Novel Essential Oils Blend as a Repellent and Toxic Agent against Disease-Transmitting Mosquitoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Identification of Plant Material
2.2. Extraction of Essential Oils (EOs)
2.3. Culturing of Mosquito Species
2.4. Herbal Essential Oil Formulation (EOF)
2.5. Larvicidal and Pupicidal Bioassay
2.6. Dose-Responsive Bioassay
2.7. Ovicidal Bio-Assay
2.8. Oviposition-Deterrent Bio-Assay
2.9. Repellency Test
2.10. Chemical Analysis of EOF by GC-MS
2.11. Molecular Docking
2.12. Statistical Evaluation
3. Results
3.1. Essential Oil Production
3.2. Larvicidal and Pupicidal Bioassay
3.3. Ovicidal Effect of EOF
3.4. Oviposition-Deterrent Potential of EOF
3.5. Repellent Effect: Laboratory Evaluation
3.6. GC-MS Analysis of EOF
3.7. Molecular Docking Analysis of OBP4
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Huang, H.T.; Lin, C.C.; Kuo, T.C.; Chen, S.J.; Huang, R.N. Phytochemical composition and larvicidal activity of essential oils from herbal plants. Planta 2019, 250, 59–68. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Malaria Report; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/news-room/fact-sheets/detail/malaria (accessed on 16 July 2022).
- Kamaraj, C.; Ragavendran, C.; Kumar, R.S.; Sabarathinam, S.; Vetrivel, C.; Vaithiyalingam, M.; Malafaia, G. Synthesize palladium nanoparticles from the macroalgae Sargassum fusiforme: An eco-friendly tool in the fight against Plasmodium falciparum? Sci. Total Environ. 2023, 857, 159517. [Google Scholar] [CrossRef] [PubMed]
- Klempner, M.S.; Unnasch, T.R.; Hu, L.T. Taking a bite out of vector-transmitted infectious diseases. N. Engl. J. Med. 2007, 356, 2567–2569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govindarajan, M.; Sivakumar, R.; Rajeswary, M.; Veerakumar, K. Mosquito larvicidal activity of thymol from essential oil of coleus aromaticus benth. against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (diptera: Culicidae). Parasitol. Res. 2013, 112, 3713–3721. [Google Scholar] [CrossRef] [PubMed]
- Mathivanan, T.; Govindarajan, M.; Elumalai, K.; Krishnappa, K.; Ananthan, A. Mosquito larvicidal and phytochemical properties of Ervatamia coronaria stapf. (family: Apocynaceae). J. Vector Borne Dis. 2010, 47, 178–180. [Google Scholar]
- Govindarajan, M.; Jebanesan, A.; Reetha, D. Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, Culex quinquefasciatus say. Trop Biomed. 2005, 22, 1–3. [Google Scholar]
- Guta, W.; Simma, E.A.; Yewhalaw, D. Species composition, blood meal sources and insecticide susceptibility status of Culex mosquitoes from Jimma area, Ethiopia. Int. Trop. Insect Sci. 2021, 41, 533–539. [Google Scholar] [CrossRef]
- Govindarajan, M. Evaluation of Andrographis paniculata Burm.F. (Family:Acanthaceae) extracts against Culex quinquefasciatus (say.) and Aedes aegypti (linn.) (Diptera:Culicidae). Asian Pac J Trop Med. 2011, 4, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Govindarajan, M. Evaluation of indigenous plant extracts against the malarial vector, Anopheles stephensi (Liston) (Diptera: Culicidae). Parasitol Res. 2011, 109, 93–103. [Google Scholar] [CrossRef]
- Ishwarya, R.; Vaseeharan, B.; Anuradha, R.; Rekha, R.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient indian medicinal plant: Histopathological effects on the zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria. J. Photochem. Photobiol. B Biol. 2017, 174, 133–143. [Google Scholar] [CrossRef]
- Banumathi, B.; Vaseeharan, B.; Ishwarya, R.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol. Res. 2017, 116, 1637–1651. [Google Scholar] [CrossRef]
- Chareonviriyaphap, T.; Bangs, M.J.; Suwonkerd, W.; Kongmee, M.; Corbel, V.; Ngoen-Klan, R. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit. Vectors 2013, 6, 280. [Google Scholar] [CrossRef] [Green Version]
- Kamaraj, C.; Karthi, S.; Reegan, A.D.; Balasubramani, G.; Ramkumar, G.; Kalaivani, K.; Zahir, A.A.; Deepak, P.; Senthil-Nathan, S.; Rahman, M.M.; et al. Green synthesis of gold nanoparticles using Gracilaria crassa leaf extract and their ecotoxicological potential: Issues to be considered. Environ. Res. 2022, 213, 113711. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Benelli, G. δ-Cadinene, calarene and δ-4-carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Comb Chem High Throughput Screen 2016, 19, 565–571. [Google Scholar] [CrossRef]
- Zaim, M.; Guillet, P. Alternative insecticides: An urgent need. Trends Parasitol. 2002, 18, 161–163. [Google Scholar] [CrossRef]
- Azeem, M.; Zaman, T.; Tahir, M.; Haris, A.; Iqbal, Z.; Binyameen, M.; Nazir, A.; Shad, S.A.; Majeed, S.; Mozūraitis, R. Chemical composition and repellent activity of native plants essential oils against dengue mosquito, Aedes aegypti. Ind. Crops Prod. 2019, 140, 111609. [Google Scholar] [CrossRef]
- Jaenson, T.G.T.; Garboui, S.; Palsson, K. Repellency of oils of lemon eucalyptus, geranium, and lavender and the mosquito repellent Mygg A natural to Ixodes ricinus (Acari: Ixodidae) in the laboratory and field. J. Med. Entomol. 2006, 43, 731–736. [Google Scholar] [CrossRef]
- Mamood, S.N.H.; Hidayatulfathi, O.; Budin, S.B.; Rohi, G.A.; Zulfakar, M.H. The formulation of the essential oil of Piper aduncum Linnaeus (Piperales: Piperaceae) increases its efficacy as an insect repellent. Bull. Entomol. Res. 2017, 107, 49–57. [Google Scholar] [CrossRef]
- Briassoulis, G.; Narlioglou, M.; Hatzis, T. Toxic encephalopathy associated with use of DEET insect repellents: A case analysis of its toxicity in children. Hum. Exp. Toxicol. 2001, 20, 8–14. [Google Scholar] [CrossRef]
- Boutekedjiret, C.; Bentahar, F.; Belabbes, R.; Bessiere, J. Extraction of rosemary essential oil by steam distillation and hydrodistillation. Flav. Frag. J. 2003, 18, 481–484. [Google Scholar] [CrossRef]
- Kamaraj, C.; Bagavan, A.; Rahuman, A.A.; Zahir, A.A.; Elango, G.; Pandiyan, G. Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol. Res. 2009, 104, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Kamaraj, C.; Rahuman, A.A.; Mahapatra, A.; Bagavan, A.; Elango, G. Insecticidal and larvicidal activities of medicinal plant extracts against mosquitoes. Parasitol. Res. 2010, 107, 1337–1349. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Report of the WHO Informal Consultation on the Evaluation on the Testing of Insecticides; CTD/WHO PES/IC/96.1; World Health Organization: Geneva, Switzerland, 1996; 69p. [Google Scholar]
- Su, T.; Mulla, M.S. Ovicidal activity of neem products (Azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J. Am. Mosq. Control Assoc. 1998, 14, 204–209. [Google Scholar] [PubMed]
- Elango, G.; Rahuman, A.A.; Bagavan, A.; Kamaraj, C.; Zahir, A.A.; Rajakumar, G.; Marimuthu, S.; Santhoshkumar, T. Efficacy of botanical extracts against. Japanese encephalitis vector, Culex tritaeniorhynchus. Parasitol. Res. 2020, 106, 481–492. [Google Scholar] [CrossRef]
- Chenniappan, K.; Kadarkarai, M. Oviposition deterrent, ovicidal and gravid mortality effects of ethanolic extract of Andrographis paniculata Nees against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Entomol. Res. 2008, 38, 119–125. [Google Scholar] [CrossRef]
- Rajkumar, S.; Jebanesan, A. Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 2009, 104, 337–340. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Efficacy Testing of Mosquiton Repellents for Human Skin (No. WHO/HTM/NTD/WHOPES/2009.4); World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Kramer, W.L.; Mulla, S. Oviposition attractants and repellents of mosquitoes: Oviposition responses of Culex mosquitoes to organic infusions. Environ. Entomol. 1979, 8, 1111–1117. [Google Scholar] [CrossRef]
- Venkatachalam, M.R.; Jebanesan, A. Repellent activity of Ferronia elephantum Corr. (Rutaceae) leaf extract against Aedes aegypti (L.). Bioresour. Technol. 2001, 76, 287–288. [Google Scholar] [CrossRef]
- Fradin, M.S.; Day, J.F. Comparative efficacy of insect repellents against mosquito bite. N. Engl. J. Med. 2002, 347, 13–18. [Google Scholar] [CrossRef]
- Rifaioglu, A.S.; Atas, H.; Martin, M.J.; Cetin-Atalay, R.; Atalay, V.; Doğan, T. Recent applications of deep learning and machine intelligence on in silico drug discovery: Methods, tools and databases. Brief. Bioinform. 2019, 20, 1878–1912. [Google Scholar] [CrossRef] [Green Version]
- Legeay, S.; Clere, N.; Hilairet, G.; Do, Q.T.; Bernard, P.; Quignard, J.F.; Apaire-Marchais, V.; Lapied, B.; Faure, S. The insect repellent N, N-diethyl-m-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells. Sci. Rep. 2016, 27, 28546. [Google Scholar] [CrossRef] [Green Version]
- Dev, V.; Khound, K.; Tewari, G.G. Dengue vectors in urban and suburban Assam, India: Entomological observations. WHO South-East Asia J. Public Health 2014, 3, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Dutta, P.; Mahanta, J. Potential vectors of dengue and the profile of dengue in the north-eastern region of India: An epidemiological perspective. Dengue Bull. 2006, 30, 234–242. [Google Scholar]
- Mourya, D.T.; Thakare, J.R.; Gokhale, M.D.; Powers, A.M.; Hundekar, S.L.; Jayakumar, P.C.; Bondre, V.P.; Shouche, Y.S.; Padbidri, V.S. Isolation of chikungunya virus from Aedes aegypti mosquitoes collected in the town of Yawat, Pune District, Maharashtra State, India. Acta Virol. 2001, 45, 305–309. [Google Scholar]
- Macoris, M.D.L.G.; Andrighetti, M.T.M.; Takaku, L.; Glasser, C.M.; Garbeloto, V.C.; Bracco, J.E. Resistance of Aedes aegypti from the state of São Paulo, Brazil, to organophosphates insecticides. Mem. Inst. Oswaldo Cruz. 2003, 98, 703–708. [Google Scholar] [CrossRef]
- Ponlawat, A.; Scott, J.G.; Harrington, L.C. Insecticide susceptibility of Aedes aegypti and Aedes albopictus across Thailand. J. Med. Entomol. 2005, 42, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Sivan, A.; Shriram, A.N.; Sunish, I.P.; Vidhya, P.T. Studies on insecticide susceptibility of Aedes aegypti (Linn) and Aedes albopictus (Skuse) vectors of dengue and chikungunya in Andaman and Nicobar Islands, India. Parasitol. Res. 2015, 114, 4693–4702. [Google Scholar] [CrossRef]
- Muthusamy, R.; Shivakumar, M.S. Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos from three districts of Tamil Nadu, India. J. Vector Borne Dis. 2015, 52, 159. [Google Scholar]
- Curtis, C.F.; Lines, J.D.; Baolin, L.; Renz, A. Natural and synthetic repellents. In Control of Disease Vectors in the Community; Curtis, C.F., Ed.; Wolfe Publishing: London, UK, 1991; pp. 75–92. [Google Scholar]
- Traboulsi, A.F.; Taoubi, K.; El-Haj, S.; Bessiere, J.M.; Rammal, S. Insecticidal properties of essential plant oils against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag. Sci. 2002, 58, 491–495. [Google Scholar] [CrossRef]
- Vivekanandhan, P.; Usha-Raja-Nanthini, A.; Valli, G.; Subramanian Shivakumar, M. Comparative efficacy of Eucalyptus globulus (Labill) hydrodistilled essential oil and temephos as mosquito larvicide. Nat. Prod. Res. 2020, 34, 2626–2629. [Google Scholar] [CrossRef]
- Pugazhvendan, S.R.; Elumali, K. Larvicidal activity of selected plant essential oil against important vector mosquitoes: Dengue vector, Aedes aegypti (L.), malarial vector, Anopheles stephensi (Liston) and filarial vector, Culex quinquefasciatus (Say) (Diptera: Culicidae). Middle-East J. Sci. Res. 2013, 18, 91–95. [Google Scholar]
- Manimaran, A.; Mary, J.J.; Cruz, M.; Muthu, C.; Vincent, S.; Ignacimuthu, S. Larvicidal and knockdown effects of some essential oils against Culex quinquefasciatus (Say), Aedes aegypti (L.) and Anopheles stephensi (Liston). Adv. Biosci. Biotechnol. 2012, 3, 855–862. [Google Scholar] [CrossRef] [Green Version]
- Medhi, S.M.; Reza, S.; Mahnaz, K.; Reza, A.M.; Abbas, H.; Fatemeh, M.; Hassan, V. Phytochemistry and larvicidal activity of Eucalyptus camaldulensis against malaria vector, Anopheles stephensi. Asian Pac. J. Trop. Med. 2010, 3, 841–845. [Google Scholar] [CrossRef] [Green Version]
- Helmenstine, A.M. Natural Mosquito Repellent. Strategies That Work. 2011. Available online: http://chemistry.about.com/cs/howthingswork/a/aa050503a.htm (accessed on 8 June 2022).
- Yap, H.H. Effectiveness of soap formulations containing deet and Permethrin as personal protection against outdoor mosquitoes in Malaysia. J. Am. Mosq. Control Assoc. 1986, 2, 63–67. [Google Scholar]
- Walker, T.W.; Robert, L.L.; Copeland, R.A.; Githeko, A.K.; Wirtz, R.A.; Githure, J.I.; Klein, T.A. Field evaluation of arthropod repellents, deet and a piperidine compound, AI3-37220, against Anopheles funestus and Anopheles arabiensis in West Kenya. J. Am. Mosq. Contr. Assoc. 1996, 12, 172–176. [Google Scholar]
- Robbins, P.J.; Cherniack, M.G. Review of biodistribution and toxicology of the insect repellent N, N-diethyl-m-toluamide (deet). J. Toxicol. Environ. Health 1986, 18, 503–525. [Google Scholar] [CrossRef]
- Qiu, H.; Jun, H.W.; McCall, J.W. Pharmacokinetics, formulation, and safety of insect repellent N, N-diethyl-3-methylbenzamide (deet): A review. J. Am. Mosq. Control Assoc. 1998, 14, 12–27. [Google Scholar]
- Nerio, L.S.; Olivero-Verbela, J.; Stashenkob, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef]
- Champakaew, D.; Junkum, A.; Chaithong, U.; Jitpakdi, A.; Riyong, D.; Sanghong, R.; Intirach, J.; Muangmoon, R.; Chansang, A.; Tuetun, B.; et al. Angelica sinensis (Umbelliferae) with proven repellent properties against Aedes aegypti, the primary dengue fever vector in Thailand. Parasitol. Res. 2015, 114, 2187–2198. [Google Scholar] [CrossRef]
- Adams, T.F.; Wongchai, C.; Chaidee, A.; Pfeiffer, W. “Singing in the tube”—Audiovisual assay of plant oil repellent activity against mosquitoes (Culex pipiens). Parasitol. Res. 2016, 115, 225–239. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Arivoli, S.; Tennyson, S.; Benelli, G. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: An eco-friendly tool against malaria, dengue, and lymphaticfilariasis mosquito vectors? Parasitol. Res. 2016, 115, 1807–1816. [Google Scholar] [CrossRef]
- Langenheim, J.H. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 1994, 20, 1223–1280. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kohli, R.K. Eucalyptus essential oil as a natural pesticide. For. Ecol. Manag. 2008, 12, 2166–2174. [Google Scholar] [CrossRef]
- Moretti, A.N.; Zerba, E.N.; Alzogaray, R.A. Behavioral and toxicological responses of Rhodnius prolixus and Triatoma infestans (Hemiptera: Reduviidae) to 10 Monoterpene alcohols. J. Med. Entomol. 2013, 50, 1046–1054. [Google Scholar] [CrossRef]
- Brown, M.; Hebert, A.A. Insect repellents: An overview. J. Am. Acad. Dermatol. 1997, 36, 243–249. [Google Scholar] [CrossRef]
- Spinozzi, E.; Maggi, F.; Bonacucina, G.; Pavela, R.; Boukouvala, M.C.; Kavallieratos, N.G.; Canale, A.; Romano, D.; Desneux, N.; Wilke, A.B.; et al. Apiaceae essential oils and their constituents. as insecticides against mosquitoes—A review. Ind. Crops Prod. 2021, 171, 113892. [Google Scholar] [CrossRef]
- Sarma, R.; Adhikari, K.; Khanikor, B. Evaluation of efficacy of pinene compounds as mosquitocidal agent against Aedes aegypti Linn. (Diptera: Culicidae). Int. J. Trop. Insect Sci. 2022, 42, 2567–2577. [Google Scholar] [CrossRef]
- Milugo, T.K.; Tchouassi, D.P.; Kavishe, R.A.; Dinglasan, R.R.; Torto, B. Root exudate chemical cues of an invasive plant modulate oviposition behavior and survivorship of a malaria mosquito vector. Sci. Rep. 2021, 11, 14785. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Prajapati, V.; Agrawal, K.K.; Khanuja, S.P.S.; Kumar, S. Effect of D-limonene on three stored-product beetles. J. Econ. Entomol. 2003, 96, 990–995. [Google Scholar] [CrossRef]
- Sharma, S.; Loach, N.; Gupta, S.; Mohan, L. Evaluation of larval toxicity, mode of action and chemical composition. of citrus essential oils against Anopheles stephensi and Culex quinquefasciatus. Biocatal. Agric. Biotechnol. 2022, 39, 02284. [Google Scholar] [CrossRef]
- Soonwera, M.; Moungthipmalai, T.; Aungtikun, J.; Sittichok, S. Combinations of plant essential oils and their major compositions inducing mortality and morphological abnormality of Aedes aegypti and Aedes albopictus. Heliyon 2022, 8, e09346. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.M.; Jung, C.S.; Kang, J.; Lee, H.R.; Kim, S.W.; Hyun, J.; Park, I.K. Larvicidal and acetylcholinesterase inhibitory activities of Apiaceae plant essential oils and their constituents against Aedes albopictus and formulation development. J. Agric. Food Chem. 2015, 63, 9977–9986. [Google Scholar] [CrossRef] [PubMed]
- Waliwitiya, R.; Kennedy, C.J.; Lowenberger, C.A. Larvicidal and oviposition altering activity of monoterpenoids, transanithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manag. Sci. 2009, 65, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Pandiyan, G.N.; Mathew, N.; Munusamy, S. Larvicidal activity of selected essential oil in synergized combinations against Aedes aegypti. Ecotoxicol. Environ. Saf. 2019, 174, 549–556. [Google Scholar] [CrossRef]
- Aungtikun, J.; Soonwera, M.; Sittichok, S. Insecticidal synergy of essential oils from Cymbopogon citratus (Stapf.), Myristica fragrans (Houtt.), and Illicium verum Hook. f. and their major active constituents. Ind. Crops Prod. 2021, 164, 113386. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Dhinakaran, S.R.; Mathew, N.; Munusamy, S. Synergistic terpene combinations as larvicides against the dengue vector Aedes aegypti Linn. Drug Dev. Res. 2019, 80, 791–799. [Google Scholar] [CrossRef]
- Pavela, R. Insecticidal and repellent activity of selected essential oils against of the pollen beetle, Meligethes aeneus (Fabricius) adults. Ind. Crops Prod. 2011, 34, 888–892. [Google Scholar] [CrossRef]
- Bedini, S.; Flamini, G.; Cosci, F.; Ascrizzi, R.; Echeverria, M.C.; Gomez, E.V.; Guidi, L.; Landi, M.; Lucchi, A.; Conti, B. Toxicity and oviposition deterrence of essential oils of Clinopodium nubigenum and Lavandula angustifolia against the myiasis-inducing blowfly Lucilia sericata. PLoS ONE 2019, 14, e0212576. [Google Scholar] [CrossRef]
- Pereira, S.I.; Santos, P.A.G.; Barroso, J.G.; Figueiredo, A.C.; Pedro, L.G.; Salgueiro, L.R.; Deans, S.G.; Scheffer, J.J.C. Chemical polymorphism of the essential oils from populations of Thymus caespititius grown on the islands Pico, Faial and Graciosa (Azores). Phytochem. Anal. 2003, 14, 228–231. [Google Scholar] [CrossRef] [Green Version]
- Naïm, M.; Bhat, S.; Rankin, K.N.; Dennis, S.; Chowdhury, S.F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C.I.; Jakalian, A.; et al. Solvated interaction energy (SIE) for scoring protein−ligand binding affinities. 1. Exploring the parameter space. J. Chem. Inf. Model. 2007, 47, 122–133. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, X.; Feng, X.L.; Chen, X.; Borowiak-Palen, E.; Huang, X.R. Molecular simulations study of ligand-release mechanism in an odorant-binding protein. from the southern house mosquito. J. Biomol. Struct. Dyn. 2013, 31, 485–494. [Google Scholar] [CrossRef]
- Kröber, T.; Koussis, K.; Bourquin, M.; Tsitoura, P.; Konstantopoulou, M.; Awolola, T.S.; Dani, F.R.; Qiao, H.; Pelosi, P.; Iatrou, K.; et al. Odorant-binding protein-based identification of natural spatial repellents for the African malaria mosquito Anopheles gambiae. Insect Biochem. Mol. Biol. 2018, 96, 36–50. [Google Scholar] [CrossRef]
- Rice, P.J.; Coats, J.R. Insecticidal properties of monoterpenoid derivatives to the house fly (Diptera: Muscidae) and red flour beetle (Coleoptera: Tenebrionidae). Pestic. Sci. 1994, 41, 195–202. [Google Scholar] [CrossRef]
- You, C.X.; Jiang, H.Y.; Zhang, W.J.; Guo, S.S.; Yang, K.; Lei, N.; Ma, P.; Geng, Z.F.; Du, S.S. Toxicity and repellency of the main components from the essential oil of Clausena anisumolens against two stored product insects. J. Insect Sci. 2015, 15, 87. [Google Scholar] [CrossRef] [Green Version]
- Bezerra-Silva, P.C.; Dutra, K.A.; Santos, G.K.; Silva, R.C.; Iulek, J.; Milet-Pinheiro, P.; Navarro, D.M. Evaluation of the activity of the essential oil. from an ornamental flower against Aedes aegypti: Electrophysiology, molecular dynamics and behavioral assays. PLoS ONE 2016, 11, e0150008. [Google Scholar] [CrossRef]
- Tabari, M.A.; Youssefi, M.R.; Maggi, F.; Benelli, G. Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae). Vet. Parasitol. 2017, 245, 86–91. [Google Scholar] [CrossRef]
- Youssefi, M.R.; Tabari, M.A.; Esfandiari, A.; Kazemi, S.; Moghadamnia, A.A.; Sut, S.; Dall’Acqua, S.; Benelli, G.; Maggi, F. Efficacy of two monoterpenoids, carvacrol and thymol, and their combinations against eggs and larvae of the West Nile vector Culex pipiens. Molecules 2019, 24, 1867. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.Y.; Guo, S.S.; Zhang, W.J.; Geng, Z.F.; Deng, Z.W.; Du, S.S.; Zhang, J. Fumigant and repellent activities of essential oil extracted from Artemisia dubia and its main compounds against two stored product pests. Nat. Prod. Res. 2018, 32, 1234–1238. [Google Scholar] [CrossRef]
Name of the Plants | Family Name | Essential Oil Yield (%) |
---|---|---|
Cymbopogon nardus—Leaves | Poaceae | 0.54 |
Eucalyptus globulus—Leaves | Myrtaceae | 0.47 |
Mentha arvensis—Leaves | Lamiaceae | 0.36 |
Citrus limon—Fruit peel | Rutaceae | 0.58 |
Trachyspermum ammi—Seeds | Apiaceae | 0.74 |
Stages | Species of Mosquito | Best Fit Values | 95% CI | Goodness of Fit | |||
---|---|---|---|---|---|---|---|
Log LC50 | LC50 | LogLC50 | LC50 | DF | R Square | ||
Larvae | Ae. aegypti | 1.16 | 14.46 | 1.125–1.195 | 13.34–15.66 | 16 | 0.990 |
An. stephensi | 1.109 | 12.85 | 1.077–1.140 | 11.95–13.80 | 16 | 0.992 | |
Cx. quinquefasciatus | 0.965 | 9.23 | 0.915–1.013 | 8.228–10.31 | 16 | 0.984 | |
Pupae | Ae. aegypti | 1.108 | 12.81 | 1.067–1.147 | 11.68–14.03 | 16 | 0.988 |
An. stephensi | 1.057 | 11.39 | 1.015–1.097 | 10.35–12.49 | 16 | 0.988 | |
Cx. quinquefasciatus | 1.01 | 10.22 | 0.9813–1.037 | 9.579–10.89 | 16 | 0.994 |
Mosquito Species | Concentration (µL/mL) | Number of Eggs ± SE | Effective Repellency (%) | Oviposition Active Index | |
---|---|---|---|---|---|
Treated | Control | ||||
Ae. aegypti | 100 | 16 ± 1.56 aa | 410 ± 1.61 | 96.09 aa | −0.92 |
50 | 54 ± 1.12 bb | 480 ± 1.34 | 88.75 bb | −0.79 | |
25 | 96 ± 1.44 | 340 ± 1.16 | 71.76 cc | −0.56 | |
12.5 | 76 ± 1.26 ee | 196 ± 2.16 | 62.22 dd | −0.44 | |
6.25 | 74 ± 2.28 ee | 180 ± 1.39 | 58.89 ee | −0.42 | |
An. stephensi | 100 | 15 ± 1.19 aa | 565 ± 1.60 | 94.83 aa | −0.95 |
50 | 44 ± 1.26 cc | 360 ± 1.61 | 87.77 bb | −0.78 | |
25 | 56 ± 1.34 bb | 340 ± 1.20 | 83.53 bb | −0.72 | |
12.5 | 62 ± 1.14 dd | 280 ± 1.17 | 77.86 cc | −0.64 | |
6.25 | 68 ± 1.62 | 190 ± 1.21 | 64.42 dd | −0.43 | |
Cx. quinquefasciatus | 100 | 31 ± 1.26 | 360 ± 1.64 | 91.39 aa | −0.84 |
50 | 42 ± 1.34 cc | 352 ± 1.56 | 88.07 bb | −0.78 | |
25 | 62 ± 1.17 dd | 430 ± 1.30 | 85.58 bb | −0.75 | |
12.5 | 72 ± 1.20 ee | 212 ± 1.16 | 66.98 dd | −0.50 | |
6.25 | 80 ± 1.76 | 190 ± 1.53 | 57.89 ee | −0.41 |
S. No | Retention Time | Compounds | Molecule Formula | Exact Mass Values | Peak Area % |
---|---|---|---|---|---|
1 | 3.989 | α-Pinene | C10H16 | 136.1252 | 6.728 |
2 | 4.295 | 2-Carene | C10H16 | 136.1252 | 0.830 |
3 | 4.479 | α-Terpineol | C10H18O | 154.1357 | 0.583 |
4 | 4.620 | D-Limonene | C10H16 | 136.1252 | 12.980 |
5 | 4.710 | iso-β-terpineol | C10H18O | 154.1357 | 5.356 |
6 | 4.771 | Eucalyptol | C10H18O | 154.1357 | 0.149 |
7 | 4.780 | Trifluoro acetyl-α-terpineol | C12H17F3O2 | 250.1180 | 0.192 |
8 | 4.818 | γ-Terpinene | C10H16 | 136.1252 | 1.663 |
9 | 4.945 | 3,4-Dimethylbenzyl alcohol | C9H12O | 136.0888 | 0.276 |
10 | 5.006 | (R)-linalool | C10H18O | 154.1357 | 0.198 |
11 | 5.044 | Limonene oxide, cis | C10H16O | 152.1201 | 0.189 |
12 | 5.326 | Acetic acid, phenylmethyl ester | C9H10O2 | 150.0680 | 19.688 |
13 | 5.529 | Isoeugenol acetate | C12H20O2 | 196.1463 | 0.767 |
14 | 5.694 | β-Citral | C10H16O | 152.1201 | 12.288 |
15 | 5.807 | Verbenol | C10H16O | 152.1201 | 7.655 |
16 | 5.939 | Thymol | C10H14O | 150.1044 | 0.256 |
17 | 5.995 | Dihydromethyl-alpha-ionone | C14H24O | 208.1827 | 2.350 |
18 | 6.151 | Geranyl acetate | C12H20O2 | 196.1463 | 1.139 |
19 | 6.362 | Caryophyllene | C15H24 | 204.1878 | 0.529 |
20 | 6.424 | Eremophylene | C15H24 | 204.1878 | 0.569 |
21 | 6.471 | α-Himachalene | C15H24 | 204.1878 | 1.029 |
22 | 6.555 | Isoaromadendrene epoxide | C15H24O | 220.1827 | 1.008 |
23 | 6.631 | Di-epi-α-cedrene-(I) | C15H24 | 204.1878 | 2.743 |
24 | 6.645 | γ-Murolene | C15H24 | 204.1878 | 0.478 |
25 | 6.701 | Bicyclo[4.1.0]heptan-2-ol | C16H24O3 | 264.1725 | 0.112 |
26 | 6.810 | Valerenic acid | C15H22O2 | 234.1619 | 0.047 |
27 | 6.843 | Calamene | C15H22 | 218.1670 | 0.038 |
28 | 6.890 | Caryophyllene oxide | C15H24O | 220.1827 | 0.374 |
29 | 6.970 | Diepicedrene-1-oxide | C15H24O | 220.1827 | 0.134 |
30 | 7.007 | Calarene epoxide | C15H24O | 220.1827 | 0.266 |
31 | 7.097 | Cubenol | C15H26O | 222.1983 | 0.544 |
32 | 7.153 | Tumerone | C15H22O | 218.1670 | 0.460 |
33 | 7.210 | α-Cyperone | C15H22O | 218.1670 | 0.892 |
34 | 7.497 | Benzyl benzoate | C14H12O2 | 212.0837 | 17.488 |
S. No. | Compounds | Binding Affinity PDB:3Q8I (kcal/mol) | Amino Acid Residues |
---|---|---|---|
1. | α-Pinene | −5.9 | ALA48 ILE51 ALA52 ALA55 THR57 ILE64 THR69 ALA106 SER109 ALA110 PHE121 PHE123 |
2. | D-limonene | −6.1 | HR69 ILE73 LEU77 ALA85 ALA88 LEU89 CYS92 SER109 ALA113 PHE121 MET122 |
3. | iso-β-terpineol | −5.8 | ALA52 THR57 ILE64 THR69 LEU89 LYS105 ALA106 TYR107 SER109 ALA110 ALA113 PHE121 PHE123 |
4. | Acetic acid, phenylmethyl ester | −5.6 | ILE64 THR69 ILE73 ALA85 ALA88 LEU89 ALA106 SER109 ALA110 ALA113 PHE121 |
5. | β-citral | −5.7 | THR69 ILE73 LEU77 MET81 MET84 ALA85 ALA88 LEU89 ALA113 THR117 THR120 PHE121 MET122 |
6. | Verbenol | −5.2 | ALA48 ALA52 THR57 ILE64 THR69 ALA106 TYR107 SER109 ALA110 PHE121 PHE123 |
7. | Benzyl Benzoate | −7.5 | ALA48 ALA52 ILE64 THR69 ILE73 ALA85 ALA88 LEU89 CYS92 ALA106 SER109 ALA110 ALA113 PHE121 PHE123 |
8. | N,N-Diethyl-meta-toluamide (DEET) (Positive control) | −6.3 | ALA52 THR57 ILE64 THR69 ILE73 ALA85 ALA88 LEU89 CYS92 ALA106 SER109 ALA110 ALA113 PHE121 PHE123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamaraj, C.; Satish Kumar, R.C.; Al-Ghanim, K.A.; Nicoletti, M.; Sathiyamoorthy, V.; Sarvesh, S.; Ragavendran, C.; Govindarajan, M. Novel Essential Oils Blend as a Repellent and Toxic Agent against Disease-Transmitting Mosquitoes. Toxics 2023, 11, 517. https://doi.org/10.3390/toxics11060517
Kamaraj C, Satish Kumar RC, Al-Ghanim KA, Nicoletti M, Sathiyamoorthy V, Sarvesh S, Ragavendran C, Govindarajan M. Novel Essential Oils Blend as a Repellent and Toxic Agent against Disease-Transmitting Mosquitoes. Toxics. 2023; 11(6):517. https://doi.org/10.3390/toxics11060517
Chicago/Turabian StyleKamaraj, Chinnaperumal, Rajappan Chandra Satish Kumar, Khalid A. Al-Ghanim, Marcello Nicoletti, V. Sathiyamoorthy, Sabarathinam Sarvesh, Chinnasamy Ragavendran, and Marimuthu Govindarajan. 2023. "Novel Essential Oils Blend as a Repellent and Toxic Agent against Disease-Transmitting Mosquitoes" Toxics 11, no. 6: 517. https://doi.org/10.3390/toxics11060517
APA StyleKamaraj, C., Satish Kumar, R. C., Al-Ghanim, K. A., Nicoletti, M., Sathiyamoorthy, V., Sarvesh, S., Ragavendran, C., & Govindarajan, M. (2023). Novel Essential Oils Blend as a Repellent and Toxic Agent against Disease-Transmitting Mosquitoes. Toxics, 11(6), 517. https://doi.org/10.3390/toxics11060517