A Review of Traditional and Emerging Residual Chlorine Quenchers on Disinfection By-Products: Impact and Mechanisms
Abstract
:1. Introduction
2. Effect of Traditional Quenching Agents on Disinfection By-Products
2.1. Ascorbic Acid
2.2. Sodium Sulfite
2.3. Ammonium Chloride
2.4. The Impact of Traditional and Emerging Residual Chlorine Quenchers on Cytotoxicity
3. Emerging Residual Chlorine Quenchers
3.1. N-Acetylcysteine
3.2. Glutathione (GSH)
3.3. 1,3,5-Trimethoxybenzene (TMB)
3.4. Comparison of Traditional and Emerging Residual Chlorine Quencher
4. Reaction of Residual Chlorine Quenchers with Chlorine
4.1. Traditional Residual Chlorine Quenchers
4.2. Emerging Residual Chlorine Quenchers
5. Mechanism of the Degradation of DBPs Caused by the Quencher
6. Suggestions for Selecting Residual Chlorine Quenchers
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BCAL | Bromochloroacetaldehyd |
BDCA | Bromodichloroacetaldehyde |
BDCAL | Bromodichloroacetaldehyde |
BDCNM | Bromodichloronitromethane |
DBAM | Dibromoacetamide |
DBAN | Dibromoacetonitrile |
DBCNM | Dibromochloronitromethane |
DBPs | Disinfection by-products |
DCAA | Dichloroacetic acid |
DCAL | Dichloroacetaldehyde |
DCAN | Dichloroacetonitrile |
DCNM | Dichloronitromethane |
GSH | Glutathione |
HAAs | Haloacetic acids |
HALs | Halogenated acetaldehyde |
HAMs | Haloacetamides |
HANs | Haloacetonitriles |
HKs | Halogenated ketones |
HNMs | Halonitromethanes |
MX | Halofuran |
NAC | N-acetylcysteine |
TBAL | Tribhloroacetaldehyde |
TCAL | Tricromoacetaldehyde |
TCAM | Trichloroacetamide |
TCAN | Trichloroacetonitrile |
TCM | Trichloromethane |
TCNM | Trichloronitromethane |
THMs | Trihalomethanes |
TMB | 1,3,5-trimethoxybenzene |
TOX | Total Organic Halogen |
1,1,1-TCP | 1,1,1-trichloropropanon |
1,3-DCP | 1,3-dichloroacetone |
References
- Li, J.; Aziz, M.T.; Granger, C.O.; Richardson, S.D. Are disinfection byproducts (DBPs) formed in my cup of tea? Regulated, priority, and unknown DBPs. Environ. Sci. Technol. 2021, 55, 12994–13004. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D. Disinfection by-products: Formation and occurrence in drinking water. In The Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Burlington, NJ, USA, 2011; Volume 2, pp. 110–136. [Google Scholar]
- Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; De Marini, D.M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res./Rev. Mutat. Res. 2007, 636, 178–242. [Google Scholar] [CrossRef] [PubMed]
- Kristiana, I.; Lethorn, A.; Joll, C.; Heitz, A. To add or not to add: The use of quenching agents for the analysis of disinfection by-products in water samples. Water Res. 2014, 59, 90–98. [Google Scholar] [CrossRef]
- Moore, N.; Ebrahimi, S.; Zhu, Y.; Wang, C.; Hofmann, R.; Andrews, S. A comparison of sodium sulfite, ammonium chloride, and ascorbic acid for quenching chlorine prior to disinfection byproduct analysis. Water Supply 2021, 21, 2313–2323. [Google Scholar] [CrossRef]
- Ding, S.; Wu, M.; Xiao, R.; Fang, C.; Wang, Q.; Xu, B.; Chu, W. Evaluation of N-acetylcysteine and glutathione as quenching agents for the analysis of halogenated disinfection by-products. J. Environ. Sci. 2022, 117, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Proulx, F.; Rodriguez, M.J. Synergistic effects of quenching agents and pH on the stability of regulated and unregulated disinfection by-products for drinking water quality monitoring. Environ. Monit. Assess. 2020, 192, 143. [Google Scholar] [CrossRef]
- Du, Y.; Wu, Q.Y.; Lu, Y.; Hu, H.Y.; Yang, Y.; Liu, R.; Liu, F. Increase of cytotoxicity during wastewater chlorination: Impact factors and surrogates. J. Hazard. Mater. 2017, 324, 681–690. [Google Scholar] [CrossRef]
- Gong, T.; Tao, Y.; Xian, Q. Selection and applicability of quenching agents for the analysis of polar iodinated disinfection byproducts. Chemosphere 2016, 163, 359–365. [Google Scholar] [CrossRef]
- Urbansky, E.T. Ascorbic acid treatment to reduce residual halogen-based oxidants prior to the determination of halogenated disinfection byproducts in potable water. J. Environ. Monit. 1999, 1, 471–476. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Zhang, Z.; Liang, X. Impact of prevalent chlorine quenchers on phenolic disinfection byproducts in drinking water and potential reaction mechanisms. Sci. Total Environ. 2023, 871, 161971. [Google Scholar] [CrossRef]
- Bauman, L.; Stenstrom, M.K. Observations of the reaction between organohalides and sulfite. Environ. Sci. Technol. 1989, 23, 232–236. [Google Scholar] [CrossRef]
- Croue, J.P.; Reckhow, D.A. Destruction of chlorination byproducts with sulfite. Environ. Sci. Technol. 1989, 23, 1412–1419. [Google Scholar] [CrossRef]
- Munch, D.J.; Hautman, D.P. Method 551.1: Determination of Chlorination Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid-Liquid Extraction and Gas Chromatography with Electron-Capture Detection; Methods for the Determination of Organic Compounds in Drinking Water; EPA: Washington, DC, USA, 1995.
- Trehy, M.L.; Bieber, T.I. Detection, identification and quantitative analysis of dihaloacetonitriles in chlorinated natural waters. In Advances in the Identification & Analysis of Organic Pollutants in Water; Abb Arbor Science: Ann Arbor, MI, USA, 1981; pp. 941–975. [Google Scholar]
- Stevens, A.A.; Dressman, R.C.; Sorrell, R.K.; Brass, H.J. Organic halogen measurements: Current uses and future prospects. J.-Am. Water Works Assoc. 1985, 77, 146–154. [Google Scholar] [CrossRef]
- Stanbro, W.D.; Lenkevich, M.J. Slowly dechlorinated organic chloramines. Science 1982, 215, 967–968. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Li, Y.; Hu, H.Y.; Ding, Y.N.; Huang, H.; Zhao, F.Y. Removal of genotoxicity in chlorinated secondary effluent of a domestic wastewater treatment plant during dechlorination. Environ. Sci. Pollut. Res. 2012, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for Examination of Water and Wastewater; Clesceri, L.S., Greenberg, A.E., Eaton, A.D., Eds.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Hong, Y.; Liu, S.; Song, H.; Hu, J.; Ates, N.; Karanfil, T. Effects of quenching methods on HAA determination in chloraminated waters. J.-Am. Water Works Assoc. 2008, 100, 89–99. [Google Scholar] [CrossRef]
- Liew, D.; Linge, K.L.; Joll, C.A.; Heitz, A.; Charrois, J.W. Determination of halonitromethanes and haloacetamides: An evaluation of sample preservation and analyte stability in drinking water. J. Chromatogr. A 2012, 1241, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, X. Effect of quenching time and quenching agent dose on total organic halogen measurement. Int. J. Environ. Anal. Chem. 2013, 93, 1146–1158. [Google Scholar] [CrossRef]
- Dong, H.; Qiang, Z.; Richardson, S.D. Formation of iodinated disinfection byproducts (I-DBPs) in drinking water: Emerging concerns and current issues. Acc. Chem. Res. 2019, 52, 896–905. [Google Scholar] [CrossRef]
- Shah, A.D.; Mitch, W.A. Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways. Environ. Sci. Technol. 2012, 46, 119–131. [Google Scholar] [CrossRef]
- Ding, S.; Chu, W.; Krasner, S.W.; Yu, Y.; Fang, C.; Xu, B.; Gao, N. The stability of chlorinated, brominated, and iodinated haloacetamides in drinking water. Water Res. 2018, 142, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Chen, B. Hydrolytic stabilities of halogenated disinfection byproducts: Review and rate constant quantitative structure–property relationship analysis. Environ. Eng. Sci. 2011, 28, 385–394. [Google Scholar] [CrossRef]
- Glezer, V.; Harris, B.; Tal, N.; Iosefzon, B.; Lev, O. Hydrolysis of haloacetonitriles: Linear free energy relationship, kinetics and products. Water Res. 1999, 33, 1938–1948. [Google Scholar] [CrossRef]
- Koudjonou, B.K.; LeBel, G.L. Halogenated acetaldehydes: Analysis, stability and fate in drinking water. Chemosphere 2006, 64, 795–802. [Google Scholar] [CrossRef]
- Yu, Y.; Reckhow, D.A. Kinetic analysis of haloacetonitrile stability in drinking waters. Environ. Sci. Technol. 2015, 49, 11028–11036. [Google Scholar] [CrossRef]
- Lau, S.S.; Dias, R.P.; Martin-Culet, K.R.; Race, N.A.; Schammel, M.H.; Reber, K.P.; Roberts, A.L.; Sivey, J.D. 1,3,5-Trimethoxybenzene (1,3,5-trimethoxybenzene) as a new quencher for preserving redox-labile disinfection byproducts and for quantifying free chlorine and free bromine. Environ. Sci. Water Res. Technol. 2018, 4, 926–941. [Google Scholar] [CrossRef]
- Fogelman, K.D.; Walker, D.M.; Margerum, D.W. Nonmetal redox kinetics: Hypochlorite and hypochlorous acid reactions with sulfite. Inorg. Chem. 1989, 28, 986–993. [Google Scholar] [CrossRef]
- Folkes, L.K.; Candeias, L.P.; Wardman, P. Kinetics and mechanisms of hypochlorous acid reactions. Arch. Biochem. Biophys. 1995, 323, 120–126. [Google Scholar] [CrossRef]
- Jafvert, C.T.; Valentine, R.L. Reaction scheme for the chlorination of ammoniacal water. Environ. Sci. Technol. 1992, 26, 577–586. [Google Scholar] [CrossRef]
- Basu, O.D.; De Souza, N.P. Comparison of dechlorination rates and water quality impacts for sodium bisulfite, sodium thiosulfate and ascorbic acid. J. Water Supply Res. Technol.—AQUA 2011, 60, 167–177. [Google Scholar] [CrossRef]
- Reckhow, D.A.; Singer, P.C. Chlorination by-products in drinking waters: From formation potentials to finished water concentrations. J.-Am. Water Works Assoc. 1990, 82, 173–180. [Google Scholar] [CrossRef]
- Weinberg, H.S.; Krasner, S.W.; Richardson, S.D.; Thruston, A.D., Jr. The Occurrence of Disinfection By-Products (DBPs) of Health Concern in Drinking Water: Results of a Nationwide DBP Occurrence Study; EPA/600/R-02/068; National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Athens, GA, USA, 2002.
- Worley, J.L.; Dietrich, A.M.; Hoehn, R.C. Dechlorination techniques to improve sensory odor testing of geosmin and 2-MIB. J.-Am. Water Works Assoc. 2003, 95, 109–117. [Google Scholar] [CrossRef]
- Helz, G.R.; Nweke, A.C. Incompleteness of wastewater dechlorination. Environ. Sci. Technol. 1995, 29, 1018–1022. [Google Scholar] [CrossRef]
- MacCrehan, W.A.; Jensen, J.S.; Helz, G.R. Detection of sewage organic chlorination products that are resistant to dechlorination with sulfite. Environ. Sci. Technol. 1998, 32, 3640–3645. [Google Scholar] [CrossRef]
- Yonkos, L.T.; Fisher, D.J.; Burton, D.T.; Whitekettle, W.K.; Petrille, J.C. Effectiveness of the sulfur (IV) compound, sodium bisulfite, in reducing chlorine, chlorine dioxide, and chlorite toxicity to Daphnia magna in well water and pond water. Environ. Toxicol. Chem. Int. J. 2001, 20, 530–536. [Google Scholar] [CrossRef]
- Wilkinson, P.M.; Doldersum, B.; Cramers, P.H.; Van Dierendonck, L.L. The kinetics of uncatalyzed sodium sulfite oxidation. Chem. Eng. Sci. 1993, 48, 933–941. [Google Scholar] [CrossRef]
- Prütz, W.A. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch. Biochem. Biophys. 1995, 332, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.L.; Grisham, M.B.; Jefferson, M.M. Myeloperoxidase-dependent effect of amines on functions of isolated neutrophils. J. Clin. Investig. 1983, 72, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Deborde, M.; Von Gunten, U.R.S. Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review. Water Res. 2008, 42, 13–51. [Google Scholar] [CrossRef]
- Sivey, J.D.; Roberts, A.L. Assessing the reactivity of free chlorine constituents Cl2, Cl2O, and HOCl toward aromatic ethers. Environ. Sci. Technol. 2012, 46, 2141–2147. [Google Scholar] [CrossRef]
- Mayeno, A.N.; Curran, A.J.; Roberts, R.L.; Foote, C.S. Eosinophils preferentially use bromide to generate halogenating agents. J. Biol. Chem. 1989, 264, 5660–5668. [Google Scholar] [CrossRef] [PubMed]
Quenching Agents | Advantages | Disadvantages | Applicable DBPs | Not Applicable DBPs | |
---|---|---|---|---|---|
Traditional quenching agents | Ascorbic acid |
|
|
| TCNM, TCAN, Chlorite, MX, BDCNM, DBCNM, DBAM, TBAL, inorganic DBPs |
Sodium sulfite |
| Caused degradation of most of priority DBPs and emerging DBPs | THMs, HAAs, chlorate, chlorite, bromate, inorganic DBPs, and MX |
| |
Ammonium chloride |
|
|
| TCNM, DBAM, MX | |
New quenching agents | N-Acetylcysteine |
|
|
| DCNM, TCNM |
Glutathione | Stable for most DBPs |
| Same as n-acetylcysteine | DCNM, TCNM | |
1,3,5-Trimethoxybenzene |
|
| TCNM, TCAL, CAN, DCAN, TCAN, BAN, DBAN, and TBAL | TOX |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhao, Z.; Qu, Z.; Li, X.; Zhang, Z.; Liang, X.; Chen, J.; Li, J. A Review of Traditional and Emerging Residual Chlorine Quenchers on Disinfection By-Products: Impact and Mechanisms. Toxics 2023, 11, 410. https://doi.org/10.3390/toxics11050410
Li X, Zhao Z, Qu Z, Li X, Zhang Z, Liang X, Chen J, Li J. A Review of Traditional and Emerging Residual Chlorine Quenchers on Disinfection By-Products: Impact and Mechanisms. Toxics. 2023; 11(5):410. https://doi.org/10.3390/toxics11050410
Chicago/Turabian StyleLi, Xue, Zhijing Zhao, Zheng Qu, Xinyu Li, Zengli Zhang, Xiaojun Liang, Jingsi Chen, and Jiafu Li. 2023. "A Review of Traditional and Emerging Residual Chlorine Quenchers on Disinfection By-Products: Impact and Mechanisms" Toxics 11, no. 5: 410. https://doi.org/10.3390/toxics11050410
APA StyleLi, X., Zhao, Z., Qu, Z., Li, X., Zhang, Z., Liang, X., Chen, J., & Li, J. (2023). A Review of Traditional and Emerging Residual Chlorine Quenchers on Disinfection By-Products: Impact and Mechanisms. Toxics, 11(5), 410. https://doi.org/10.3390/toxics11050410