Optimization Study of the Capacity of Chlorella vulgaris as a Potential Bio-Remediator for the Bio-Adsorption of Arsenic (III) from Aquatic Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sodium Arsenite
2.2. Microalgal Sample
2.3. Preparation of Adsorbent Biomass
2.4. Factors Affecting the Adsorption Process
2.5. Elemental Analysis
2.6. FTIR Analysis
2.7. Morphological Study of Adsorbent Surface
2.8. Adsorption Isotherm
2.9. Bio-Adsorption Kinetics
2.10. Thermodynamics of As (III) Bio-Adsorption
3. Results and Discussion
3.1. Optimization of the Bio-Adsorption Conditions
3.1.1. Arsenic Bio-Adsorption at Different pH Values
3.1.2. As (III) Bio-Adsorption on Algal Adsorbent at Various Contact Times
3.1.3. Bio-Adsorption Capacity at Varying Bio-Adsorbent Doses
3.1.4. Bio-Adsorption of As (III) at Different Metal Concentrations
3.2. Elemental Analysis of Algal Adsorbent
3.3. Scanning Electron Microscopy
3.4. FTIR Analysis
3.5. Bio-Adsorption Isotherm
3.6. Bio-Adsorption Kinetics
3.7. Thermodynamics of As (III) Bio-Adsorption
3.8. Comparison between C. vulgaris (SAG 211-11b) with Other Adsorbents for Bio-Adsorption of Arsenic (III)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sathe, S.S.; Goswami, L.; Mahanta, C.; Devi, L.M. Integrated factors controlling arsenic mobilization in an alluvial floodplain. Environ. Technol. Innov. 2020, 17, 100525. [Google Scholar] [CrossRef]
- Souri, M.K.; Hatamian, M.; Tesfamariam, T. Plant growth stage influences heavy metal accumulation in leafy vegetables of garden cress and sweet basil. Chem. Biol. Technol. Agric. 2019, 6, 1–7. [Google Scholar] [CrossRef]
- Bind, A.; Goswami, L.; Prakash, V. Comparative analysis of floating and submerged macrophytes for heavy metal (copper, chromium, arsenic and lead) removal: Sorbent preparation, characterization, regeneration and cost estimation. Geol. Ecol. Landsc. 2018, 2, 61–72. [Google Scholar] [CrossRef]
- Kushwaha, A.; Hans, N.; Kumar, S.; Rani, R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol. Environ. Saf. 2018, 147, 1035–1045. [Google Scholar] [CrossRef]
- Kushwaha, A.; Rani, R.; Kumar, S.; Thomas, T.; David, A.A.; Ahmed, M. A new insight to adsorption and accumulation of high lead concentration by exopolymer and whole cells of lead-resistant bacterium Acinetobacter junii L. Pb1 isolated from coal mine dump. Environ. Sci. Pollut. Res. 2017, 24, 10652–10661. [Google Scholar] [CrossRef]
- Hatamian, M.; Nejad, A.R.; Kafi, M.; Souri, M.K.; Shahbazi, K. Growth characteristics of ornamental Judas tree (Cercis siliquastrum L.) seedling under different concentrations of lead and cadmium in irrigation water. Acta Sci. Pol. Hortorum Cultus 2019, 18, 87–96. [Google Scholar] [CrossRef]
- Souri, M.K.; Alipanahi, N.; Hatamian, M.; Ahmadi, M.; Tesfamariam, T. Elemental profile of heavy metals in garden cress, coriander, lettuce and spinach, commonly cultivated in Kahrizak, South of Tehran-Iran. Open Agric. 2018, 3, 32–37. [Google Scholar] [CrossRef]
- Kumar, R.V.; Goswami, L.; Pakshirajan, K.; Pugazhenthi, G. Dairy wastewater treatment using a novel low cost tubular ceramic membrane and membrane fouling mechanism using pore blocking models. J. Water Process Eng. 2016, 13, 168–175. [Google Scholar] [CrossRef]
- Lambert, M.; Leven, B.; Green, R. New methods of cleaning up heavy metal in soils and water. Environ. Sci. Technol. Briefs Citiz. 2000, 7, 133–163. [Google Scholar]
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments; Taylor & Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Matschullat, J. Arsenic in the geosphere—A review. Sci. Total Environ. 2000, 249, 297–312. [Google Scholar] [CrossRef]
- Gebel, T. Confounding variables in the environmental toxicology of arsenic. Toxicology 2000, 144, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Zaw, M.; Emett, M.T. Arsenic removal from water using advanced oxidation processes. Toxicol. Lett. 2002, 133, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Griswold, W. Human health effects of heavy metals. Environ. Sci. Technol. Briefs Citiz. 2009, 15, 1–6. [Google Scholar]
- Goswami, L.; Kumar, R.V.; Borah, S.N.; Manikandan, N.A.; Pakshirajan, K.; Pugazhenthi, G. Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: A review. J. Water Process Eng. 2018, 26, 314–328. [Google Scholar] [CrossRef]
- Goswami, L.; Manikandan, N.A.; Dolman, B.; Pakshirajan, K.; Pugazhenthi, G. Biological treatment of wastewater containing a mixture of polycyclic aromatic hydrocarbons using the oleaginous bacterium Rhodococcus opacus. J. Clean. Prod. 2018, 196, 1282–1291. [Google Scholar] [CrossRef]
- Nassar, N.N. Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 2010, 184, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Naushad, M.; ALOthman, Z.; Awual, M.; Alam, M.M.; Eldesoky, G. Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti (IV) iodovanadate cation exchanger. Ionics 2015, 21, 2237–2245. [Google Scholar] [CrossRef]
- Arief, V.O.; Trilestari, K.; Sunarso, J.; Indraswati, N.; Ismadji, S. Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: Characterization, biosorption parameters and mechanism studies. CLEAN–Soil Air Water 2008, 36, 937–962. [Google Scholar] [CrossRef]
- Mehta, S.; Gaur, J. Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Crit. Rev. Biotechnol. 2005, 25, 113–152. [Google Scholar] [CrossRef]
- Šćiban, M.; Radetić, B.; Kevrešan, Ž.; Klašnja, M. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresour. Technol. 2007, 98, 402–409. [Google Scholar] [CrossRef]
- Gupta, A.; Joia, J.; Sood, A.; Sood, R.; Sidhu, C.; Kaur, G. Microbes as potential tool for remediation of heavy metals: A review. J. Microb. Biochem. Technol. 2016, 8, 364–372. [Google Scholar] [CrossRef]
- Davis, T.A.; Volesky, B.; Mucci, A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef] [PubMed]
- Aksu, Z. Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgaris in a batch system: Effect of temperature. Sep. Purif. Technol. 2001, 21, 285–294. [Google Scholar] [CrossRef]
- Al-Homaidan, A.A.; Al-Qahtani, H.S.; Al-Ghanayem, A.A.; Ameen, F.; Ibraheem, I.B. Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi J. Biol. Sci. 2018, 25, 1733–1738. [Google Scholar] [CrossRef] [PubMed]
- Pavasant, P.; Apiratikul, R.; Sungkhum, V.; Suthiparinyanont, P.; Wattanachira, S.; Marhaba, T.F. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour. Technol. 2006, 97, 2321–2329. [Google Scholar] [CrossRef] [PubMed]
- Raja Sathendra, E.; Praveen Kumar, R.; Baskar, G. Microbial transformation of heavy metals. In Waste Bioremediation; Springer: Berlin/Heidelberg, Germany, 2018; pp. 249–263. [Google Scholar]
- Nilanjana, D.; Vimala, R.; Karthika, P. Biosorption of heavy metals-An overview. Indian J. Biotechnol. 2008, 7, 159–169. [Google Scholar]
- Kumar, M.; Goswami, L.; Singh, A.K.; Sikandar, M. Valorization of coal fired-fly ash for potential heavy metal removal from the single and multi-contaminated system. Heliyon 2019, 5, e02562. [Google Scholar] [CrossRef]
- Boddu, V.M.; Abburi, K.; Talbott, J.L.; Smith, E.D.; Haasch, R. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res. 2008, 42, 633–642. [Google Scholar] [CrossRef]
- Gupta, A.; Vidyarthi, S.R.; Sankararamakrishnan, N. Studies on glutaraldehyde crosslinked xanthated chitosan towards the removal of mercury (II) from contaminated water streams. Environ. Eng. Manag. J. 2015, 14, 1037–1044. [Google Scholar]
- Wong, S.; Nakamoto, L.; Wainwright, J. Identification of toxic metals in affected algal cells in assays of wastewaters. J. Appl. Phycol. 1994, 6, 405–414. [Google Scholar] [CrossRef]
- Suguna, M.; Kumar, N.S. Studies on Arsenic (III) biosorption from aqueous solution by glutaraldehyde cross-linked chitosan beads. Res. J. Chem. Environ. 2014, 18, 4. [Google Scholar]
- Abdel-Raouf, N.; Sholkamy, E.N.; Bukhari, N.; Al-Enazi, N.M.; Alsamhary, K.I.; Al-Khiat, S.H.A.; Ibraheem, I.B.M. Bioremoval capacity of Co+ 2 using Phormidium tenue and Chlorella vulgaris as biosorbents. Environ. Res. 2022, 204, 111630. [Google Scholar] [CrossRef]
- Gupta, V.K.; Jain, R.; Saleh, T.; Nayak, A.; Malathi, S.; Agarwal, S. Equilibrium and thermodynamic studies on the removal and recovery of safranine-T dye from industrial effluents. Sep. Sci. Technol. 2011, 46, 839–846. [Google Scholar] [CrossRef]
- Zhang, H. Biosorption of Heavy Metals from Aqueous Solutions Using Keratin Biomaterials; Universitat Autònoma de Barcelona: Bellaterra, Spain, 2014. [Google Scholar]
- Veglio, F.; Beolchini, F. Removal of metals by biosorption: A review. Hydrometallurgy 1997, 44, 301–316. [Google Scholar] [CrossRef]
- Esposito, A.; Pagnanelli, F.; Lodi, A.; Solisio, C.; Veglio, F. Biosorption of heavy metals by Sphaerotilus natans: An equilibrium study at different pH and biomass concentrations. Hydrometallurgy 2001, 60, 129–141. [Google Scholar] [CrossRef]
- Wilde, E.W.; Benemann, J.R. Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv. 1993, 11, 781–812. [Google Scholar] [CrossRef]
- Yadav, S.K.; Sinha, S.; Singh, D.K. Chromium (VI) removal from aqueous solution and industrial wastewater by modified date palm trunk. Environ. Prog. Sustain. Energy 2015, 34, 452–460. [Google Scholar] [CrossRef]
- Goswami, L.; Arul Manikandan, N.; Pakshirajan, K.; Pugazhenthi, G. Simultaneous heavy metal removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus. 3 Biotech 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Gupta, A.; Vidyarthi, S.; Sankararamakrishnan, N. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. J. Hazard. Mater. 2014, 274, 132–144. [Google Scholar] [CrossRef]
- Bhasney, S.M.; Bhagabati, P.; Kumar, A.; Katiyar, V. Morphology and crystalline characteristics of polylactic acid [PLA]/linear low density polyethylene [LLDPE]/microcrystalline cellulose [MCC] fiber composite. Compos. Sci. Technol. 2019, 171, 54–61. [Google Scholar] [CrossRef]
- Plazinski, W.; Rudzinski, W.; Plazinska, A. Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Adv. Colloid Interface Sci. 2009, 152, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Rastogi, A. Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—A comparative study. Colloids Surf. B Biointerfaces 2008, 64, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Ahalya, N.; Ramachandra, T.; Kanamadi, R. Biosorption of heavy metals. Res. J. Chem. Environ. 2003, 7, 71–79. [Google Scholar]
- Aksu, Z.; Kutsal, T. A bioseparation process for removing lead (II) ions from waste water by using C. vulgaris. J. Chem. Technol. Biotechnol. 1991, 52, 109–118. [Google Scholar] [CrossRef]
- Abbas, S.H.; Ismail, I.M.; Mostafa, T.M.; Sulaymon, A.H. Biosorption of heavy metals: A review. J. Chem. Sci. Technol. 2014, 3, 74–102. [Google Scholar]
- He, J.; Chen, J.P. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 2014, 160, 67–78. [Google Scholar] [CrossRef]
- Chwastowski, J.; Staroń, P.; Pięta, E.; Paluszkiewicz, C. Bioremediation of Crystal Violet by Organic Matter and Assessment of Antimicrobial Properties of the Obtained Product. Sustainability 2022, 15, 67. [Google Scholar] [CrossRef]
- Tan, I.; Ahmad, A.; Hameed, B. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J. Hazard. Mater. 2009, 164, 473–482. [Google Scholar] [CrossRef]
- Tang, W.; Su, Y.; Li, Q.; Gao, S.; Shang, J.K. Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res. 2013, 47, 3624–3634. [Google Scholar] [CrossRef]
- Sheng, G.; Li, Y.; Yang, X.; Ren, X.; Yang, S.; Hu, J.; Wang, X. Efficient removal of arsenate by versatile magnetic graphene oxide composites. RSC Adv. 2012, 2, 12400–12407. [Google Scholar] [CrossRef]
- Zhu, J.; Lou, Z.; Liu, Y.; Fu, R.; Baig, S.A.; Xu, X. Adsorption behavior and removal mechanism of arsenic on graphene modified by iron–manganese binary oxide (FeMnOx/RGO) from aqueous solutions. RSC Adv. 2015, 5, 67951–67961. [Google Scholar] [CrossRef]
- Mathivanan, K.; Selva, R.; Chandirika, J.U.; Govindarajan, R.K.; Srinivasan, R.; Annadurai, G.; Duc, P.A. Biologically synthesized silver nanoparticles against pathogenic bacteria: Synthesis, calcination and characterization. Biocatal. Agric. Biotechnol. 2019, 22, 101373. [Google Scholar] [CrossRef]
- Govindarajan, R.K.; Khanongnuch, C.; Mathivanan, K.; Shyu, D.J.; Sharma, K.P.; De Mandal, S. In-vitro biotransformation of tea using tannase produced by Enterobacter cloacae 41. J. Food Sci. Technol. 2021, 58, 3235–3242. [Google Scholar] [CrossRef]
- Wang, C.; Luo, H.; Zhang, Z.; Wu, Y.; Zhang, J.; Chen, S. Removal of As (III) and As (V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J. Hazard. Mater. 2014, 268, 124–131. [Google Scholar] [CrossRef]
- Gollavelli, G.; Chang, C.-C.; Ling, Y.-C. Facile synthesis of smart magnetic graphene for safe drinking water: Heavy metal removal and disinfection control. ACS Sustain. Chem. Eng. 2013, 1, 462–472. [Google Scholar] [CrossRef]
- Zoghi, A.M.; Allahyari, S. Multifunctional magnetic C3N4-rGO adsorbent with high hydrophobicity and simulated solar light-driven photocatalytic activity for oil spill removal. Sol. Energy 2022, 237, 320–332. [Google Scholar] [CrossRef]
- Zhang, S.; Niu, H.; Cai, Y.; Zhao, X.; Shi, Y. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 2010, 158, 599–607. [Google Scholar] [CrossRef]
- Zhang, G.; Ren, Z.; Zhang, X.; Chen, J. Nanostructured iron (III)-copper (II) binary oxide: A novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res. 2013, 47, 4022–4031. [Google Scholar] [CrossRef]
- La, D.D.; Patwari, J.M.; Jones, L.A.; Antolasic, F.; Bhosale, S.V. Fabrication of a GNP/Fe–Mg binary oxide composite for effective removal of arsenic from aqueous solution. ACS Omega 2017, 2, 218–226. [Google Scholar] [CrossRef]
- Srinivasan, R.; Mathivanan, K.; Govindarajan, R.K.; Uthaya Chandirika, J.; Govindasamy, C. Extracellular synthesis of silver nanoparticles by bioluminescent bacteria: Characterization and evaluation of its antibacterial and antioxidant properties. Int. Nano Lett. 2021, 12, 169–177. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Hozayen, W.G.; Alharbi, R.M.; Ibraheem, I.B.M. Adsorptive recovery of arsenic (III) ions from aqueous solutions using dried Chlamydomonas sp. Heliyon 2022, 8, e12398. [Google Scholar] [CrossRef] [PubMed]
- Ghayedi, N.; Borazjani, J.M.; Jafari, D. Biosorption of arsenic ions from the aqueous solutions using Chlorella vulgaris micro algae. Desalination Water Treat. 2019, 165, 188–196. [Google Scholar] [CrossRef]
- Lu, W.; Xu, Y.; Liang, C.; Musah, B.I.; Peng, L. Simultaneous biosorption of arsenic and cadmium onto chemically modified Chlorella vulgaris and Spirulina platensis. Water 2021, 13, 2498. [Google Scholar] [CrossRef]
Element | Oxygen | Carbon | Hydrogen | Nitrogen | Sulfur |
---|---|---|---|---|---|
Percentage | 39.87 | 43.65 | 8.51 | 6.98 | 1.11 |
Langmuir Isotherm | ||
qmax (mgg−1) | KL (Lmg−1) | R2 |
45 | 0.21 | 0.9894 |
Freundlich Isotherm | ||
Kf (Lg−1) | n | R2 |
1.44 | 1.459 | 0.7227 |
Dubinin–Radushkevich Isotherm | ||
qD–R (mgg−1) | BD–R | R2 |
8.7 | 0.002 | 0.951 |
Parameter | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|
C. vulgaris biosorbent | K1 | qe | R2 | K2 | qe | R2 |
8.78 × 10−5 | 3.130 | 0.9801 | 2.29 × 10−4 | 0.795 | 0.9374 |
ΔH (kJ mol−1) | ΔS (kJ mol−1 K−1) | ΔG (kJ mol−1 K−1) | ||
289 K | 308 K | 318 K | ||
31.214 | 104.320 | 1.76 | 3.43 | 4.98 |
Absorbates | pH | qmax (mgg−1) | References |
---|---|---|---|
Mg0.27Fe2·5O4 | 7 | 83.2 | [52] |
Fe3O4-GO (MGO) | 6.5 | 59.6 | [53] |
FeMnOx/RGO | 7 | 22.22 | [53] |
CeO2–graphene composite | 4 | 1.019 | [54] |
GO-ZrO(OH)2 | 5–11 | 84.89 | [55] |
nZVI/graphene | 7 | 29 | [56] |
Magnetic graphene | 4 | 3.26 | [57] |
Fe3O4/graphene/LDH | 6 | 73.1 | [57] |
Magnetic GO | 4 | 38 | [58] |
Magnetic rGO | 4 | 12 | [59] |
MnFe2O4 | 3 | 94 | [60] |
CoFe2O4 | 3 | 74 | [60] |
CuFe2O4 order to further | 7 | 82.7 | [61] |
GNPs/Fe-Mg oxide | 7 | 103.9 | [62] |
GNPs/CuFe2O4 | 4 | 172.7 | [62] |
Chlamydomonas sp. | 4 | 53.8 | [63] |
C. vulgaris | 6 | 13 | [64] |
C. vulgaris modified with NaCl | 6 | 20.9 | [65] |
Spirulina platensis modified with ZnCl2 | 6 | 24.8 | [66] |
C. vulgaris (SAG 211-11b) | 6 | 55 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, R.M.; Sholkamy, E.N.; Alsamhary, K.I.; Abdel-Raouf, N.; Ibraheem, I.B.M. Optimization Study of the Capacity of Chlorella vulgaris as a Potential Bio-Remediator for the Bio-Adsorption of Arsenic (III) from Aquatic Environments. Toxics 2023, 11, 439. https://doi.org/10.3390/toxics11050439
Alharbi RM, Sholkamy EN, Alsamhary KI, Abdel-Raouf N, Ibraheem IBM. Optimization Study of the Capacity of Chlorella vulgaris as a Potential Bio-Remediator for the Bio-Adsorption of Arsenic (III) from Aquatic Environments. Toxics. 2023; 11(5):439. https://doi.org/10.3390/toxics11050439
Chicago/Turabian StyleAlharbi, Reem Mohammed, Essam Nageh Sholkamy, Khawla Ibrahim Alsamhary, Neveen Abdel-Raouf, and Ibraheem Borie M. Ibraheem. 2023. "Optimization Study of the Capacity of Chlorella vulgaris as a Potential Bio-Remediator for the Bio-Adsorption of Arsenic (III) from Aquatic Environments" Toxics 11, no. 5: 439. https://doi.org/10.3390/toxics11050439
APA StyleAlharbi, R. M., Sholkamy, E. N., Alsamhary, K. I., Abdel-Raouf, N., & Ibraheem, I. B. M. (2023). Optimization Study of the Capacity of Chlorella vulgaris as a Potential Bio-Remediator for the Bio-Adsorption of Arsenic (III) from Aquatic Environments. Toxics, 11(5), 439. https://doi.org/10.3390/toxics11050439