The Health Risk and Source Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Soil of Industrial Cities in India
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Sites
2.2. Sampling
2.3. Extraction and Analysis of PAHs from Soil
2.4. Quality Assurance
3. Heath Risk Assessment
4. Result and Discussion
4.1. Concentration of PAHs in the Soil
4.2. Study Site PAH Concentrations Compared with Worldwide Levels
4.3. Health Risk Assessment of PAHs
4.4. Diagnostic Ratio Analysis
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IARC. Polynuclear Aromatic Compounds, Part 1, Chemical, Environmental and Experimental Data. In IARC Monographs on the Evaluation of the Carcinogenicity Risk of Chemical to Humans 32; International Agency for Research on Cancer: Lyon, France, 1983. [Google Scholar]
- Boeuf, B.; Fritsch, O.; Martin-Ortega, J. Undermining European environmental policy goals? The EU water framework directive and the politics of exceptions. Water 2016, 8, 388. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Zhang, Q.; Guo, H.; Zhang, S. Evaluation of cytotoxicity, genotoxicity and teratogenicity of marine sediments from Qingdao coastal areas using in vitro fish cell assay, comet assay and zebrafish embryo test. Toxicol. In Vitro 2010, 24, 2003–2011. [Google Scholar] [CrossRef]
- Kumar, A.; Sankar, T.K.; Sethi, S.S.; Ambade, B. Characteristics, Toxicity, Source identification and Seasonal variation of Atmospheric Polycyclic Aromatic Hydrocarbons over East India. Environ. Sci. Pollut. Res. 2020, 27, 678–690. [Google Scholar] [CrossRef]
- Peng, C.; Chen, W.; Liao, X.; Wang, M.; Ouyang, Z.; Jiao, W.; Bai, Z. Vegetative cover and PAHs accumulation in soils of urban green space. Environ. Pollut. 2012, 161, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Australian Protection Agency Report. 2003. Available online: http://www.scew.gov.au/archive/air/pubs/atem/at_rev_pahs_health_review_200305.pdf (accessed on 4 December 2002).
- Harrison, R.M.; Smith, D.J.T.; Luhana, L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environ. Sci. Technol. 1996, 30, 825–832. [Google Scholar] [CrossRef]
- Marr, L.C.W.; Harley, R.A.; Miguel, A.H. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emission. Environ. Sci. Technol. 1999, 33, 3091–3099. [Google Scholar] [CrossRef]
- Wang, X.H.; Ye, C.X.; Yin, H.L.; Zhuang, M.Z.; Wu, S.P.; Mu, J.L.; Hong, H.S. Contamination of polycyclic aromatic hydrocarbons bound to PM10/PM2. 5 in Xiamen, China. Aerosol Air Qual. Res. 2007, 7, 260–276. [Google Scholar] [CrossRef] [Green Version]
- Mostert, M.M.R.; Ayoko, G.A.; Kokot, S. Application of chemometrics to analysis of soil pollutants. TrAC Trends Anal. Chem. 2010, 29, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Bull, K. Protocol to the 1979 Convention on Long-Range Trans Boundary Air Pollution on Persistent Organic Pollutants: The 1998 Agreement for the UNECE Region; UNECE: Geneva, Switzerland, 2003. [Google Scholar]
- Liu, Y.; Liu, L.; Lin, J.M.; Tang, N.; Hayakawa, K. Distribution and characterization of polycyclic aromatic hydrocarbon compounds in airborne particulates of East Asia, China. Particuology 2006, 4, 283–296. [Google Scholar] [CrossRef]
- Shibamoto, T. Chromatographic Analysis of Environmental and Food Toxicants; Marcel Dekker, Inc.: New York, NY, USA, 1998. [Google Scholar]
- U.S. Environmental Protection Agency (USEPA). Guidelines for Carcinogen Risk Assessment—Federal Register, 51(185), 33992–34003 EPA/630/R-00/004; U.S. Government Printing Office: Washington, DC, USA, 1986.
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency (USEPA), Washington, DC, USA. 2012. Available online: http://www.epa.gov/reg3hwmd/risk/ (accessed on 8 April 2012).
- Menzie, C.A.; Potocki, B.B.; Santodonato, J. Exposure to carcinogenic PAHs in environment. Environ. Sci. Technol. 1992, 26, 1278–1284. [Google Scholar] [CrossRef]
- Crimmins, B.; Dickerson, R.; Doddridge, B.; Baker, J. Particulate polycyclic aromatic hydrocarbons in the Atlantic and Indian Ocean atmospheres during the Indian Ocean Experiment and Aerosols 99: Continental sources to the marine atmosphere. J. Geophys. Res. Atmos. JGR 2004, 109, D05308. [Google Scholar]
- Ding, X.; Wang, X.; Xie, Z.; Xiang, C.; Mai, B.; Sun, L.; Zheng, M.; Sheng, G.; Fu, J.; Pöschl, U. Atmospheric polycyclic aromatic hydrocarbons observed over the North Pacific Ocean and the Arctic area: Spatial distribution and source identification. Atmos. Environ. 2007, 41, 2061–2072. [Google Scholar] [CrossRef]
- Friedman, C.L.; Zhang, Y.; Selin, N.E. Climate change and emissions impacts on atmospheric PAH transport to the Arctic. Environ. Sci. Technol. 2013, 48, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Wania, F.; Mackay, D. Global fractionation and cold condensation of low volatility organochlorine compounds in polar-regions. Ambio 1993, 22, 10–18. [Google Scholar]
- Wania, F.; Mackay, D.; Li, Y.F.; Bidleman, T.F.; Strand, A. Global chemical fate of alpha-hexachlorocyclohexane. 1. Evaluation of a global distribution model. Environ. Toxicol. Chem. 1999, 18, 1390–1399. [Google Scholar] [CrossRef]
- Agarwal, T. Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi. India J. Hazard. Mater. 2009, 171, 894–900. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. Toxicological Profile for Polycyclic Aromatic Hydrocarbons; U.S. Department of Health and Human Services Public Health Service: Washington, DC, USA, 1995.
- Wang, X.L.; Tao, S.; Dawson, R.; Cao, J.; Li, B.G. Modeling the transfer and the fate of benzo(a)pyrene in wastewater irrigated area in Tianjin. J. Environ. Qual. 2002, 31, 896–903. [Google Scholar] [PubMed]
- Tao, S.; Cao, H.Y.; Liu, W.X.; Li, B.G.; Cao, J.; Xu, F.L.; Wang, X.J.; Conveny, J.R.; Shen, W.R.; Qing, B.P.; et al. Fate modeling of phenanthrene with regional variation in Tianjin. China Environ. Sci. Technol. 2003, 37, 2453–2459. [Google Scholar] [CrossRef]
- Morillo, E.; Romero, A.S.; Madrid, L.; Villaverde, J.; Maqueda, C. Characterization and sources of PAHs and potentially toxic metals in urban environments of Sevilla (Southern Spain). Water Air Soil Pollut. 2008, 187, 41–51. [Google Scholar] [CrossRef]
- Reilley, K.A.; Banks, M.K.; Schwab, A.P. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J. Environ. Qual. 1996, 25, 212–219. [Google Scholar] [CrossRef]
- Wilcke, W.; Amelung, W.; Martius, C.; Garcia, M.V.B.; Zech, W. Biological sources of polycyclic aromatic hydrocarbons (PAHs) in the Amazonian rain forest. J. Plant Nutr. Soil Sci. 2000, 163, 27–30. [Google Scholar] [CrossRef]
- Liang, J.; Guangjun, M.; Hailan, F.; Liang, C.; Peter, C. Polycyclic aromatichydrocarbon concentration representing different land use categories in Shanghai. Environ. Earth Sci. 2011, 62, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.; Khillare, P.S.; Agarwal, T.; Shridhar, V. Assessment of PAHs in soil around the international airport in Delhi, India. J. Hazard. Mater. 2008, 156, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, T.; Khillare, P.S.; Shridhar, V. PAHs contamination in the bank sediment of the Yamuna River, Delhi, India. Environ. Monit. Assess. 2006, 123, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Jain, V.K.; Khan, Z.H. Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in the urban environment of Delhi. Chemosphere 2007, 66, 302–310. [Google Scholar] [CrossRef]
- Golia, E.E.; Papadimou, S.G.; Cavalaris, C.; Tsiropoulos, N.G. Level of Contamination Assessment of Potentially Toxic Elements in the Urban Soils of Volos City (Central Greece). Sustainability 2021, 13, 2029. [Google Scholar] [CrossRef]
- Gu, Y.-G.; Gao, Y.-P.; Lin, Q. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Appl. Geochem. 2016, 67, 52–58. [Google Scholar] [CrossRef]
- Wijesiri, B.; Egodwatta, P.; McGree, J.; Goonetilleke, A. Process variability of pollutant build-up on urban road surfaces. Sci. Total Environ. 2015, 518–519, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.N.; Sharma, M.; Shukla, S.P. Characterization of gaseous pollutants and water-soluble inorganic ions in PM2.5 during summer-time at an urban site of north India. J. Hazard. Toxic Radioact. Waste 2015, 20, A4015002. [Google Scholar] [CrossRef]
- Singh, D.; Shukla, S.P.; Sharma, M.; Behera, S.N.; Mohan, D.; Singh, N.B.; Pandey, G. GIS based on-road vehicular emission inventory for Lucknow City. J. Hazard. Toxic Radioact. Waste 2014, 20, A4014006. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M.; Nayak, P.; Shukla, S.P.; Gargava, P. An approach for evaluation of proposed air pollution control strategy to reduce levels of nitrogen oxides in an urban environment. J. Environ. Plan. Manag. 2014, 57, 467–494. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Walkley, A.; Black, C.A. An estimation method for determination of soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–33. [Google Scholar] [CrossRef]
- Devi, N.L.; Yadav, I.C.; Shihua, Q.; Dan, Y.; Zhang, G.; Raha, P. Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: Implications for spatial distribution, sources apportionment and risk assessment. Chemosphere 2016, 144, 493–502. [Google Scholar] [CrossRef]
- Adeniji, A.O.; Okoh, O.O.; Okoh, A.I. Petroleum hydrocarbon fingerprints of water and sediment samples of Buffalo River Estuary in the Eastern Cape Province, South Africa. J. Anal. Methods Chem. 2017, 2017, 2629365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.C.; Liao, C.M. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci. Total Environ. 2006, 366, 112–123. [Google Scholar] [CrossRef]
- Jiao, H.; Wang, Q.; Zhao, N.; Jin, B.; Zhuang, X.; Bai, Z. Distributions and sources of polycyclic aromatic hydrocarbons (PAHs) in soils around a chemical plant in shanxi, China. Int. J. Environ. Res. Public Health 2017, 14, 1198. [Google Scholar] [CrossRef]
- Liu, Y.G.; Gao, P.; Su, J.; Da Silva, E.B.; de Oliveira, L.M.; Townsend, T.; Xiang, P.; Ma, L. PAHs in urban soils of two Florida cities: Background concentrations, distribution, and sources. Chemosphere 2019, 214, 220–227. [Google Scholar] [CrossRef]
- Bucheli, T.D.; Blum, F.; Desaules, A.; Gustafsson, Ö. Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 2004, 56, 1061–1076. [Google Scholar] [CrossRef]
- Singh, D.P.; Gadi, R.; Mandal, T.K. Levels, sources, and toxic potential of polycyclic aromatic hydrocarbons in urban soil of Delhi, India. Hum. Ecol. Risk Assess. Int. J. 2012, 18, 393–411. [Google Scholar] [CrossRef]
- Suman, S.; Sinha, A.; Tarafdar, A. Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Sci. Total Environ. 2016, 545–546, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Marinho, R.A.P.; Shepherd, T.; Nowell, G.; Cachada, A.; Duarte, A.C.; Cave, M.; Wragg, J.; Patinha, C.; Dias, A.; Rocha, F.; et al. Source and pathway analysis of lead and polycyclic aromatic hydrocarbons in Lisbon urban soils. Sci. Total Environ. 2016, 573, 324–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omores, R.A.; Wewers, F.; Ikhide, P.O.; Farrar, T.; Giwa, A. Spatio-temporal distribution of polycyclic aromatic hydrocarbons in urban soils in Cape Town, South Africa. Int. J. Environ. Res. 2017, 11, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.; Hou, S.; Niu, H.; Tian, K.; Liu, X.; Wu, F. Status, sources, and risk assessment of polycyclic aromatic hydrocarbons in urban soils of Xi’an, China. Environ. Sci. Pollut. Res. 2018, 25, 18947–18959. [Google Scholar] [CrossRef]
- Pokhrel, B.; Gong, P.; Wang, X.; Chen, M.; Gao, S. Distribution, sources, and air-soil exchange of OCPs, PCBs and PAHs in urban soils of Nepal. Chemosphere 2018, 200, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Gong, Y.; Ma, J.; Wei, H.; Liu, Q.; Liu, L.; Wu, H.; Yang, S.; Chen, Y. Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Beijing, China. Environ. Pollut. 2020, 260, 114016. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S.; Chintalacheruvu, M.R. Distribution, risk assessment, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) using positive matrix factorization (PMF) in urban soils of East India. Environ. Geochem. Health 2023, 45, 491–505. [Google Scholar] [CrossRef]
- Thiombane, M.; Albanese, S.; Di Bonito, M.D.; Lima, A.; Zuzolo, D.; Rolandi, R.; Qi, S.; De Vivo, B. Source patterns and contamination level of polycyclic aromatic hydrocarbons (PAHs) in urban and rural areas of Southern Italian soils. Environ. Geochem. Health 2019, 41, 507–528. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, J.; Zeng, H. Soil polycyclic aromatic hydrocarbons across urban density zones in Shenzhen, China: Occurrences, source apportionments, and spatial risk assessment. Pedosphere 2016, 26, 676–686. [Google Scholar] [CrossRef]
- Skrbic, B.D.; Ðurišić-Mladenović, N.; Tadić, Ð.J.; Cvejanov, J.Ð. Polycyclic aromatic hydrocarbons in urban soil of Novi Sad, Serbia: Occurrence and cancer risk assessment. Environ. Sci. Pollut. Res. 2017, 24, 16148–16159. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, C.; Li, K.; Cui, X.; Wu, Y.; Xia, Y. Influence of thermal maturity on Carbon isotopic composition of individual aromatic hydrocarbons during anhydrous closed-system pyrolysis. Fuel 2016, 186, 466–475. [Google Scholar] [CrossRef]
- Bozlaker, A.; Muezzinoglu, A.; Odabasi, M. Atmospheric concentrations, dry deposition and air–soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey. J. Hazard. Mater. 2008, 153, 1093–1102. [Google Scholar] [CrossRef]
- Choi, S.-D.; Shunthirasingham, C.; Daly, G.L.; Xiao, H.; Lei, Y.D.; Wania, F. Levels of polycyclic aromatic hydrocarbons in Canadian mountain air and soil are controlled by proximity to roads. Environ. Pollut. 2009, 157, 3199–3206. [Google Scholar] [CrossRef]
- Schwarz, K. Atmogenic Pollutants as Reactive Tracers for Identification and Quantification of Important Transport Processes in a Karst Area at the Catchment Scale. Ph.D. Thesis, Universität Tübingen, Tübingen, Germany, 2010. [Google Scholar]
- Liu, G.; Yu, L.; Li, J.; Liu, X.; Zhang, G. PAHs in soils and estimated air–soil exchange in the Pearl River Delta, south China. Environ. Monit. Assess. 2011, 173, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Vane, C.H.; Kim, A.W.; Beriro, D.J.; Cave, M.R.; Knights, K.; Moss-Hayes, V.; Nathanail, P.C. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Appl. Geochem. 2014, 51, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Pham, C.T.; Tang, N.; Toriba, A.; Hayakawa, K. Polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in atmospheric particles and soil at a traffic site in Hanoi, Vietnam. Polycycl. Aromat. Compd. 2015, 35, 355–371. [Google Scholar] [CrossRef]
- Yang, X.; Ren, D.; Sun, W.; Li, X.; Huang, B.; Chen, R.; Lin, C.; Pan, X. Polycyclic aromatic hydrocarbons associated with total suspended particles and surface soils in Kunming, China: Distribution, possible sources, and cancer risks. Environ. Sci. Pollut. Res. 2015, 22, 6696–6712. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.; Kumar, R. Distribution of some polycyclic aromatic hydrocarbons in urban soils of Delhi, India. Environ. Technol. Innov. 2019, 17, 100500. [Google Scholar] [CrossRef]
- Hong, W.J.; Li, Y.F.; Li, W.L.; Jia, H.; Minh, N.H.; Sinha, R.K.; Moon, H.B.; Nakata, H.; Chi, K.H.; Kannan, K. Soil concentrations and soil-air exchange of polycyclic aromatic hydrocarbons in five Asian countries. Sci. Total Environ. 2020, 711, 135223. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Christensen, E.R.; Bzdusek, P.A. PAHs in sediments of the Black River and the Ashtabula River, Ohio: Source apportionment by factor analysis. Water Res. 2005, 39, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Maliszewska-Kordybach, B.; Smreczak, B.; Klimkowicz-Pawlas, A.; Terelak, H. Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere 2008, 73, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Essumang, D.K.; Kowalski, K.; Sogaard, E.G. Levels, distribution and source characterization of polycyclic aromatic hydrocarbons (PAHs) in top soils and roadside soils in Esbjerg, Denmark. Bull. Environ. Contam. Toxicol. 2011, 86, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Mannino, M.R.; Orecchio, S. Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: Extraction, GC–MS analysis, distribution and sources. Atmos. Environ. 2008, 42, 1801–1817. [Google Scholar] [CrossRef]
Parameter | Unit | Child | Adolescent | Adult |
---|---|---|---|---|
Body weight (BW) | kg | 15 | 45 | 62 |
Ingestion rate (IR ingestion) | mg/d | 200 | 100 | 100 |
Exposure frequency (EF) | d/year | 350 | 350 | 350 |
Exposure duration (ED) | year | 6 | 14 | 30 |
Average lifetime span (AT) | d | 26,280 | 26,280 | 26,280 |
Surface area (SA) | cm2/d | 2800 | 2800 | 2800 |
Dermal surface factor (AF) | mg/cm2 | 0.2 | 0.2 | 0.07 |
Dermal absorption fraction (ABS) | unit less | 0.13 | 0.13 | 0.13 |
Inhalation rate (IR inhalation) | m3/d | 10.9 | 17.7 | 17.5 |
Particulate emission factor | m3/kg | 1.36 × 109 | 1.36 × 109 | 1.36 × 109 |
PAHs | Abbreviation | No. of Rings | Jamshedpur | Amravati | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Average | SD | Min | Max | Average | SD | Min | Max | |||
Naphthalene | Nap | 2 | 145.77 | 59.36 | 46.06 | 264.52 | 136.40 | 66.19 | <DL | 276.2 |
Acenaphthylene | Acy | 3 | 168.83 | 80.22 | 19.40 | 344.50 | 77.63 | 56.62 | 50.064 | 121.4 |
Acenaphthene | Ace | 3 | 217.08 | 112.63 | 83.84 | 507.11 | 296.09 | 157.61 | 150.696 | 631.2 |
Fluorene | Flu | 3 | 386.82 | 209.00 | 52.58 | 826.30 | 140.62 | 138.28 | 91.56 | 216.3 |
Phenanthrene | Phe | 3 | 491.76 | 220.66 | 93.03 | 830.80 | 343.45 | 141.76 | 179.34 | 548.632 |
Anthracene | Ant | 3 | 201.32 | 209.27 | 23.12 | 382.10 | 106.79 | 154.88 | <DL | 154.8821 |
Fluoranthene | Flua | 4 | 570.74 | 318.29 | 263.62 | 1514.02 | 401.48 | 196.42 | <DL | 677.306 |
Pyrene | Pyr | 4 | 561.54 | 323.67 | 209.97 | 1205.90 | 315.74 | 162.23 | 184.212 | 568.327 |
Benzo[a]anthracene | BaA | 4 | 387.43 | 256.21 | 144.34 | 829.01 | 269.61 | 133.81 | 139.188 | 460.762 |
Chrysene | Chr | 4 | 402.16 | 144.38 | 106.90 | 613.96 | 192.59 | 103.85 | 125.664 | 256.742 |
Benzo[b]fluoranthene | BbF | 5 | 341.27 | 130.72 | 96.56 | 554.54 | 174.70 | 43.59 | 116.088 | 245.2 |
Benzo[k]fluoranthene | BkF | 5 | 334.65 | 121.02 | 97.87 | 562.11 | 145.58 | 45.23 | 90.048 | 230.5 |
Benzo[a]pyrene | BaP | 5 | 326.80 | 97.11 | 86.68 | 497.85 | 143.18 | 49.49 | 83.832 | 245.2 |
Dibenzo[ah]anthracene | DBahA | 5 | 551.70 | 181.82 | 153.22 | 880.01 | 207.33 | 58.75 | 140.448 | 280.3 |
Benzo[ghi]perylene | B(ghi)P | 6 | 227.54 | 214.34 | 75.69 | 434.69 | 158.35 | 47.58 | 105.084 | 245.3 |
Indeno[123-cd]pyrene | IcP | 6 | 339.65 | 111.22 | 110.01 | 631.81 | 147.19 | 40.01 | <DL | 245.2 |
Σ16PAHs | 5655.06 | 2789.92 | 1662.90 | 10,879.20 | 3256.74 | 1596.28 | 1456.22 | 5403.45 |
Sl No. | No. of PAHs | Location | Min | Max | Mean | Reference |
---|---|---|---|---|---|---|
1 | 15 | Izmir, Turkey | 11 | 4628 | - | [60] |
2 | 16 | Western Canada | 2.03 | 789 | - | [61] |
3 | 16 | Schwaebische Alb, Germany | - | 1140 | - | [62] |
4 | 16 | Pearl River Delta, China | 28 | 710 | - | [63] |
5 | 16 | Delhi, India | 1550.9 | 11,460 | 5524.3 | [48] |
6 | 16 | London, UK | 4000 | 67,000 | - | [64] |
7 | 10 | Hanoi, Vietnam | 0.34 | 43.7 | - | [65] |
8 | 15 | Kumming, China | 101.64 | 693.3 | - | [66] |
9 | 13 | Dhanbad, India | 1019 | 10,856 | 3488 | [49] |
10 | 16 | Shenzhen, China | 2 | 6745 | 360 | [57] |
11 | 16 | Lisbon, Portugal | 6 | 73,395 | 2717 | [50] |
12 | 16 | Novi, Sad, Serbia | 22 | 2247 | 363 | [58] |
13 | 8 | Cape Town, South Africa | <DL | 13,880 | 4080 | [51] |
14 | 16 | Xi’an, China | 149.9 | 5770 | 1246 | [52] |
15 | 15 | Pokhare, Nepal | 17.1 | 1852.5 | 273.7 | [53] |
16 | 15 | Kathmandu, Nepal | 20.6 | 6219.3 | 1172.8 | |
17 | 16 | Orlando, USA | 43 | 30,428 | 3227 | [46] |
18 | 16 | Tampa, USA | 59 | 58,640 | 4562 | |
19 | 16 | South of Italy | 7.62 | 755 | 84.85 | [56] |
20 | 7 | Delhi, India | <DL | 862 | - | [67] |
21 | 16 | China | 6.94 | 5870 | - | [68] |
22 | 16 | Japan | 31.9 | 507 | - | |
23 | 16 | South Korea | 6.41 | 161 | - | |
24 | 16 | Vietnam | 26.9 | 864 | - | |
25 | 16 | India | 14.3 | 1590 | - | |
26 | 16 | Beijing, China | 66 | 6867 | 460 | [54] |
27 | 16 | Bokaro, India | <DL | 670.6 | 139.6 | [55] |
28 | 16 | Jamshedpur, India | 38.6 | 1781.2 | 366.7 | [55] |
29 | 16 | Jamshedpur, India | 1662.90 | 10,879.20 | 5655.06 | This Study |
30 | 16 | Amravati, India | 1456.22 | 5403.45 | 3256.74 |
PAHs | Jamshedpur | Amaravati | |||||
---|---|---|---|---|---|---|---|
TEFs | PAHs (ng/g) | BaPTEQ | BaPTEQ % | PAHs (ng/g) | BaPTEQ | BaPTEQ % | |
Nap | 0.001 | 156.66 | 0.16 | 0.01 | 124.71 | 0.12 | 0.03 |
Acy | 0.001 | 133.71 | 0.13 | 0.01 | 71.98 | 0.07 | 0.02 |
Ace | 0.001 | 265.44 | 0.27 | 0.03 | 269.83 | 0.27 | 0.07 |
Flu | 0.001 | 310.42 | 0.31 | 0.03 | 130.50 | 0.13 | 0.03 |
Phe | 0.001 | 440.93 | 0.44 | 0.04 | 279.53 | 0.28 | 0.07 |
Ant | 0.01 | 162.49 | 1.62 | 0.15 | 100.68 | 1.01 | 0.26 |
Flua | 0.001 | 752.54 | 0.75 | 0.07 | 340.46 | 0.34 | 0.09 |
Pyr | 0.001 | 705.15 | 0.71 | 0.07 | 288.07 | 0.29 | 0.07 |
BaA | 0.1 | 458.95 | 45.89 | 4.36 | 223.87 | 22.39 | 5.73 |
Chr | 0.01 | 408.27 | 4.08 | 0.39 | 170.58 | 1.71 | 0.44 |
BbF | 0.1 | 376.01 | 37.60 | 3.57 | 159.66 | 15.97 | 4.09 |
BkF | 0.1 | 357.23 | 35.72 | 3.39 | 131.90 | 13.19 | 3.38 |
BaP | 1 | 333.67 | 333.67 | 31.69 | 128.92 | 128.92 | 33.01 |
DBahA | 1 | 552.66 | 552.66 | 52.48 | 189.89 | 189.89 | 48.63 |
B(ghi)P | 0.01 | 246.17 | 2.46 | 0.23 | 149.19 | 1.49 | 0.38 |
IcP | 0.1 | 365.87 | 36.59 | 3.47 | 144.30 | 14.43 | 3.70 |
Total | 1029.66 | 100.00 | 430.51 | 100.00 |
Jamshedpur | Amravati | |||||
---|---|---|---|---|---|---|
Children | Adolescents | Adults | Children | Adolescents | Adults | |
ILCR | 4.79 × 10−3 | 2.50 × 10−4 | 4.46× 10−3 | 2.01 × 10−3 | 1.12 × 10−3 | 1.86 × 10−3 |
5.97 × 10−3 | 6.69 × 10−3 | 3.90 × 10−3 | 2.49 × 10−3 | 2.79 × 10−3 | 1.63 × 10−3 | |
1.37 × 10−4 | 2.50 × 10−4 | 2.35 × 10−3 | 5.78 × 10−5 | 1.04 × 10−4 | 1.72 × 10−4 |
PAHs | Range | Sources | Jamshedpur | Amaravati | Reference |
---|---|---|---|---|---|
Ant/(Ant + Phe) | <0.1 >0.1 | Petrogenic Pyrogenic combustion | 0.28 | 0.22 | [47] |
Flua/(Flua + Pyr) | <0.5 >0.5 | Petrogenic Coal, wood or grass combustion | 0.50 | 0.45 | [69] |
BaA/(BaA + Chr) | <0.2 >0.2 | Petrogenic Pyrogenic/combustion | 0.48 | 0.55 | [70] |
Phe/Ant | <10 <15 | Pyrogenic Petrogenic | 2.69 | 2.89 | [71] |
Ind/(Ind + Bghip) | <0.2 0.2–0.5 >0.5 | Petrogenic Fuel combustion (vehicles and crude oil) Grass/coal/wood combustion | 0.60 | 0.45 | [72] |
BaP/(BaP + Chr) | <0.2 0.2–0.35 >0.35 | Petroleum Coal, wood, or grass combustion Vehicular combustion | 0.45 | 0.42 | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankar, T.K.; Kumar, A.; Mahto, D.K.; Das, K.C.; Narayan, P.; Fukate, M.; Awachat, P.; Padghan, D.; Mohammad, F.; Al-Lohedan, H.A.; et al. The Health Risk and Source Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Soil of Industrial Cities in India. Toxics 2023, 11, 515. https://doi.org/10.3390/toxics11060515
Sankar TK, Kumar A, Mahto DK, Das KC, Narayan P, Fukate M, Awachat P, Padghan D, Mohammad F, Al-Lohedan HA, et al. The Health Risk and Source Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Soil of Industrial Cities in India. Toxics. 2023; 11(6):515. https://doi.org/10.3390/toxics11060515
Chicago/Turabian StyleSankar, Tapan Kumar, Amit Kumar, Dilip Kumar Mahto, Kailash Chandra Das, Prakash Narayan, Manish Fukate, Prashant Awachat, Dhanshri Padghan, Faruq Mohammad, Hamad A. Al-Lohedan, and et al. 2023. "The Health Risk and Source Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Soil of Industrial Cities in India" Toxics 11, no. 6: 515. https://doi.org/10.3390/toxics11060515
APA StyleSankar, T. K., Kumar, A., Mahto, D. K., Das, K. C., Narayan, P., Fukate, M., Awachat, P., Padghan, D., Mohammad, F., Al-Lohedan, H. A., Soleiman, A. A., & Ambade, B. (2023). The Health Risk and Source Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Soil of Industrial Cities in India. Toxics, 11(6), 515. https://doi.org/10.3390/toxics11060515