Adaptive Mechanisms of Shewanella xiamenensis DCB 2-1 Metallophilicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Bacterial Culture and Growth Conditions
2.3. Cell Viability
2.4. Morphological Analysis
2.5. Analytical Methods
2.6. Catalase Activity
2.7. Superoxide Dismutase (SOD) Activity
2.8. Total Thiol Content
2.9. Determination of Metal Content
2.10. Genome Analysis
3. Results
3.1. Biological Response to Single and Multiple Metals Action
3.2. The Accumulating Characteristics of Single and Multiple Metals by S. xiamenensis
3.3. Gene Analysis
3.4. Catalase Activity in Response to Single and Multiple Metals Action
3.5. SOD Activity in Response to Single and Multiple Metals Action
3.6. Total Thiol Content in Response to Single and Multiple Metals Action
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press Taylor Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2015. [Google Scholar]
- Entwistle, J.A.; Hursthouse, A.S.; Marinho Reis, P.A.; Stewart, A.G. Metalliferous Mine Dust: Human Health Impacts and the Potential Determinants of Disease in Mining Communities. Curr. Pollut. Rep. 2019, 5, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology. Experientia Supplementum; Luch, A., Ed.; Springer: Basel, Switzerland, 2012; Volume 101, pp. 133–164. [Google Scholar] [CrossRef] [Green Version]
- Landrigan, P.J. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Keiblinger, K.M.; Schneider, M.; Gorfer, M.; Paumann, M.; Deltedesco, E.; Berger, H.; Jöchlinger, L.; Mentler, A.; Zechmeister-Boltenstern, S.; Soja, G.; et al. Assessment of Cu applications in two contrasting soils—Effects on soil microbial activity and the fungal community structure. Ecotoxicology 2018, 27, 217–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sisodia, N.S. Effect of Heavy Metal Toxicity on Environment and Health. Int. J. Res. Appl. Sci. Biotechnol. 2020, 7, 248–254. [Google Scholar]
- Tchounwou, P.; Newsome, C.; Williams, J.; Glass, K. Copper-induced cytotoxicity and transcriptional activation of stress genes in human liver carcinoma (HepG2) cells. In Metal Ions in Biology and Medicine; Collery, P., Maymard, I., Thephanides, T., Khassanova, L., Collery, T., Eds.; John Libbey Eurotext: Arcueil, France, 2008; Volume 10, pp. 285–290. [Google Scholar]
- Rouch, D.A.; Lee, B.T.O.; Morby, A.P. Understanding cellular responses to toxic agents: A model for mechanism-choice in bacterial metal resistance. J. Ind. Microbiol. 1995, 14, 132–141. [Google Scholar] [CrossRef]
- Mammari, N.; Lamouroux, E.; Boudier, A.; Duval, R.E. Current knowledge on the oxidative-stress-mediated antimicrobial properties of metal-based nanoparticles. Microorganisms 2022, 10, 437. [Google Scholar] [CrossRef]
- Khanna, K.; Kohli, S.K.; Handa, N.; Kaur, H.; Ohri, P.; Bhardwaj, R.; Yousaf, B.; Rinklebe, J.; Ahmad, P. Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicol. Environ. Saf. 2021, 222, 112459. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Vishwakarma, K.; Ramawat, N.; Rai, P.; Singh, V.K.; Mishra, R.K.; Kumar, V.; Tripathi, D.K.; Sharma, S. Nanomaterials and microbes’ interactions: A contemporary overview. 3 Biotech 2019, 9, 68. [Google Scholar] [CrossRef]
- Seixas, A.F.; Quendera, A.P.; Sousa, J.P.; Silva, A.F.Q.; Arraiano, C.M.; Andrade, J.M. Bacterial Response to Oxidative Stress and RNA Oxidation. Front. Genet. 2022, 12, 82153. [Google Scholar] [CrossRef] [PubMed]
- Borisov, V.B.; Siletsky, S.A.; Nastasi, M.R.; Forte, E. ROS defense systems and terminal oxidases in bacteria. Antioxidants 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Asatiani, N.; Kartvelishvili, T.; Sapojnikova, N.; Abuladze, M.; Asanishvili, L.; Osepashvili, M. Effect of the Simultaneous Action of Zinc and Chromium on Arthrobacter spp. Water. Air. Soil Pollut. 2018, 229, 395. [Google Scholar] [CrossRef]
- Grouzdev, D.S.; Safonov, A.V.; Babich, T.L.; Tourova, T.P.; Krutkina, M.S.; Nazina, T.N. Draft genome sequence of a dissimilatory U(VI)- reducing bacterium, Shewanella xiamenensis strain DCB2-1, isolated from nitrate- and radionuclide-contaminated groundwater in Russia. Genome Announc. 2018, 6, e00555-18. [Google Scholar] [CrossRef] [Green Version]
- Zinicovscaia, I.; Safonov, A.; Ostalkevich, S.; Gundorina, S.; Nekhoroshkov, P.; Grozdov, D. Metal ions removal from different type of industrial effluents using Spirulina platensis biomass. Int. J. Phytoremediation 2019, 21, 1442–1448. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Safonov, A.; Ostovnaya, T.; Boldyrev, K.; Kryuchkov, D.; Popova, N. Bio-zeolite use for metal removal from copper-containing synthetic effluents. J. Environ. Health Sci. Eng. 2021, 19, 1383–1398. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Vergel, K.; Popova, N.; Artemiev, G.; Safonov, A. Metal removal from nickel-containing effluents using mineral–organic hybrid adsorbent. Materials 2020, 13, 4462. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Abdusamadzoda, D.; Safonov, A.; Rodlovskaya, E. Zinc-containing effluent treatment using Shewanella xiamenensis biofilm formed on zeolite. Materials 2021, 14, 1760. [Google Scholar] [CrossRef]
- Herigstad, B.; Hamilton, M.; Heersink, J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods 2001, 44, 121–129. [Google Scholar] [CrossRef]
- Hoben, H.J.; Somasegaran, P. Comparison of the pour, spread, and drop plate methods for enumeration of Rhizobium spp. in inoculants made from presterilized peat. Appl. Environ. Microbiol. 1982, 44, 1246–1247. [Google Scholar] [CrossRef] [Green Version]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Steinman, H.M. Bacteriocuprein superoxide dismutases in pseudomonads. J. Bacteriol. 1985, 162, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, C.L.; Morgan, P.E.; Davies, M.J. Quantification of protein modification by oxidants. Free Radic. Biol. Med. 2009, 46, 965–988. [Google Scholar] [CrossRef] [PubMed]
- Shingler, V. Signal sensing by σ54-dependent regulators: Derepression as a control mechanism. Mol. Microbiol. 1996, 19, 409–416. [Google Scholar] [CrossRef]
- Sánchez-Sutil, M.C.; Pérez, J.; Gómez-Santos, N.; Shimkets, L.J.; Moraleda-Muñoz, A.; Muñoz-Dorado, J. The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development. PLoS ONE 2013, 8, e68240. [Google Scholar] [CrossRef] [Green Version]
- Hiniker, A.; Collet, J.F.; Bardwell, J.C.A. Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC*. J. Biol. Chem. 2005, 280, 33785–33791. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Zhang, B.; Jiang, Y.; Liu, C.; Zhou, W.; Chen, M.; Yang, Y.; Hu, Y.; Liu, B. Structural basis of copper-efflux-regulator-dependent transcription activation. iScience 2021, 24, 102449. [Google Scholar] [CrossRef]
- Stoyanov, J.V.; Hobman, J.L.; Brown, N.L. CueR (Ybbl) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol. Microbiol. 2001, 39, 502–512. [Google Scholar] [CrossRef]
- Changela, A.; Chen, K.; Xue, Y.; Holschen, J.; Outten, C.E.; O’Halloran, T.V.; Mondragón, A. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 2003, 301, 1383–1387. [Google Scholar] [CrossRef] [Green Version]
- Munson, G.P.; Lam, D.L.; Outten, F.W.; O’Halloran, T.V. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J. Bacteriol. 2000, 182, 5864–5871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franke, S.; Grass, G.; Rensing, C.; Nies, D.H. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J. Bacteriol. 2003, 185, 3804–3812. [Google Scholar] [CrossRef] [Green Version]
- Brocklehurst, K.R.; Hobman, J.L.; Lawley, B.; Blank, L.; Marshall, S.J.; Brown, N.L.; Morby, A.P. ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 1999, 31, 893–902. [Google Scholar] [CrossRef]
- Jovanovic, G.; Dworkin, J.; Model, P. Autogenous control of PspF, a constitutively active enhancer-binding protein of Escherichia coli. J. Bacteriol. 1997, 179, 5232–5237. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, M.; Pribyl, T.; Juhnke, S.; Nies, D.H. Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J. Biol. Chem. 1999, 274, 26065–26070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albareda, M.; Rodrigue, A.; Brito, B.; Ruiz-Argüeso, T.; Imperial, J.; Mandrand-Berthelot, M.A.; Palacios, J. Rhizobium leguminosarum HupE is a highly-specific diffusion facilitator for nickel uptake. Metallomics 2015, 7, 691–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samantarrai, D.; Sagar, A.L.; Gudla, R.; Siddavattam, D. TonB-Dependent Transporters in Sphingomonads: Unraveling Their Distribution and Function in Environmental Adaptation. Microorganisms 2020, 8, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eitinger, T. Nickel, Cobalt Transport in Prokaryotes. In Metals and Cells; Encyclopedia of Inorganic and Bioinorganic Chemistry Series; Culotta, V., Scott, R.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 1–10. [Google Scholar]
- Huang, J.; Sun, B.; Zhang, X. Shewanella xiamenensis sp. nov., isolated from coastal sea sediment. Int. J. Syst. Evol. Microbiol. 2010, 60, 1585–1589. [Google Scholar] [CrossRef]
- Huang, Y.T.; Cheng, J.F.; Wu, Z.Y.; Tung, K.C.; Chen, Y.J.; Hong, Y.K.; Chen, S.Y.; Liu, P.Y. Genomic and phylogenetic characterization of Shewanella xiamenensis isolated from giant grouper (Epinephelus lanceolatus) in Taiwan. Zoonoses Public Health 2019, 66, 679–685. [Google Scholar] [CrossRef]
- Harris, H.W.; Sánchez-Andrea, I.; McLean, J.S.; Salas, E.C.; Tran, W.; El-Naggar, M.Y.; Nealson, K.H. Redox sensing within the genus Shewanella. Front. Microbiol. 2018, 8, 2568. [Google Scholar] [CrossRef] [Green Version]
- Barchinger, S.E.; Pirbadian, S.; Sambles, C.; Baker, C.S.; Leung, K.M.; Burroughs, N.J.; El-Naggar, M.Y.; Golbeck, J.H. Regulation of gene expression in Shewanella oneidensis MR-1 during electron acceptor limitation and bacterial nanowire formation. Appl. Environ. Microbiol. 2016, 82, 5428–5443. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hosteen, O.; Fierke, C.A. ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc. J. Inorg. Biochem. 2012, 111, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Caballero, H.; Campanello, G.C.; Giedroc, D.P. Metalloregulatory proteins: Metal selectivity and allosteric switching. Biophys. Chem. 2011, 156, 103–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braymer, J.J.; Giedroc, D.P. Recent developments in copper and zinc homeostasis in bacterial pathogens. Curr. Opin. Chem. Biol. 2014, 19, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Outten, C.E.; O’Halloran, T.V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science. 2001, 292, 2488–2492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanda, M.; Kumar, V.; Sharma, D.K. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquat. Toxicol. 2019, 212, 1–10. [Google Scholar] [CrossRef]
- Stern, B.R. Essentiality and toxicity in copper health risk assessment: Overview, update and regulatory considerations. J. Toxicol. Environ. Health A 2010, 73, 114–127. [Google Scholar] [CrossRef]
- Harvey, L.J.; McArdle, H.J. Biomarkers of copper status: A brief update. Br. J. Nutr. 2008, 99, S10–S13. [Google Scholar] [CrossRef] [Green Version]
- Barwinska-Sendra, A.; Waldron, K.J. The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity. Adv. Microb. Physiol. 2017, 70, 315–379. [Google Scholar] [CrossRef] [PubMed]
- Dupont, C.L.; Grass, G.; Rensing, C. Copper toxicity and the origin of bacterial resistance—New insights and applications. Metallomics 2011, 3, 1109–1118. [Google Scholar] [CrossRef]
- Stewart, L.J.; Thaqi, D.; Kobe, B.; McEwan, A.G.; Waldron, K.J.; Djoko, K.Y. Handling of nutrient copper in the bacterial envelope. Metallomics 2019, 11, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Raimunda, D.; González-Guerrero, M.; Leeber, B.W.; Argüello, J.M. The transport mechanism of bacterial Cu+-ATPases: Distinct efflux rates adapted to different function. BioMetals 2011, 24, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhamidimarri, S.P.; Young, T.R.; Shanmugam, M.; Soderholm, S.; Basle, A.; Bumann, D.; Van Den Berg, B. Acquisition of ionic copper by the bacterial outer membrane protein OprC through a novel binding site. PLoS Biol. 2021, 19, e3001446. [Google Scholar] [CrossRef] [PubMed]
- Mulrooney, S.B.; Hausinger, R.P. Nickel uptake and utilization by microorganisms. FEMS Microbiol. Rev. 2003, 27, 239–261. [Google Scholar] [CrossRef] [PubMed]
- MacOmber, L.; Hausinger, R.P. Mechanisms of nickel toxicity in microorganisms. Metallomics 2011, 3, 1153–1162. [Google Scholar] [CrossRef] [Green Version]
- Roell, K.R.; Reif, D.M.; Motsinger-Reif, A.A. An introduction to terminology and methodology of chemical synergy—Perspectives from across disciplines. Front. Pharmac. 2017, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- McDevitt, C.A.; Ogunniyi, A.D.; Valkov, E.; Lawrence, M.C.; Kobe, B.; McEwan, A.G.; Paton, J.C. A molecular mechanism for bacterial susceptibility to Zinc. PLoS Pathog. 2011, 7, e1002357. [Google Scholar] [CrossRef] [Green Version]
- Casanova-Hampton, K.; Carey, A.; Kassam, S.; Garner, A.; Donati, G.L.; Thangamani, S.; Subashchandrabose, S. A genome-wide screen reveals the involvement of enterobactin-mediated iron acquisition in Escherichia coli survival during copper stress. Metallomics 2021, 13, mfab052. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, P.; Wang, H.; Yu, Z.H.; Au-Yeung, H.Y.; Hirayama, T.; Sun, H.; Yan, A. Zinc excess increases cellular demand for iron and decreases tolerance to copper in Escherichia coli. J. Biol. Chem. 2019, 294, 16978–16991. [Google Scholar] [CrossRef]
- Sizentsov, A.; Sizentsov, Y.; Kvan, O.; Salnikova, E.; Salnikova, V. A study on heavy metal sorption properties of intestinal microbiota in vitro. E3S Web Conf. 2019, 79, 03021. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Redox chemistry: The essentials. In Free Radicals in Biology and Medicine, 5th ed.; Halliwell, B., Gutteridge, J.M.C., Eds.; Oxford University Press: Oxford, UK, 2015; pp. 30–76. [Google Scholar] [CrossRef]
- Korbashi, P.; Katzhandler, J.; Saltman, P.; Chevion, M. Zinc protects Escherichia coli against copper-mediated paraquat-induced damage. J. Biol. Chem. 1989, 264, 8479–8482. [Google Scholar] [CrossRef]
- Valko, M.; Morris, H.; Cronin, M. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, S.; Husain, M.M.; Chandra, R.; Hasan, S.K.; Srivastava, R.C. Hydroxyl radical formation resulting from the interaction of nickel complexes of L-histidine, glutathione or L-cysteine and hydrogen peroxide. Hum. Exp. Toxicol. 2005, 24, 13–17. [Google Scholar] [CrossRef]
- Shi, X.; Dalal, N.S.; Kasprzak, K.S. Generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of oligopeptides. Arch. Biochem. Biophys. 1992, 299, 154–162. [Google Scholar] [CrossRef]
- Shi, X.; Kasprzak, K.S.; Dalal, N.S. Generation of Free radicals in reactions of Ni(II)-thiol complexes with molecular oxygen and model lipid hydroperoxides. J. Inorg. Biochem. 1993, 50, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Skwaryło-Bednarz, B.; Krzepiłko, A.; Brodowska, M.S.; Brodowski, R.; Ziemińska-Smyk, M.; Onuch, J.; Gradziuk, B. The impact of copper on catalase activity and antioxidant properties of soil under amaranth cultivation. J. Elem. 2018, 23, 825–836. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Y.; Outten, F.W. Fur and the novel regulator YqjI control transcription of the ferric reductase gene yqjH in Escherichia coli. J. Bacter. 2011, 193, 563–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 2019, 140, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Deneke, S.M. Thiol-based antioxidants. Curr. Top. Cell. Regul. 2001, 36, 151–180. [Google Scholar] [CrossRef]
System | Concentration in Solution, mg/L | Efficiency of Uptake, % | Content in Biomass, mg/g |
---|---|---|---|
Cu(II) | 5 | 19 | 2.3 |
20 | 8.8 | 4.6 | |
50 | 5.9 | 6.0 | |
75 | 10.3 | 17.7 | |
100 | 16.1 | 38.3 | |
Ni(II) | 5 | 21.3 | 4.02 |
20 | 14.0 | 9.7 | |
50 | 14.6 | 21.3 | |
75 | 9.6 | 20.4 | |
100 | 9.5 | 26.4 | |
200 | 9.3 | 30.1 | |
Zn(II) | 5 | 51 | 6.2 |
20 | 93 | 49 | |
50 | 90 | 103 | |
75 | 96 | 168 | |
100 | 92 | 229 | |
200 | 94 | 288 |
System | Metal | Efficiency of Uptake, % | Content in Biomass, mg/g |
---|---|---|---|
20 mg/L for each metal | |||
Cu/Ni | Cu | 50.4 | 226.6 |
Ni | 11.0 | 61.2 | |
Ni/Zn | Ni | 11.8 | 63.7 |
Zn | 11.5 | 43.6 | |
Cu/Zn | Cu | 48.2 | 197.8 |
Zn | 9.1 | 33.1 | |
Cu/Ni/Zn | Cu | 86.6 | 254.7 |
Ni | 11.0 | 41.0 | |
Zn | 12.7 | 32.9 | |
50 mg/L for each metal | |||
Cu/Ni | Cu | 13.4 | 134.9 |
Ni | 12.1 | 154.2 | |
Ni/Zn | Ni | 13.1 | 164.9 |
Zn | 12.9 | 111.5 | |
Cu/Zn | Cu | 7.9 | 80.3 |
Zn | 1.0 | 8.6 | |
Cu/Ni/Zn | Cu | 16.1 | 113.7 |
Ni | 12.6 | 115.4 | |
Zn | 10.7 | 65.6 | |
200 mg/L for each metal | |||
Cu/Ni | Cu | 43.2 | 186.4 |
Ni | 21.8 | 142.5 | |
Ni/Zn | Ni | 20.7 | 89.3 |
Zn | 78.4 | 326.7 | |
Cu/Zn | Cu | 14.9 | 48.2 |
Zn | 19.6 | 79.2 | |
Cu/Ni/Zn | Cu | 28.0 | 92.9 |
Ni | 21.3 | 93.2 | |
Zn | 78.6 | 329.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuladze, M.; Asatiani, N.; Kartvelishvili, T.; Krivonos, D.; Popova, N.; Safonov, A.; Sapojnikova, N.; Yushin, N.; Zinicovscaia, I. Adaptive Mechanisms of Shewanella xiamenensis DCB 2-1 Metallophilicity. Toxics 2023, 11, 304. https://doi.org/10.3390/toxics11040304
Abuladze M, Asatiani N, Kartvelishvili T, Krivonos D, Popova N, Safonov A, Sapojnikova N, Yushin N, Zinicovscaia I. Adaptive Mechanisms of Shewanella xiamenensis DCB 2-1 Metallophilicity. Toxics. 2023; 11(4):304. https://doi.org/10.3390/toxics11040304
Chicago/Turabian StyleAbuladze, Marina, Nino Asatiani, Tamar Kartvelishvili, Danil Krivonos, Nadezhda Popova, Alexey Safonov, Nelly Sapojnikova, Nikita Yushin, and Inga Zinicovscaia. 2023. "Adaptive Mechanisms of Shewanella xiamenensis DCB 2-1 Metallophilicity" Toxics 11, no. 4: 304. https://doi.org/10.3390/toxics11040304
APA StyleAbuladze, M., Asatiani, N., Kartvelishvili, T., Krivonos, D., Popova, N., Safonov, A., Sapojnikova, N., Yushin, N., & Zinicovscaia, I. (2023). Adaptive Mechanisms of Shewanella xiamenensis DCB 2-1 Metallophilicity. Toxics, 11(4), 304. https://doi.org/10.3390/toxics11040304