Changes in Biomarkers of Exposure and Potential Harm in Smokers Switched to Vuse Vibe or Vuse Ciro Electronic Nicotine Delivery Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Products
2.3. Study Conduct
2.4. Biomarkers
2.5. Daily Vuse ENDS Product Consumption
2.6. Statistical Analysis
3. Results
3.1. Data Sets Analyzed
3.2. Demographics and Product Use History
3.3. Biomarkers of Exposure in Urine and Blood
Biomarker of Exposure | Vuse Vibe | Vuse Ciro | Abstinence | ||||||
---|---|---|---|---|---|---|---|---|---|
Day −1 | Day 5 | % Change | Day −1 | Day 5 | % Change | Day −1 | Day 5 | % Change | |
Total nicotine equivalents (mg/24 h) | 17.46 ± 6.93 | 15.85± 10.53 | –9.21 | 16.26 ± 7.69 | 11.26 ± 8.54 | –30.76 | 16.79 ± 8.80 | 0.65 ± 1.10 | –96.12 |
Total NNAL (ng/24 h) | 559.66 ± 333.35 | 227.58 ± 152.39 | –59.34 | 710.19 ± 413.61 | 251.62 ± 165.43 | –64.57 | 600.59 ± 404.24 | 286.51 ± 166.15 | –52.30 |
Total NNN (ng/24 h) | 12.82 ± 14.12 | 2.13 ± 0.99 | –83.40 | 20.18 ± 40.27 | 1.93± 0.95 | –90.46 | 63.45 ± 165.86 | 2.11 ± 0.80 | –96.68 |
3-OH-B[a]P (pg/24 h) | 366.40 ± 471.00 | 100.91 ± 172.60 | –72.46 | 317.52 ± 352.53 | 65.54 ± 52.80 | –79.36 | 218.70 ± 217.70 | 61.38 ± 43.61 | –71.94 |
CEMA (µg/24 h) | 256.23 ± 88.46 | 40.36 ± 16.19 | –84.25 | 259.49 ±109.90 | 40.84 ± 18.77 | –84.26 | 245.87 ± 125.18 | 34.57 ± 22.44 | –85.94 |
HMPMA (µg/24 h) | 536.87 ± 211.63 | 104.13 ± 50.79 | –80.60 | 540.67 ± 259.49 | 103.50 ± 76.24 | –80.76 | 521.64 ± 245.67 | 97.18 ± 53.90 | –81.37 |
HPMA (µg/24 h) | 1622.17 ± 495.92 | 389.7 8± 166.93 | –75.97 | 1710.51± 786.41 | 329.71 ± 98.00 | –80.72 | 1634.71 ± 997.90 | 304.58 ± 106.54 | –81.37 |
MHBMA (ng/24 h) | 3209.01 ± 2114.75 | 137.35 ± 63.56 | –95.72 | 2461.32 ± 2039.07 | 127.44 ± 57.91 | –94.82 | 2474.69 ± 1803.87 | 135.83 ±51.83 | –94.51 |
SPMA (ng/24 h) | 5276.70± 2679.05 | 368.72 ± 180.72 | –93.01 | 5352.37 ± 4019.57 | 296.70 ± 153.79 | –94.46 | 4702.19 ± 3151.04 | 335.61 ± 214.66 | –92.86 |
1-AN (ng/24 h) | 104.34 ± 38.17 | 5.07 ± 4.32 | –95.14 | 106.97 ±54.80 | 4.76 ± 5.21 | –95.55 | 93.27 ± 55.58 | 5.34 ±3.55 | –94.28 |
2-AN (ng/24 h) | 26.04 ± 12.67 | 2.09 ± 1.01 | –91.99 | 28.66 ± 17.01 | 1.99 ± 1.12 | –93.06 | 27.55 ± 14.39 | 2.15 ± 1.01 | –92.20 |
4-ABP (ng/24 h) | 20.14 ± 8.39 | 4.58 ± 2.22 | –77.28 | 22.48 ± 22.43 | 4.33 ± 2.58 | –80.75 | 19.45 ± 9.32 | 4.46 ± 2.45 | –77.07 |
o-Toluidine (ng/24 h) | 192.93 ± 66.36 | 93.35 ± 54.06 | –51.62 | 212.94 ± 94.77 | 77.83 ± 48.56 | –53.45 | 204.36 ± 125.18 | 67.70 ± 25.90 | –66.70 |
COHb (%)—blood | 11.33 ± 3.01 | 5.35 ±0.96 | –52.79 | 11.68 ± 3.44 | 5.21 ± 0.89 | –55.36 | 11.73 ± 3.95 | 5.28 ± 1.10 | –55.01 |
3.4. Biomarkers of Potential Harm
Mean (SD) | p-Value from Paired | Change in BoPH Levels | ||||||
---|---|---|---|---|---|---|---|---|
t-Test | ||||||||
BoPH | Cohort | Baseline | Day 5 | Day 7 | Baseline vs. Day 5 | Baseline vs. Day 7 | Baseline vs. Day 5 | Baseline vs. Day 7 |
(ng/24 h) | ||||||||
LTE4 | Abstinence | 111.5 (58.0) | 58.2 (38.1) | 72.7 (57.4) | 0.001 | 0.032 | −48% | −35% |
Ciro | 134.3 (63.0) | 90.8 (43.8) | 81.9 (33.3) | <0.001 | <0.001 | −32% | −39% | |
Vibe | 128.0 (55.9) | 89.6 (38.2) | 79.0 (32.8) | <0.001 | <0.001 | −30% | −38% | |
2,3-d-TXB2 | Abstinence | 937.1 (804.3) | 444.4 (393.7) | 625.0 (437.3) | 0.041 | 0.044 | −53% | −33% |
Ciro | 905.3 (788.5) | 475.0 (355.8) | 548.3 (580.7) | 0.004 | 0.06 | −48% | −39% | |
Vibe | 774.7 (823.7) | 605.9 (432.6) | 585.1 (530.1) | 0.089 | 0.053 | −22% | −24% | |
11-dh-TXB2 | Abstinence | 492.8 (200.7) | 388.2 (238.8) | 355.4 (217.2) | 0.121 | 0.017 | −21% | −28% |
Ciro | 452.6 (177.0) | 372.0 (128.2) | 360.0 (123.0) | 0.053 | 0.013 | −18% | −20% | |
Vibe | 477.5 (243.4) | 431.1 (181.0) | 360.2 (134.8) | 0.04 | <0.001 | −10% | −25% |
3.5. Vuse ENDS E-Liquid Consumption
3.6. Adverse Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Diseases Control and Prevention. How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2010.
- Food and Drug Administration. Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke; Established List; US Department of Health and Human Services: Washington, DC, USA, 2012. Available online: https://www.govinfo.gov/content/pkg/FR-2012-04-03/pdf/2012-7727.pdf (accessed on 8 September 2022).
- United States Public Health Service Office of the Surgeon, General, Prevention National Center for Chronic Disease, Smoking Health Promotion Office On, and Health. Publications and Reports of the Surgeon General. In Smoking Cessation: A Report of the Surgeon General; US Department of Health and Human Services: Washington, DC, USA, 2020. [Google Scholar]
- Institute of Medicine. Clearing the Smoke: Assessing the Science Base for Tobacco Harm Reduction; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Zeller, M.; Hatsukami, D. The Strategic Dialogue on Tobacco Harm Reduction Group. The Strategic Dialogue on Tobacco Harm Reduction: A vision and blueprint for action in the US. Tob. Control 2009, 18, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Nutt, D.J.; Phillips, L.D.; Balfour, D.; Curran, H.V.; Dockrell, M.; Foulds, J.; Fagerstrom, K.; Letlape, K.; Milton, A.; Polosa, R.; et al. Estimating the Harms of Nicotine-Containing Products Using the MCDA Approach. Eur. Addict. Res. 2014, 20, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Voos, N.; Goniewicz, M.L.; Eissenberg, T. What is the nicotine delivery profile of electronic cigarettes? Expert Opin. Drug Deliv. 2019, 16, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.M.; Yaman, R.; Ebbert, J.O. Electronic nicotine delivery system design and aerosol toxicants: A systematic review. PLoS ONE 2020, 15, e0234189. [Google Scholar] [CrossRef]
- Gottlieb, S.; Zeller, M. A Nicotine-Focused Framework for Public Health. N. Engl. J. Med. 2017, 377, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Goniewicz, M.L.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jablonska-Czapla, M.; Rosik-Dulewska, C.; Havel, C.; et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 2014, 23, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecht, S.S.; Carmella, S.G.; Kotandeniya, D.; Pillsbury, M.E.; Chen, M.; Ransom, B.W.S.; Vogel, R.; Thompson, E.; Murphy, S.E.; Hatsukami, D.K. Evaluation of Toxicant and Carcinogen Metabolites in the Urine of E-Cigarette Users vs. Cigarette Smokers. Nicotine Tob. Res. 2015, 17, 704–709. [Google Scholar] [CrossRef]
- Margham, J.; McAdam, K.; Forster, M.; Liu, C.; Wright, C.; Mariner, D.; Proctor, C. Chemical Composition of Aerosol from an E-Cigarette: A Quantitative Comparison with Cigarette Smoke. Chem. Res. Toxicol. 2016, 29, 1662–1678. [Google Scholar] [CrossRef]
- Goniewicz, M.L.; Smith, D.M.; Edwards, K.C.; Blount, B.C.; Caldwell, K.L.; Feng, J.; Wang, L.; Christensen, C.; Ambrose, B.; Borek, N.; et al. Comparison of Nicotine and Toxicant Exposure in Users of Electronic Cigarettes and Combustible Cigarettes. JAMA Netw. Open 2018, 1, e185937. [Google Scholar] [CrossRef] [Green Version]
- Lorkiewicz, P.; Riggs, D.W.; Keith, R.J.; Conklin, D.J.; Xie, Z.; Sutaria, S.; Lynch, B.; Srivastava, S.; Bhatnagar, A. Comparison of Urinary Biomarkers of Exposure in Humans Using Electronic Cigarettes, Combustible Cigarettes, and Smokeless Tobacco. Nicotine Tob. Res. 2019, 21, 1228–1238. [Google Scholar] [CrossRef]
- Shahab, L.; Goniewicz, M.L.; Blount, B.C.; Brown, J.; McNeill, A.; Alwis, K.U.; Feng, J.; Wang, L.; West, R. Nicotine, Carcinogen, and Toxin Exposure in Long-Term E-Cigarette and Nicotine Replacement Therapy Users: A Cross-sectional Study. Ann. Intern. Med. 2017, 166, 390–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royal College of Physicians. Nicotine without Smoke: Tobacco Harm Reduction; Royal College of Physicians: London, UK, 2016. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Public Health Consequences of E-Cigarettes; Stratton, K., Kwan, L.Y., Eaton, D.L., Eds.; The National Academies Press: Washington, DC, USA, 2018. [Google Scholar]
- McNeill, A.; Brose, L.; Calder, R.; Robson, D.; Bauld, L.; Dockrell, M. E-Cigarette Regulation in the United States and the United Kingdom: Two Countries Divided by a Common Language. Am. J. Public Health 2019, 109, e26–e27. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services, Food and Drug Administration, Center for Tobacco Products. Premarket Tobacco Product Applications for Electronic Nicotine Delivery Systems. Guidance for Industry; US Department of Health and Human Services: Washington, DC, USA, 2019. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/premarket-tobacco-product-applications-electronic-nicotine-delivery-systems-ends (accessed on 8 September 2022).
- Chang, C.M.; Edwards, S.H.; Arab, A.; Del Valle-Pinero, A.Y.; Yang, L.; Hatsukami, D.K. Biomarkers of Tobacco Exposure: Summary of an FDA-Sponsored Public Workshop. Cancer Epidemiol. Biomark. Prev. 2017, 26, 291–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration. Premarket Tobacco Product Applications for Electronic Nicotine Delivery Systems. Draft Guidance for Industry; US Department of Health and Human Services: Washington, DC, USA, 2016. Available online: https://www.fda.gov/downloads/TobaccoProducts/Labeling/RulesRegulationsGuidance/UCM499352.pdf (accessed on 10 April 2023).
- Chang, C.M.; Cheng, Y.-C.; Cho, T.M.; Mishina, E.V.; Del Valle-Pinero, A.Y.; van Bemmel, D.M.; Hatsukami, D.K. Biomarkers of Potential Harm: Summary of an FDA-Sponsored Public Workshop. Nicotine Tob. Res. 2019, 21, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, F.J.; Gregg, E.O.; McEwan, M. Evaluation of biomarkers of exposure and potential harm in smokers, former smokers and never-smokers. Clin. Chem. Lab. Med. 2009, 47, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Prasad, G.; Jones, B.A.; Chen, P.; Gregg, E.O. A cross-sectional study of biomarkers of exposure and effect in smokers and moist snuff consumers. Clin. Chem. Lab. Med. 2016, 54, 633–642. [Google Scholar] [CrossRef]
- Lüdicke, F.; Picavet, P.; Baker, G.; Haziza, C.; Poux, V.; Lama, N.; Weitkunat, R. Effects of Switching to the Menthol Tobacco Heating System 2.2, Smoking Abstinence, or Continued Cigarette Smoking on Clinically Relevant Risk Markers: A Randomized, Controlled, Open-Label, Multicenter Study in Sequential Confinement and Ambulatory Settings (Part 2). Nicotine Tob. Res. 2018, 20, 173–182. [Google Scholar]
- Makena, P.; Liu, G.; Chen, P.; Yates, C.R.; Prasad, G.L. Urinary Leukotriene E (4) and 2,3-Dinor Thromboxane B (2) Are Biomarkers of Potential Harm in Short-Term Tobacco Switching Studies. Cancer Epidemiol. Biomark. Prev. 2019, 28, 2095–2105. [Google Scholar] [CrossRef] [Green Version]
- Oliveri, D.; Liang, Q.; Sarkar, M. Real-World Evidence of Differences in Biomarkers of Exposure to Select Harmful and Potentially Harmful Constituents and Biomarkers of Potential Harm Between Adult E-Vapor Users and Adult Cigarette Smokers. Nicotine Tob. Res. 2020, 22, 1114–1122. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Lin, C.J.; Yates, C.R.; Prasad, G.L. Metabolomic Analysis Identified Reduced Levels of Xenobiotics, Oxidative Stress, and Improved Vitamin Metabolism in Smokers Switched to Vuse Electronic Nicotine Delivery System. Nicotine Tob. Res. 2021, 23, 1133–1142. [Google Scholar] [CrossRef]
- Round, E.K.; Chen, P.; Taylor, A.K.; Schmidt, E. Biomarkers of Tobacco Exposure Decrease After Smokers Switch to an E-Cigarette or Nicotine Gum. Nicotine Tob. Res. 2019, 21, 1239–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanobe, M.N.; Jones, B.A.; Nelson, P.; Brown, B.G.; Chen, P.; Makena, P.; Schmidt, E.; Darnell, J.; Caraway, J.W.; Prasad, G.L.; et al. Part three: A randomized study to assess biomarker changes in cigarette smokers switched to Vuse Solo or Abstinence. Sci. Rep. 2022, 12, 20658. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. FDA Permits Marketing of E-Cigarette Products, Marking First Authorization of Its Kind by the Agency. 2021. Available online: https://www.fda.gov/media/153010/download (accessed on 7 September 2022).
- Food and Drug Administration. FDA Issues Marketing Decisions on Vuse Vibe and Vuse Ciro E-Cigarette Products; US Department of Health and Human Services: Washington, DC, USA, 2022. Available online: https://www.fda.gov/tobacco-products/ctp-newsroom/fda-issues-marketing-decisions-vuse-vibe-and-vuse-ciro-e-cigarette-products#:~:text=The%20FDA%20issued%20marketing%20granted,flavored%20closed%20e%2Dliquid%20pod. (accessed on 9 September 2022).
- Schick, S.F.; Blount, B.C.; Jacob, P.; Saliba, N.A.; Bernert, J.T.; El Hellani, A.; Jatlow, P.; Pappas, R.S.; Wang, L.; Foulds, J.; et al. Biomarkers of exposure to new and emerging tobacco delivery products. Am. J. Physiol. Cell. Mol. Physiol. 2017, 313, L425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, S.E. Biochemistry of nicotine metabolism and its relevance to lung cancer. J. Biol. Chem. 2021, 296, 100722. [Google Scholar] [CrossRef] [PubMed]
- Kavvadias, D.; Scherer, G.; Cheung, F.; Errington, G.; Shepperd, J.; McEwan, M. Determination of tobacco-specific N-nitrosamines in urine of smokers and non-smokers. Biomarkers 2009, 14, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Pluym, N.; Gilch, G.; Scherer, G.; Scherer, M. Analysis of 18 urinary mercapturic acids by two high-throughput multiplex-LC-MS/MS methods. Anal. Bioanal. Chem. 2015, 407, 5463–5476. [Google Scholar] [CrossRef]
- Riedel, K.; Scherer, G.; Engl, J.; Hagedorn, H.-W.; Tricker, A.R. Determination of Three Carcinogenic Aromatic Amines in Urine of Smokers and Nonsmokers. J. Anal. Toxicol. 2006, 30, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Rögner, N.; Hagedorn, H.-W.; Scherer, G.; Scherer, M.; Pluym, N. A Sensitive LC–MS/MS Method for the Quantification of 3-Hydroxybenzo[a]pyrene in Urine-Exposure Assessment in Smokers and Users of Potentially Reduced-Risk Products. Separations 2021, 8, 171. [Google Scholar] [CrossRef]
- Scherer, G.; Mütze, J.; Pluym, N.; Scherer, M. Assessment of nicotine delivery and uptake in users of various tobacco/nicotine products. Curr. Res. Toxicol. 2022, 3, 100067. [Google Scholar] [CrossRef]
- Theophilus, E.H.; Coggins, C.R.; Chen, P.; Schmidt, E.; Borgerding, M.F. Magnitudes of biomarker reductions in response to controlled reductions in cigarettes smoked per day: A one-week clinical confinement study. Regul. Toxicol. Pharmacol. 2015, 71, 225–234. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute Inc. SAS® 9.4 Statements: Reference 2013; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Makena, P.; Scott, E.; Chen, P.; Liu, H.P.; Jones, B.A.; Prasad, G.L. Biomarkers of Exposure and Potential Harm in Two Weeks of Smoking Abstinence: Changes in Biomarkers of Platelet Function, Oxidative Stress, and Inflammation. Int. J. Mol. Sci 2023, 24, 6286. [Google Scholar] [CrossRef] [PubMed]
- Wagener, T.L.; Floyd, E.L.; Stepanov, I.; Driskill, L.M.; Frank, S.G.; Meier, E.; Leavens, E.L.; Tackett, A.P.; Molina, N.; Queimado, L. Have combustible cigarettes met their match? The nicotine delivery profiles and harmful constituent exposures of second-generation and third-generation electronic cigarette users. Tob. Control 2017, 26, e23–e28. [Google Scholar] [PubMed]
- Cohen, G.; Goldenson, N.I.; Bailey, P.C.; Chan, S.; Shiffman, S. Changes in Biomarkers of Cigarette Smoke Exposure After 6 Days of Switching Exclusively or Partially to Use of the JUUL System with Two Nicotine Concentrations: A Randomized Controlled Confinement Study in Adult Smokers. Nicotine Tob. Res. 2021, 23, 2153–2161. [Google Scholar] [CrossRef] [PubMed]
- Cravo, A.S.; Bush, J.; Sharma, G.; Savioz, R.; Martin, C.; Craige, S.; Walele, T. A randomised, parallel group study to evaluate the safety profile of an electronic vapour product over 12 weeks. Regul. Toxicol. Pharmacol. 2016, 81 (Suppl. S1), S1–S14. [Google Scholar] [CrossRef] [Green Version]
- Anic, G.M.; Rostron, B.L.; Hammad, H.T.; van Bemmel, D.M.; Del Valle-Pinero, A.Y.; Christensen, C.H.; Erives, G.; Faulcon, L.M.; Blount, B.C.; Wang, Y.; et al. Changes in Biomarkers of Tobacco Exposure among Cigarette Smokers Transitioning to ENDS Use: The Population Assessment of Tobacco and Health Study, 2013–2015. Int. J. Environ. Res. Public Health 2022, 19, 1462. [Google Scholar] [CrossRef]
- Hoffman, B.C.; Rabinovitch, N. Urinary Leukotriene E (4) as a Biomarker of Exposure, Susceptibility, and Risk in Asthma: An Update. Immunol. Allergy Clin. N. Am. 2018, 38, 599–610. [Google Scholar] [CrossRef]
- Patrono, C.; Rocca, B. Measurement of Thromboxane Biosynthesis in Health and Disease. Front. Pharmacol. 2019, 10, 1244. [Google Scholar] [CrossRef] [Green Version]
- Idborg, H.; Pawelzik, S.-C. Prostanoid Metabolites as Biomarkers in Human Disease. Metabolites 2022, 12, 721. [Google Scholar] [CrossRef]
- Szczuko, M.; Kozioł, I.; Kotlęga, D.; Brodowski, J.; Drozd, A. The Role of Thromboxane in the Course and Treatment of Ischemic Stroke: Review. Int. J. Mol. Sci. 2021, 22, 11644. [Google Scholar] [CrossRef]
- Lassila, R.; Seyberth, H.W.; Haapanen, A.; Schweer, H.; Koskenvuo, M.; Laustiola, K.E. Vasoactive and atherogenic effects of cigarette smoking: A study of monozygotic twins discordant for smoking. BMJ 1988, 297, 955–957. [Google Scholar] [CrossRef] [Green Version]
- Wennmalm, A.; Benthin, G.; Granström, E.F.; Persson, L.; Petersson, A.S.; Winell, S. Relation between tobacco use and urinary excretion of thromboxane A2 and prostacyclin metabolites in young men. . Circulation 1991, 83, 1698–1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosilkovska, M.; Tran, C.T.; de La Bourdonnaye, G.; Taranu, B.; Benzimra, M.; Haziza, C. Exposure to harmful and potentially harmful constituents decreased in smokers switching to Carbon-Heated Tobacco Product. Toxicol. Lett. 2020, 330, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Gale, N.; McEwan, M.; Hardie, G.; Proctor, C.J.; Murphy, J. Changes in biomarkers of exposure and biomarkers of potential harm after 360 days in smokers who either continue to smoke, switch to a tobacco heating product or quit smoking. Intern. Emerg. Med. 2022, 17, 2017–2030. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanobe, M.N.; Nelson, P.R.; Brown, B.G.; Chen, P.; Makena, P.; Caraway, J.W.; Prasad, G.L.; Round, E.K. Changes in Biomarkers of Exposure and Potential Harm in Smokers Switched to Vuse Vibe or Vuse Ciro Electronic Nicotine Delivery Systems. Toxics 2023, 11, 564. https://doi.org/10.3390/toxics11070564
Kanobe MN, Nelson PR, Brown BG, Chen P, Makena P, Caraway JW, Prasad GL, Round EK. Changes in Biomarkers of Exposure and Potential Harm in Smokers Switched to Vuse Vibe or Vuse Ciro Electronic Nicotine Delivery Systems. Toxics. 2023; 11(7):564. https://doi.org/10.3390/toxics11070564
Chicago/Turabian StyleKanobe, Milly N., Paul R. Nelson, Buddy G. Brown, Peter Chen, Patrudu Makena, John W. Caraway, Gaddamanugu L. Prasad, and Elaine K. Round. 2023. "Changes in Biomarkers of Exposure and Potential Harm in Smokers Switched to Vuse Vibe or Vuse Ciro Electronic Nicotine Delivery Systems" Toxics 11, no. 7: 564. https://doi.org/10.3390/toxics11070564
APA StyleKanobe, M. N., Nelson, P. R., Brown, B. G., Chen, P., Makena, P., Caraway, J. W., Prasad, G. L., & Round, E. K. (2023). Changes in Biomarkers of Exposure and Potential Harm in Smokers Switched to Vuse Vibe or Vuse Ciro Electronic Nicotine Delivery Systems. Toxics, 11(7), 564. https://doi.org/10.3390/toxics11070564