Spatial Distribution and Risk Assessment of Heavy Metal(oid)s Contamination in Topsoil around a Lead and Zinc Smelter in Henan Province, Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Procedure
2.3. Chemical Analysis
2.4. Potential Ecological Risk (PER) Assessment
2.5. Statistical Analysis
3. Results and Discussion
3.1. Heavy Metal Contamination
3.2. Spatial Distribution of Heavy Metal(oid)s
3.3. Assessment of Potential Ecological Risk (PER)
3.4. Multivariate Analysis
3.4.1. PCA
3.4.2. Cluster Analysis (CA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global Soil Pollution by Toxic Elements: Current Status and Future Perspectives On the Risk Assessment and Remediation Strategies—A Review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Seth, A.; Singh, A.K.; Rajput, M.S.; Sikandar, M. Remediation Strategies for Heavy Metals Contaminated Ecosystem: A Review. Environ. Sustain. Indic. 2021, 12, 100155. [Google Scholar] [CrossRef]
- Xiao, R.; Guo, D.; Ali, A.; Mi, S.; Liu, T.; Ren, C.; Li, R.; Zhang, Z. Accumulation, Ecological-Health Risks Assessment, and Source Apportionment of Heavy Metals in Paddy Soils: A Case Study in Hanzhong, Shaanxi, China. Environ. Pollut. 2019, 248, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Binner, H.; Sullivan, T.; Jansen, M.A.K.; McNamara, M.E. Metals in Urban Soils of Europe: A Systematic Review. Sci. Total Environ. 2023, 854, 158734. [Google Scholar] [CrossRef]
- Li, F.; Cai, Y.; Zhang, J. Spatial Characteristics, Health Risk Assessment and Sustainable Management of Heavy Metals and Metalloids in Soils From Central China. Sustainability 2018, 10, 91. [Google Scholar] [CrossRef]
- Abed, R.M.M.; Al-Kindi, S. Effect of Disturbance by Oil Pollution On the Diversity and Activity of Bacterial Communities in Biological Soil Crusts From the Sultanate of Oman. Appl. Soil Ecol. 2017, 110, 88–96. [Google Scholar] [CrossRef]
- Shahid, M.; Khan, M.S. Ecotoxicological Implications of Residual Pesticides to Beneficial Soil Bacteria: A Review. Pest. Biochem. Physiol. 2022, 188, 105272. [Google Scholar] [CrossRef]
- Zhao, L.; Pan, Z.; Sun, B.; Sun, Y.; Weng, L.; Li, X.; Ye, H.; Ye, J.; Pan, X.; Zhou, B.; et al. Responses of Soil Microbial Communities to Concentration Gradients of Antibiotic Residues in Typical Greenhouse Vegetable Soils. Sci. Total Environ. 2023, 855, 158587. [Google Scholar] [CrossRef]
- Jin, J.; Zhao, X.; Zhang, L.; Hu, Y.; Zhao, J.; Tian, J.; Ren, J.; Lin, K.; Cui, C. Heavy Metals in Daily Meals and Food Ingredients in the Yangtze River Delta and their Probabilistic Health Risk Assessment. Sci. Total Environ. 2023, 854, 158713. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, L.; Wang, H.; Martín, J.D. Bioavailability and Health Risk of Toxic Heavy Metals (as, Hg, Pb and Cd) in Urban Soils: A Monte Carlo Simulation Approach. Environ. Res. 2022, 214, 113772. [Google Scholar] [CrossRef]
- Guo, G.; Li, K.; Lei, M. Accumulation, Environmental Risk Characteristics and Associated Driving Mechanisms of Potential Toxicity Elements in Roadside Soils Across China. Sci. Total Environ. 2022, 835, 155342. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Shi, H.; An, Y.; Ma, J.; Zhao, W.; Qu, Y.; Chen, H.; Liu, L.; Wu, F. Source, Environmental Behavior and Potential Health Risk of Rare Earth Elements in Beijing Urban Park Soils. J. Hazard. Mater. 2023, 445, 130451. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, A.; Janardhana Raju, N.; Madhav, S.; Gossel, W.; Ram, P.; Wycisk, P. Potentially Toxic Elements in Soil and Road Dust Around Sonbhadra Industrial Region, Uttar Pradesh, India: Source Apportionment and Health Risk Assessment. Environ. Res. 2021, 202, 111685. [Google Scholar] [CrossRef] [PubMed]
- Aponte, H.; Mondaca, P.; Santander, C.; Meier, S.; Paolini, J.; Butler, B.; Rojas, C.; Diez, M.C.; Cornejo, P. Enzyme Activities and Microbial Functional Diversity in Metal(Loid) Contaminated Soils Near to a Copper Smelter. Sci. Total Environ. 2021, 779, 146423. [Google Scholar] [CrossRef]
- Ke, W.; Zeng, J.; Zhu, F.; Luo, X.; Feng, J.; He, J.; Xue, S. Geochemical Partitioning and Spatial Distribution of Heavy Metals in Soils Contaminated by Lead Smelting. Environ. Pollut. 2022, 307, 119486. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Luo, X.; Cheng, Y.; Ke, W.; Hartley, W.; Li, C.; Jiang, J.; Zhu, F.; Xue, S. Spatial Distribution of Toxic Metal(Loid)S at an Abandoned Zinc Smelting Site, Southern China. J. Hazard. Mater. 2022, 425, 127970. [Google Scholar] [CrossRef]
- Ekrami, E.; Pouresmaieli, M.; Hashemiyoon, E.S.; Noorbakhsh, N.; Mahmoudifard, M. Nanotechnology: A Sustainable Solution for Heavy Metals Remediation. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100718. [Google Scholar] [CrossRef]
- Song, P.; Xu, D.; Yue, J.; Ma, Y.; Dong, S.; Feng, J. Recent Advances in Soil Remediation Technology for Heavy Metal Contaminated Sites: A Critical Review. Sci. Total Environ. 2022, 838, 156417. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Southam, G.; Robertson, L.; Chiu, T.H.; Cross, A.T.; Dixon, K.W.; Stevens, J.C.; Zhong, H.; Chan, T.; et al. Geochemical and Mineralogical Constraints in Iron Ore Tailings Limit Soil Formation for Direct Phytostabilization. Sci. Total Environ. 2019, 651, 192–202. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Wang, Y.; Li, X.; Wang, Y. Investigation of Phosphate Removal Mechanisms by a Lanthanum Hydroxide Adsorbent Using P-Xrd, Ftir and Xps. Appl. Surf. Sci. 2021, 557, 149838. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Chen, Z.; Wu, Z.; Chu, X.; Qing, S.; Xu, L.; Yang, K.; Meng, Q.; Cheng, H.; et al. Effects of Salinity on Anoxic–Oxic System Performance, Microbial Community Dynamics and Co-Occurrence Network During Treating Wastewater. Chem. Eng. J. 2023, 461, 141969. [Google Scholar] [CrossRef]
- Zhou, Z.; Peng, C.; Liu, X.; Jiang, Z.; Guo, Z.; Xiao, X. Pollution and Risk Assessments of Heavy Metal(Loid)S in the Soil Around Lead-Zinc Smelteries Via Data Integration Analysis. Int. J. Environ. Res. Public Health 2022, 19, 9698. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.; Dawood, Y.H.; Gad, A. Assessment of Potentially Toxic Elements’ Contamination in the Soil of Greater Cairo, Egypt Using Geochemical and Magnetic Attributes. Land 2022, 11, 319. [Google Scholar] [CrossRef]
- Gil-Loaiza, J.; Field, J.P.; White, S.A.; Csavina, J.; Felix, O.; Betterton, E.A.; Saez, A.E.; Maier, R.M. Phytoremediation Reduces Dust Emissions From Metal(Loid)-Contaminated Mine Tailings. Environ. Sci. Technol. 2018, 52, 5851–5858. [Google Scholar] [CrossRef]
- Shen, F.; Liao, R.; Ali, A.; Mahar, A.; Guo, D.; Li, R.; Xining, S.; Awasthi, M.K.; Wang, Q.; Zhang, Z. Spatial Distribution and Risk Assessment of Heavy Metals in Soil Near a Pb/Zn Smelter in Feng County, China. Ecotox. Environ. Safe 2017, 139, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xing, W.; Ippolito, J.A.; Zhao, L.; Han, K.; Wang, Y.; Qiu, K.; Li, L. Bioaccessibility, Source and Human Health Risk of Pb, Cd, Cu and Zn in Windowsill Dusts From an Area Affected by Long-Term Pb Smelting. Sci. Total Environ. 2022, 842, 156707. [Google Scholar] [CrossRef]
- Yu, D.; Wang, J.; Wang, Y.; Du, X.; Li, G.; Li, B. Identifying the Source of Heavy Metal Pollution and Apportionment in Agricultural Soils Impacted by Different Smelters in China by the Positive Matrix Factorization Model and the Pb Isotope Ratio Method. Sustainability 2021, 13, 6526. [Google Scholar] [CrossRef]
- Ran, H.; Deng, X.; Guo, Z.; Hu, Z.; An, Y.; Xiao, X.; Yi, L.; Xu, R. Pollution Characteristics and Environmental Availability of Toxic Elements in Soil From an Abandoned Arsenic-Containing Mine. Chemosphere 2022, 303, 135189. [Google Scholar] [CrossRef]
- Carvalho, F.; Tavares, T.; Lins, L. Soil Contamination by a Lead Smelter in Brazil in the View of the Local Residents. Int. J. Environ. Res. Public Health 2018, 15, 2166. [Google Scholar] [CrossRef]
- Tang, L.; Tang, C.; Xiao, J.; Zeng, P.; Tang, M.; Wang, Z.; Zhang, Z. A Cleaner Process for Lead Recovery From Lead-Containing Hazardous Solid Waste and Zinc Leaching Residue Via Reducing-Matting Smelting. J. Clean Prod. 2019, 241, 118328. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Ippolito, J.; Xing, W.; Qiu, k.; Yang, H. Lead smelting effects heavy metal concentrations in soils, wheat, and potentially humans. Environ. Pollut. 2020, 257, 113641. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Long, J.; Liu, L.; Li, J.; Liao, H.; Zhang, M.; Zhao, C.; Wu, Q. Risk Assessment and Source Identification of Toxic Metals in the Agricultural Soil Around a Pb/Zn Mining and Smelting Area in Southwest China. Int. J. Environ. Res. Public Health 2018, 15, 1838. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Kim, G.; Chang, J.; Lee, K.; Lee, C.; Lee, B. Chronic Exposure to Lead and Cadmium in Residents Living Near a Zinc Smelter. Int. J. Environ. Res. Public Health 2021, 18, 1731. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, J.; Li, M.; Obrist, D.; Wang, X.; Zhou, J. Chemical Speciation of Trace Metals in Atmospheric Deposition and Impacts On Soil Geochemistry and Vegetable Bioaccumulation Near a Large Copper Smelter in China. J. Hazard. Mater. 2021, 413, 125346. [Google Scholar] [CrossRef] [PubMed]
- Ćwieląg-Drabek, M.; Piekut, A.; Gut, K.; Grabowski, M. Risk of Cadmium, Lead and Zinc Exposure From Consumption of Vegetables Produced in Areas with Mining and Smelting Past. Sci. Rep. 2020, 10, 3363. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Guo, Y.; Wang, W.; Hao, S. Spatial Variation of Soil Quality and Pollution Assessment of Heavy Metals in Cultivated Soils of Henan Province, China. Chem. Speciat. Bioavailab. 2014, 26, 184–190. [Google Scholar] [CrossRef]
- Chen, H.; Wu, W.; Cao, L.; Zhou, X.; Guo, R.; Nie, L.; Shang, W. Source Analysis and Contamination Assessment of Potentially Toxic Element in Soil of Small Watershed in Mountainous Area of Southern Henan, China. Int. J. Environ. Res. Public Health 2022, 19, 13324. [Google Scholar] [CrossRef]
- Cao, J.; Xie, C.; Hou, Z. Ecological Evaluation of Heavy Metal Pollution in the Soil of Pb-Zn Mines. Ecotoxicology 2022, 31, 259–270. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, J.; Peng, Y.; Lu, Y.; Yao, D.; Yang, J.; He, Y. Atmospheric Deposition of Hazardous Elements and its Accumulation in Both Soil and Grain of Winter Wheat in a Lead-Zinc Smelter Contaminated Area, Central China. Sci. Total Environ. 2020, 707, 135789. [Google Scholar] [CrossRef]
- Adams, M.L.; Zhao, F.J.; McGrath, S.P.; Nicholson, F.A.; Chambers, B.J. Predicting Cadmium Concentrations in Wheat and Barley Grain Using Soil Properties. J. Environ. Qual. 2004, 33, 532–541. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Bi, L.; Yao, S.; Zhang, B. Impacts of Long-Term Chemical and Organic Fertilization On Soil Puddlability in Subtropical China. Soil Tillage Res. 2015, 152, 94–103. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Q.; Zheng, K.; Jiao, Z.; Ruan, X.; Wang, Y. Migration of Heavy Metals in the Soil-Grape System and Potential Health Risk Assessment. Sci. Total Environ. 2022, 806, 150646. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Ge, S.; Jiao, Z.; Zhan, W.; Wang, Y. Bioaccumulation and Risk Assessment of Potential Toxic Elements in the Soil-Vegetable System as Influenced by Historical Wastewater Irrigation. Agric. Water Manag. 2023, 279, 108197. [Google Scholar] [CrossRef]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Suresh, G.; Sutharsan, P.; Ramasamy, V.; Venkatachalapathy, R. Assessment of Spatial Distribution and Potential Ecological Risk of the Heavy Metals in Relation to Granulometric Contents of Veeranam Lake Sediments, India. Ecotox. Environ. Safe 2012, 84, 117–124. [Google Scholar] [CrossRef]
- Mohajane, C.; Manjoro, M. Sediment-Associated Heavy Metal Contamination and Potential Ecological Risk Along an Urban River in South Africa. Heliyon 2022, 8, e12499. [Google Scholar] [CrossRef]
- Li, S.; Zhao, B.; Jin, M.; Hu, L.; Zhong, H.; He, Z. A Comprehensive Survey On the Horizontal and Vertical Distribution of Heavy Metals and Microorganisms in Soils of a Pb/Zn Smelter. J. Hazard. Mater. 2020, 400, 123255. [Google Scholar] [CrossRef]
- Environmental Monitoring of China. Background Values of Soil Elements in China; China Environmental Science Press: Beijing, China, 1999. [Google Scholar]
- Hammam, A.A.; Mohamed, W.S.; Sayed, S.E.; Kucher, D.E.; Mohamed, E.S. Assessment of Soil Contamination Using Gis and Multi-Variate Analysis: A Case Study in El-Minia Governorate, Egypt. Agronomy 2022, 12, 1197. [Google Scholar] [CrossRef]
- Duan, G.; Zhang, H.; Liu, Y.; Jia, Y.; Hu, Y.; Cheng, W. Long-Term Fertilization with Pig-Biogas Residues Results in Heavy Metal Accumulation in Paddy Field and Rice Grains in Jiaxing of China. Soil Sci. Plant Nutr. 2012, 58, 637–646. [Google Scholar] [CrossRef]
- Li, P.; Lin, C.; Cheng, H.; Duan, X.; Lei, K. Contamination and Health Risks of Soil Heavy Metals Around a Lead/Zinc Smelter in Southwestern China. Ecotox. Environ. Safe. 2015, 113, 391–399. [Google Scholar] [CrossRef]
- Yuan, G.; Sun, T.; Han, P.; Li, J. Environmental Geochemical Mapping and Multivariate Geostatistical Analysis of Heavy Metals in Topsoils of a Closed Steel Smelter: Capital Iron & Steel Factory, Beijing, China. J. Geochem. Explor. 2013, 130, 15–21. [Google Scholar] [CrossRef]
- Radomirovic, M.; Ćirović, Ž.; Maksin, D.; Bakić, T.; Lukić, J.; Stankovic, S.; Onjia, A. Ecological Risk Assessment of Heavy Metals in the Soil at a Former Painting Industry Facility. Front. Environ. Sci. 2020, 8, 1–15. [Google Scholar] [CrossRef]
Er | Risk Grade | PER | Risk Grade |
---|---|---|---|
<40 | Low potential ecological risk | 150 | Low potential ecological risk |
40–80 | Moderate potential ecological risk | 150–300 | Moderate potential ecological risk |
80–160 | Considerable potential ecological risk | 300–600 | High potential ecological risk |
160–320 | High potential ecological risk | >600 | Significantly high potential ecological risk |
320 | Significantly high potential ecological risk | - |
pH | TN (%) | OM (%) | CEC (cmol/kg) | Fe (g/kg) | |
---|---|---|---|---|---|
Mean | 8.56 | 0.21 | 2.56 | 22.91 | 26.03 |
SD | 0.16 | 0.14 | 0.80 | 4.69 | 6.95 |
Median | 8.56 | 0.18 | 2.55 | 22.82 | 26.33 |
Kurtosis | 0.26 | 9.44 | 6.50 | 0.02 | 0.10 |
Skewness | −0.07 | 2.54 | 1.69 | −0.16 | 0.28 |
Min | 8.13 | 0.02 | 0.76 | 9.35 | 11.03 |
Max | 9.11 | 0.96 | 6.32 | 32.39 | 49.78 |
CV(%) | 1.89 | 68.41 | 31.11 | 20.48 | 0.03 |
As | Cd | Co | Cr | Cu | Ni | Pb | V | Zn | |
---|---|---|---|---|---|---|---|---|---|
Mean (mg/kg) | 17.34 | 2.6 | 15.97 | 101.07 | 18.28 | 9.31 | 67.26 | 45.95 | 72.18 |
SD (mg/kg) | 6.59 | 4.29 | 3.91 | 24.94 | 12.76 | 4.19 | 112.84 | 16.06 | 28.94 |
Median (mg/kg) | 16.96 | 1.21 | 16.19 | 103.48 | 15.04 | 9.34 | 30.95 | 47.57 | 64.26 |
Min (mg/kg) | 5.91 | 0.32 | 7.06 | 42.02 | 4.92 | 0.25 | 9.33 | 8.57 | 23.29 |
Max (mg/kg) | 49.07 | 30.36 | 27.32 | 175.95 | 87.93 | 20.9 | 746.55 | 92.6 | 173.86 |
CV (%) | 37.99 | 165.18 | 24.49 | 24.67 | 69.81 | 45.06 | 167.77 | 34.96 | 40.1 |
Background value a (mg/kg) | 11.4 | 0.074 | 10 | 63.8 | 19.7 | 26.7 | 19.6 | 58.4 | 60.1 |
Exceeded background (%) | 83.94 | 100.00 | 93.43 | 93.43 | 26.28 | 0 | 85.4 | 23.36 | 59.85 |
Screening values b (mg/kg) | 25 | 0.6 | - | 250 | 100 | 190 | 170 | - | 300 |
Exceeded screening (%) | 10.22 | 94.89 | - | 0 | 0 | 0 | 8.03 | - | 0 |
Er | Range | Mean | SD |
---|---|---|---|
As | 5.19–43.05 | 15.21 | 5.78 |
Cd | 128.71–12,306.20 | 1054.16 | 1741.21 |
Co | 3.53–13.66 | 7.98 | 1.95 |
Cr | 1.32–5.52 | 3.17 | 0.78 |
Cu | 1.25–22.32 | 4.64 | 3.24 |
Ni | 0.06–4.7 | 2.09 | 0.94 |
Pb | 2.38–190.45 | 17.16 | 28.79 |
V | 0.29–3.17 | 1.57 | 0.55 |
Zn | 0.39–2.89 | 1.2 | 0.48 |
PER | 146.86–12,549.81 | 1107.18 | 1776.33 |
Heavy Metal | Low Risk | Moderate Risk | Considerable Risk | High Risk | Very High Risk |
---|---|---|---|---|---|
As | 98.54 | 1.46 | 0 | 0 | 0 |
Cd | 0 | 0 | 0.73 | 15.33 | 83.94 |
Co | 100 | 0 | 0 | 0 | 0 |
Cr | 100 | 0 | 0 | 0 | 0 |
Cu | 100 | 0 | 0 | 0 | 0 |
Ni | 100 | 0 | 0 | 0 | 0 |
Pb | 91.97 | 2.19 | 5.11 | 0.73 | 0 |
V | 100 | 0 | 0 | 0 | 0 |
Zn | 100 | 0 | 0 | 0 | 0 |
PER | 0.73 | 8.03 | 51.09 | 40.15 | - |
PER | Risk Grade | Cover Ratio % |
---|---|---|
150 | Low potential ecological risk | 0.44 |
150–300 | Moderate potential ecological risk | 5.71 |
300–600 | High potential ecological risk | 68.78 |
>600 | Significantly high potential ecological risk | 25.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Ge, S.; Liu, J.; Iqbal, Y.; Jiang, Y.; Sun, R.; Ruan, X.; Wang, Y. Spatial Distribution and Risk Assessment of Heavy Metal(oid)s Contamination in Topsoil around a Lead and Zinc Smelter in Henan Province, Central China. Toxics 2023, 11, 427. https://doi.org/10.3390/toxics11050427
Yang L, Ge S, Liu J, Iqbal Y, Jiang Y, Sun R, Ruan X, Wang Y. Spatial Distribution and Risk Assessment of Heavy Metal(oid)s Contamination in Topsoil around a Lead and Zinc Smelter in Henan Province, Central China. Toxics. 2023; 11(5):427. https://doi.org/10.3390/toxics11050427
Chicago/Turabian StyleYang, Ling, Shiji Ge, Jinhui Liu, Younas Iqbal, Yuling Jiang, Ruiling Sun, Xinling Ruan, and Yangyang Wang. 2023. "Spatial Distribution and Risk Assessment of Heavy Metal(oid)s Contamination in Topsoil around a Lead and Zinc Smelter in Henan Province, Central China" Toxics 11, no. 5: 427. https://doi.org/10.3390/toxics11050427
APA StyleYang, L., Ge, S., Liu, J., Iqbal, Y., Jiang, Y., Sun, R., Ruan, X., & Wang, Y. (2023). Spatial Distribution and Risk Assessment of Heavy Metal(oid)s Contamination in Topsoil around a Lead and Zinc Smelter in Henan Province, Central China. Toxics, 11(5), 427. https://doi.org/10.3390/toxics11050427