2 (pH = 7.0) | 1 h shaking at room temperature |
CARB | 8 mL 1 mol L−1 CH3COONa (adjusted to pH = 5.0 with CH3COOH) | 5 h shaking at room temperature |
FeMnOx | 20 mL 0.04 mol L−1 NH2OH·HCl in 25% (v/v) CH3COOH | 3 h shaking at 96 ± 3 °C |
OM | 3 mL of 0.02 mol L−1 HNO3 and 5 mL 30% H2O2 (adjusted to pH = 2 with HNO3) | 2 h intermittent shaking at 85 ± 2 °C |
3 mL 30% H2O2 (adjusted to pH = 2 with HNO3) | 3 h intermittent shaking at 85 ± 2 °C | |
5 mL 3.2 mol L−1 CH3COONH4 in 5% (v/v) HNO3 | 0.5 h shaking at room temperature | |
RESI | HNO3:HCl:HF = 6:3:2 | 25 min microwave digesting at 185 °C |
Properties | Parameter | a | b |
---|---|---|---|
Major elements content (wt%) by SEM-EDS | C (Cd) | 0.13 | n.d. |
C (O) | 44 | 47.17 | |
C (C) | 15.2 | 20.9 | |
C (N) | 1.2 | 1.98 | |
C (Cl) | n.d. | 0.74 | |
C (Si) | 16.8 | 16.4 | |
C (Fe) | 11.3 | 4.86 | |
C (Mn) | 0.19 | n.d. | |
C (Al) | 8.84 | 7.25 | |
C (Mg) | 0.57 | 0.33 | |
C (Ca) | 0.39 | 0.35 | |
C (Cu) | 0.35 | n.d. | |
C (Pb) | 1 | n.d. | |
Nutrient content (g/kg) | C (Or) | 13.52 ± 0.21 | 16.34 ± 0.25 |
C (N) | 1.29 ± 0.18 | 1.66 ± 0.23 | |
C (TP) | 0.62 ± 0.03 | 0.45 ± 0.02 | |
C (AP) | 0.052 ± 0.002 | 0.115 ± 0.003 | |
C (K) | 17.55 ± 0.25 | 14.97 ± 0.30 | |
pH | 6.20 ± 0.26 | 2.71 ± 0.36 | |
Growth metrics for rice seedlings cultured | Length (cm) | 7.86 ± 1.21 | 12.26 ± 1.02 |
Weight (g) | 0.056 ± 0.005 | 0.074 ± 0.007 | |
GI (%) | 80.0 ± 0.4 | 87.5 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Wang, S.; Beadham, I.; Gao, X.; Ji, M.; Wang, G.; Zhang, C.; Ruan, W. Effect of Soil Washing with an Amino-Acid-Derived Ionic Liquid on the Properties of Cd-Contaminated Paddy Soil. Toxics 2023, 11, 288. https://doi.org/10.3390/toxics11030288
Deng Y, Wang S, Beadham I, Gao X, Ji M, Wang G, Zhang C, Ruan W. Effect of Soil Washing with an Amino-Acid-Derived Ionic Liquid on the Properties of Cd-Contaminated Paddy Soil. Toxics. 2023; 11(3):288. https://doi.org/10.3390/toxics11030288
Chicago/Turabian StyleDeng, Yun, Sheng Wang, Ian Beadham, Xin Gao, Mengmeng Ji, Guang Wang, Changbo Zhang, and Wenquan Ruan. 2023. "Effect of Soil Washing with an Amino-Acid-Derived Ionic Liquid on the Properties of Cd-Contaminated Paddy Soil" Toxics 11, no. 3: 288. https://doi.org/10.3390/toxics11030288
APA StyleDeng, Y., Wang, S., Beadham, I., Gao, X., Ji, M., Wang, G., Zhang, C., & Ruan, W. (2023). Effect of Soil Washing with an Amino-Acid-Derived Ionic Liquid on the Properties of Cd-Contaminated Paddy Soil. Toxics, 11(3), 288. https://doi.org/10.3390/toxics11030288