Spectral Characteristics of Dissolved Organic Matter in Farmland Soils around Urumqi, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Site Investigation and Sample Collection
2.3. DOM Extraction in Soil
2.4. Spectroscopic Analyses
2.5. Spectroscopic Indices and Data Analysis
2.6. Quality Assurance and Quality Control
3. Results and Discussion
3.1. Fluorescence Characteristics of Soil DOM
3.2. UV–Vis Spectral Characteristics of Soil DOM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gmach, M.R.; Cherubin, M.R.; Kaiser, K.; Pellegrino Cerri, C.E. Processes that influence dissolved organic matter in the soil: A review. Sci. Agric. 2020, 77, e20180164. [Google Scholar] [CrossRef]
- Peter, P.C. Soil Organic Matter/Carbon Dynamics in Contrasting Tillage and Land Management Systems: A Case for Smallholder Farmers with Degraded and Marginal Soils. Commun. Soil Sci. Plant Anal. 2017, 48, 2013–2031. [Google Scholar] [CrossRef]
- Smreczak, B.; Ukalska-Jaruga, A. Dissolved organic matter in agricultural soils. Soil Sci. Annu. 2021, 72, 132234. [Google Scholar] [CrossRef]
- Bowen, S.R.; Gregorich, E.G.; Hopkins, D.W. Biochemical properties and biodegradation of dissolved organic matter from soils. Biol. Fertil. Soils 2009, 45, 733–742. [Google Scholar] [CrossRef]
- Kaiser, K.; Kalbitz, K. Cycling downwards—Dissolved organic matter in soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Simpson, A.J.; Soong, R.; Oren, A.; Chefetz, B.; Simpson, M.J. Solution-state NMR investigation of the sorptive fractionation of dissolved organic matter by alkaline mineral soils. Environ. Chem. 2013, 10, 333–340. [Google Scholar] [CrossRef]
- Bolan, N.S.; Adriano, D.C.; Kunhikrishnan, A.; James, T.; McDowell, R.; Senesi, N. Chapter One—Dissolved Organic Matter: Biogeochemistry, Dynamics, and Environmental Significance in Soils. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2011; Volume 110, pp. 1–75. [Google Scholar]
- Bastida, F.; Moreno, J.L.; Hernández, T.; García, C. Microbiological activity in a soil 15 years after its devegetation. Soil Biol. Biochem. 2006, 38, 2503–2507. [Google Scholar] [CrossRef]
- Kaiser, K.; Guggenberger, G. Mineral surfaces and soil organic matter. Eur. J. Soil Sci. 2003, 54, 219–236. [Google Scholar] [CrossRef]
- Kalisz, B.; Lachacz, A.; Glazewski, R.; Grabowski, K. Labile organic carbon fractions after amendment of sandy soil with municipal sewage sludge and compost. J. Elem. 2017, 22, 785–797. [Google Scholar] [CrossRef]
- Willey, J.D.; Kieber, R.J.; Eyman, M.S.; Avery, G.B., Jr. Rainwater dissolved organic carbon: Concentrations and global flux. Glob. Biogeochem. Cycles 2000, 14, 139–148. [Google Scholar] [CrossRef]
- Rosa, E.; Debska, B. Seasonal changes in the content of dissolved organic matter in arable soils. J. Soils Sediments 2018, 18, 2703–2714. [Google Scholar] [CrossRef]
- Zsolnay, Á. Dissolved organic matter: Artefacts, definitions, and functions. Geoderma 2003, 113, 187–209. [Google Scholar] [CrossRef]
- Leinweber, P.; Jandl, G.; Baum, C.; Eckhardt, K.-U.; Kandeler, E. Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biol. Biochem. 2008, 40, 1496–1505. [Google Scholar] [CrossRef]
- Avneri-Katz, S.; Young, R.B.; McKenna, A.M.; Chen, H.; Corilo, Y.E.; Polubesova, T.; Borch, T.; Chefetz, B. Adsorptive fractionation of dissolved organic matter (DOM) by mineral soil: Macroscale approach and molecular insight. Org. Geochem. 2017, 103, 113–124. [Google Scholar] [CrossRef]
- De Troyer, I.; Merckx, R.; Amery, F.; Smolders, E. Factors Controlling the Dissolved Organic Matter Concentration in Pore Waters of Agricultural Soils. Vadose Zone J. 2014, 13, vzj2013.2009.0167. [Google Scholar] [CrossRef]
- Brockett, B.F.T.; Prescott, C.E.; Grayston, S.J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 2012, 44, 9–20. [Google Scholar] [CrossRef]
- García-Gil, J.C.; Plaza, C.; Senesi, N.; Brunetti, G.; Polo, A. Effects of Long-Term Sewage Sludge Amendment on the Composition, Structure and Proton Binding Activity of Soil Fulvic Acids. CLEAN Soil Air Water 2007, 35, 480–487. [Google Scholar] [CrossRef]
- García-Gil, J.C.; Plaza, C.; Fernández, J.M.; Senesi, N.; Polo, A. Soil fulvic acid characteristics and proton binding behavior as affected by long-term municipal waste compost amendment under semi-arid environment. Geoderma 2008, 146, 363–369. [Google Scholar] [CrossRef]
- Luo, L.; Lin, S.; Huang, H.; Zhang, S. Relationships between aging of PAHs and soil properties. Environ. Pollut. 2012, 170, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Kaal, J.; Liang, J.; Zhang, Y.; Wei, S.; Wang, D.; Green, N.W. Composition of dissolved organic matter (DOM) from periodically submerged soils in the Three Gorges Reservoir areas as determined by elemental and optical analysis, infrared spectroscopy, pyrolysis-GC-MS and thermally assisted hydrolysis and methylation. Sci. Total Environ. 2017, 603, 461–471. [Google Scholar] [CrossRef]
- Li, S.; Li, M.; Wang, G.; Sun, X.; Xi, B.; Hu, Z. Compositional and chemical characteristics of dissolved organic matter in various types of cropped and natural Chinese soils. Chem. Biol. Technol. Agric. 2019, 6, 20. [Google Scholar] [CrossRef]
- Huang, M.; Chai, L.; Jiang, D.; Zhang, M.; Jia, W.; Huang, Y.; Zhou, J. Dissolved organic matter (DOM) quality drives biogeographic patterns of soil bacterial communities and their association networks in semi-arid regions. Fems Microbiol. Ecol. 2021, 97, fiab083. [Google Scholar] [CrossRef] [PubMed]
- Barker, J.D.; Dubnick, A.; Lyons, W.B.; Chin, Y.P. Changes in Dissolved Organic Matter (DOM) Fluorescence in Proglacial Antarctic Streams. Arct. Antarct. Alp. Res. 2013, 45, 305–317. [Google Scholar] [CrossRef]
- Gbadegesin, L.A.; Tang, X.; Liu, C.; Cheng, J. Transport of Veterinary Antibiotics in Farmland Soil: Effects of Dissolved Organic Matter. Int. J. Environ. Res. Public Health 2022, 19, 1702. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liao, C.; Tian, Q.; Wang, D.; Wu, Y.; Tang, Y.; Liu, F. Dissolved Organic Matter Characteristics and Important Site Factors in a Subtropical Mountain Forest in Central China. For. Sci. 2020, 66, 49–57. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, Z.; Yang, X.; Cai, X.; Wang, Z.; Xie, X. Noncovalent interactions between fluoroquinolone antibiotics with dissolved organic matter: A H-1 NMR binding site study and multi-spectroscopic methods. Environ. Pollut. 2019, 248, 815–822. [Google Scholar] [CrossRef]
- Rizzuto, S.; Baho, D.L.; Jones, K.C.; Zhang, H.; Leu, E.; Nizzetto, L. Binding of waterborne pharmaceutical and personal care products to natural dissolved organic matter. Sci. Total Environ. 2021, 784, 147208. [Google Scholar] [CrossRef]
- Wang, R.; Yang, S.; Fang, J.; Wang, Z.; Chen, Y.; Zhang, D.; Yang, C. Characterizing the Interaction between Antibiotics and Humic Acid by Fluorescence Quenching Method. Int. J. Environ. Res. Public Health 2018, 15, 1458. [Google Scholar] [CrossRef]
- Pan, B.; Wang, P.; Wu, M.; Li, J.; Zhang, D.; Xiao, D. Sorption kinetics of ofloxacin in soils and mineral particles. Environ. Pollut. 2012, 171, 185–190. [Google Scholar] [CrossRef]
- Fan, W.; Guo, T.; Gao, S.; Lu, Y.; Meng, Y.; Huo, M. Evolution of dissolved organic matter during artificial groundwater recharge with effluent from underutilized WWTP and the resulting facilitated transport effect. Environ. Res. 2021, 193, 110527. [Google Scholar] [CrossRef]
- Tunaley, C.; Tetzlaff, D.; Soulsby, C. Scaling effects of riparian peatlands on stable isotopes in runoff and DOC mobilisation. J. Hydrol. 2017, 549, 220–235. [Google Scholar] [CrossRef]
- Karavanova, E.I.; Belyanina, L.A.; Stepanov, A.A. Water-soluble organic matter and soil solution acidity in the main soil types of the central forest state biosphere reserve. Eurasian Soil Sci. 2007, 40, 493–504. [Google Scholar] [CrossRef]
- Nebbioso, A.; Piccolo, A. Molecular characterization of dissolved organic matter (DOM): A critical review. Anal. Bioanal. Chem. 2013, 405, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Du, J.G.; Long, H.Y.; Sun, G.L. Characteristics and risk analysis of hydrological disaster events from 1949 to 2015 in Urumqi, China. Theor. Appl. Climatol. 2019, 137, 745–754. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Zhang, X.; Meng, Q.; Gao, F.; Zhang, Y. Characterization of spectral responses of dissolved organic matter (DOM) for atrazine binding during the sorption process onto black soil. Chemosphere 2017, 180, 531–539. [Google Scholar] [CrossRef]
- Ersan, M.S.; Liu, C.; Amy, G.; Karanfil, T. The interplay between natural organic matter and bromide on bromine substitution. Sci. Total Environ. 2019, 646, 1172–1181. [Google Scholar] [CrossRef]
- Comstock, S.E.H.; Boyer, T.H.; Graf, K.C.; Townsend, T.G. Effect of landfill characteristics on leachate organic matter properties and coagulation treatability. Chemosphere 2010, 81, 976–983. [Google Scholar] [CrossRef]
- Tang, G.; Wang, Q. Impact of environmental factors and tributary contributions on tidal dissolved organic matter dynamics. Chemosphere 2022, 308, 136384. [Google Scholar] [CrossRef]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Musadji, N.Y.; Lemee, L.; Caner, L.; Porel, G.; Poinot, R.; Geffroy-Rodier, C. Spectral characteristics of soil dissolved organic matter: Long-term effects of exogenous organic matter on soil organic matter and spatial-temporal changes. Chemosphere 2020, 240, 124808. [Google Scholar] [CrossRef]
- Lv, J.; Dou, Y.; Gong, W.; Duan, X.; Hou, L.a.; Zhang, L.; Xi, B.; Yu, S. Characterization of Dissolved Organic Matter in Hybrid Constructed Wetlands Using Three-Dimensional Excitation-Emission Matrix Fluorescence Spectroscopy. J. Water Chem. Technol. 2019, 41, 113–118. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, X.; Li, R.; Chen, Y.; Meng, Q. Investigating the behavior of binding properties between dissolved organic matter (DOM) and Pb(II) during the soil sorption process using parallel factor analysis (PARAFAC) and two-dimensional correlation spectroscopy (2D-COS). Environ. Sci. Pollut. Res. 2017, 24, 25156–25165. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Hu, E.; Sun, C.; Li, M.; Gao, L.; Fan, L. Using fluorescence index (FI) of dissolved organic matter (DOM) to identify non-point source pollution: The difference in FI between soil extracts and wastewater reveals the principle. Sci. Total Environ. 2023, 862, 160848. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, X.; Han, C.; Gao, L.; Wu, H.; Li, M. A new view into three-dimensional excitation-emission matrix fluorescence spectroscopy for dissolved organic matter. Sci. Total Environ. 2023, 855, 158963. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Ye, J.; Chen, Z.; Ren, D.; Zhang, S. The spectral characteristics and cadmium complexation of soil dissolved organic matter in a wide range of forest lands. Environ. Pollut. 2022, 299, 118834. [Google Scholar] [CrossRef]
- Harman, B.I.; Koseoglu, H.; Yigit, N.O.; Sayilgan, E.; Beyhan, M.; Kitis, M. The removal of disinfection by-product precursors from water with ceramic membranes. Water Sci. Technol. 2010, 62, 547–555. [Google Scholar] [CrossRef]
- Engel, M.; Chefetz, B. The missing link between carbon nanotubes, dissolved organic matter and organic pollutants. Adv. Colloid Interface Sci. 2019, 271, 101993. [Google Scholar] [CrossRef]
- Song, N.; Wu, D.; Xu, H.; Jiang, H. Integrated evaluation of the reactive oxygen species (ROS) production characteristics in one large lake under alternating flood and drought conditions. Water Res. 2022, 225, 119136. [Google Scholar] [CrossRef]
Site | Coordinates | Crop Types | Soil Types | pH | Districts |
---|---|---|---|---|---|
S1 | 87°583684′ E, 44°060206′ N | sweet potato | Camborthids | 7.92 | The north of Urumqi |
S2 | 87°644409′ E, 44°082329′ N | corn | Camborthids | 8.05 | |
S3 | 87°551937′ E, 44°325629′ N | cotton | Camborthids | 8.32 | |
S4 | 87°595882′ E, 44°121391′ N | sweet potato | Camborthids | 8.06 | |
S5 | 87°565842′ E, 44°409290′ N | cotton | Camborthids | 8.39 | |
S6 | 87°591934′ E, 44°153144′ N | corn | Camborthids | 8.09 | |
S7 | 87°601204′ E, 44°171739′ N | rice | Camborthids | 7.93 | |
S8 | 87°631674′ E, 44°283554′ N | cotton | Camborthids | 8.16 | |
S9 | 87°479110′ E, 43°976233′ N | spinach | Camborthids | 7.96 | |
S10 | 87°472458′ E, 43°963415′ N | wheat | Camborthids | 8.07 | |
S11 | 87°584381′ E, 44°229457′ N | pumpkin | Camborthids | 8.07 | |
S12 | 87°402805′ E, 43°459628′ N | greenhouse flower | Calciustoll | 7.56 | The south of Urumqi |
S13 | 87°282321′ E, 43°480383′ N | greenhouse flower | Calciustoll | 7.68 | |
S14 | 87°390822′ E, 43°629482′ N | greenhouse vegetable | Calciustoll | 7.93 | |
S15 | 87°355654′ E, 43°597425′ N | potato | Calciustoll | 8.03 | |
S16 | 87°389653′ E, 43°682755′ N | onion | Calciustoll | 8.05 | |
S17 | 87°961693′ E, 44°339934′ N | cotton | Quartisamment | 8.36 | Fukang |
S18 | 88°474617′ E, 44°166691′ N | corn | Quartisamment | 8.40 | |
S19 | 88°303642’ E, 44°172170′ N | corn | Quartisamment | 8.51 |
Site | SUVA254/L·(mg·m)−1 | SUVA260/L·(mg·m)−1 | SUVA280/L·(mg·m)−1 | SUVA250/SUVA365 | SUVA300/SUVA400 | District | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–0.1 m | 0.1–0.2 m | 0.2–0.3 m | 0–0.1 m | 0.1–0.2 m | 0.2–0.3 m | 0–0.1 m | 0.1–0.2 m | 0.2–0.3 m | 0–0.1 m | 0.1–0.2 m | 0.2–0.3 m | 0–0.1 m | 0.1–0.2 m | 0.2–0.3 m | ||
S1 | 1.4552 | 1.4911 | 1.4606 | 1.5753 | 1.5780 | 1.5114 | 1.4588 | 1.4670 | 1.3927 | 1.4609 | 1.6430 | 1.5954 | 1.2820 | 1.3833 | 1.3666 | The north of Urumqi |
S2 | 1.1731 | 1.1270 | 1.1138 | 1.2464 | 1.2139 | 1.1967 | 1.1958 | 1.1662 | 1.1610 | 1.4235 | 1.4347 | 1.3925 | 1.2936 | 1.2852 | 1.2567 | |
S3 | 1.4295 | 1.2909 | 1.2082 | 1.3753 | 1.2980 | 1.2263 | 1.3860 | 1.2788 | 1.2324 | 1.5678 | 1.5179 | 1.4679 | 1.3196 | 1.3066 | 1.2775 | |
S4 | 1.1023 | 1.1323 | 0.9488 | 1.0823 | 0.9674 | 0.9235 | 1.0635 | 1.0132 | 0.9721 | 1.5577 | 1.3623 | 1.3049 | 1.2555 | 1.2101 | 1.1836 | |
S5 | 0.9893 | 0.9753 | 0.9461 | 1.0098 | 1.0110 | 0.9648 | 1.0353 | 1.0350 | 1.0025 | 1.3858 | 1.3949 | 1.3587 | 1.2350 | 1.2396 | 1.2360 | |
S6 | 1.3878 | 1.3381 | 1.8280 | 1.3480 | 1.3033 | 1.8365 | 1.2978 | 1.2704 | 1.6815 | 1.6349 | 1.5974 | 1.8640 | 1.3763 | 1.3687 | 1.5065 | |
S7 | 0.9802 | 1.1823 | 1.0801 | 1.0377 | 1.2432 | 1.1394 | 1.0416 | 1.1766 | 1.1021 | 1.3678 | 1.4510 | 1.3806 | 1.2350 | 1.2499 | 1.2411 | |
S8 | 1.1600 | 1.4786 | 1.2913 | 1.1384 | 1.4330 | 1.2708 | 1.0994 | 1.1636 | 1.0996 | 1.4710 | 1.5919 | 1.4929 | 1.2952 | 1.3900 | 1.3024 | |
S9 | 1.4158 | 1.6456 | 1.5728 | 1.3643 | 1.5845 | 1.5238 | 1.2070 | 1.2969 | 1.2930 | 1.6525 | 1.6454 | 1.6624 | 1.3099 | 1.4169 | 1.4251 | |
S10 | 1.2560 | 1.2279 | 1.0795 | 1.2065 | 1.1683 | 1.0329 | 1.0810 | 1.1049 | 0.9731 | 1.4962 | 1.4677 | 1.4237 | 1.3386 | 1.2971 | 1.2941 | |
S11 | 1.1979 | 1.3143 | 1.5668 | 1.1395 | 1.2276 | 1.4040 | 1.0366 | 1.1269 | 1.2792 | 1.4510 | 1.5078 | 1.5893 | 1.2900 | 1.3405 | 1.3882 | |
S12 | 2.8835 | 2.8842 | 3.0710 | 2.8904 | 2.9074 | 3.1274 | 2.5993 | 2.5649 | 2.7767 | 2.4165 | 2.4034 | 2.4553 | 2.1037 | 2.0073 | 2.0381 | The south of Urumqi |
S13 | 2.5336 | 2.1703 | 2.2660 | 2.4406 | 2.1124 | 2.1979 | 2.2232 | 1.9014 | 2.0591 | 2.2873 | 2.1623 | 2.1273 | 1.9308 | 1.7553 | 1.6863 | |
S14 | 1.1083 | 2.3971 | 1.8065 | 1.2152 | 2.4163 | 1.8783 | 1.1870 | 2.1330 | 1.6689 | 1.3554 | 1.9819 | 1.6741 | 1.2512 | 1.5987 | 1.4626 | |
S15 | 1.4164 | 1.8039 | 1.1916 | 1.4721 | 1.8453 | 1.2287 | 1.3794 | 1.6426 | 1.1785 | 1.5443 | 1.8303 | 1.4504 | 1.3403 | 1.5631 | 1.3092 | |
S16 | 1.2025 | 1.3446 | 1.2895 | 1.1420 | 1.1200 | 1.2078 | 1.0487 | 1.1530 | 1.0950 | 1.4835 | 1.5565 | 1.5333 | 1.2994 | 1.3472 | 1.3399 | |
S17 | 1.1342 | 1.0790 | 1.0905 | 1.1312 | 1.1257 | 1.1309 | 1.1382 | 1.0984 | 1.1283 | 1.4898 | 1.4282 | 1.4335 | 1.3194 | 1.2644 | 1.2813 | Fukang |
S18 | 1.2572 | 1.2672 | 1.3409 | 1.2240 | 1.2357 | 1.3033 | 1.1185 | 1.1196 | 1.1892 | 1.5377 | 1.5496 | 1.5326 | 1.3556 | 1.3645 | 1.3788 | |
S19 | 1.3434 | 1.2495 | 1.2023 | 1.1731 | 1.1675 | 1.1319 | 1.1297 | 1.0440 | 1.0579 | 1.6366 | 1.5378 | 1.4780 | 1.4037 | 1.3363 | 1.2958 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Duo, J.; Zhang, Z.; Pei, L.; Li, W.; Wufuer, R. Spectral Characteristics of Dissolved Organic Matter in Farmland Soils around Urumqi, China. Toxics 2023, 11, 376. https://doi.org/10.3390/toxics11040376
Zhu J, Duo J, Zhang Z, Pei L, Li W, Wufuer R. Spectral Characteristics of Dissolved Organic Matter in Farmland Soils around Urumqi, China. Toxics. 2023; 11(4):376. https://doi.org/10.3390/toxics11040376
Chicago/Turabian StyleZhu, Jianhua, Jia Duo, Zizhao Zhang, Liang Pei, Wenfeng Li, and Rehemanjiang Wufuer. 2023. "Spectral Characteristics of Dissolved Organic Matter in Farmland Soils around Urumqi, China" Toxics 11, no. 4: 376. https://doi.org/10.3390/toxics11040376
APA StyleZhu, J., Duo, J., Zhang, Z., Pei, L., Li, W., & Wufuer, R. (2023). Spectral Characteristics of Dissolved Organic Matter in Farmland Soils around Urumqi, China. Toxics, 11(4), 376. https://doi.org/10.3390/toxics11040376