Exposure to Zinc Oxide Nanoparticles Increases Estradiol Levels and Induces an Antioxidant Response in Antral Ovarian Follicles In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Nanoparticle Suspension and Physicochemical Characterization
2.3. Animals
2.4. Antral Follicle Culture
2.5. Analyses of Sex Steroid Hormone Levels
2.6. Analyses of Gene Expression by Quantitative Polymerase Chain Reaction (qPCR)
2.7. Analyses of Reactive Oxygen Species Levels (ROS)
2.8. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analyses
2.9. Statistical Analyses
3. Results
3.1. Effect of Nanoparticles on Antral Follicle Apoptosis and Proliferation
3.2. Effect of Nanoparticles on Sex Steroid Hormone Levels
3.3. Effect of Nanoparticles on Steroidogenic Involved Genes
3.4. Effect of ZnO Nanoparticles on Hormone Receptor mRNA Levels
3.5. Effect of Nanoparticles on Antioxidant Enzymes Expression Levels
3.6. Effect of Nanoparticles on ROS Levels
3.7. ZnO Nanoparticle Dissolution in Culture Media
3.8. ZnO NP Internalization on Antral Follicles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pushpalatha, C.; Suresh, J.; Gayathri, V.; Sowmya, S.; Augustine, D.; Alamoudi, A.; Zidane, B.; Albar, N.H.M.; Patil, S. Zinc Oxide Nanoparticles: A Review on Its Applications in Dentistry. Front. Bioeng. Biotechnol. 2022, 10, 917990. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, M.; Chee, B.S.; Frassini, R.; Nugent, M.; Giovanela, M.; Roesch-Ely, M.; Crespo, J.d.S.; Devine, D.M. Antimicrobial PAA/PAH Electrospun Fiber Containing Green Synthesized Zinc Oxide Nanoparticles for Wound Healing. Materials 2021, 14, 2889. [Google Scholar] [CrossRef] [PubMed]
- Sabir, S.; Arshad, M.; Chaudhari, S.K. Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications. Sci. World J. 2014, 2014, 925494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, S.S.A.; Shim, K.H.; Hulme, J.; Meang, E.-H.; Kim, M.-K. Analysis of zinc oxide nanoparticles binding proteins in rat blood and brain homogenate. Int. J. Nanomed. 2014, 9, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today 2017, 22, 1825–1834. [Google Scholar] [CrossRef]
- Fact, M.R. Zinc Oxide Nanoparticles Market by Grade (Coated (Surface Treated), Uncoated), by Production Method (Direct Method, Indirect Method), by Application (Cosmetics & Personal Care, Paints & Coatings), by Function & By Region—Global Market Insights 2022–2032, (n.d.). Available online: https://www.factmr.com/report/4790/zinc-oxide-nanoparticles-market (accessed on 21 December 2022).
- Iavicoli, I.; Fontana, L.; Leso, V.; Bergamaschi, A. The Effects of Nanomaterials as Endocrine Disruptors. Int. J. Mol. Sci. 2013, 14, 16732–16801. [Google Scholar] [CrossRef]
- Fletcher, E.J.; Santacruz-Márquez, R.; Mourikes, V.E.; Neff, A.M.; Laws, M.J.; Flaws, J.A. Effects of Phthalate Mixtures on Ovarian Folliculogenesis and Steroidogenesis. Toxics 2022, 10, 251. [Google Scholar] [CrossRef]
- Dayem, A.A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G.-M.; Choi, H.Y.; Cho, S.-G. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int. J. Mol. Sci. 2017, 18, 120. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.P.; Xia, Q.; Hwang, H.-M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 2014, 22, 64–75. [Google Scholar] [CrossRef]
- Samrot, A.V.; Prakash, L.X.N.R. Nanoparticles Induced Oxidative Damage in Reproductive System and Role of Antioxidants on the Induced Toxicity. Life 2023, 13, 767. [Google Scholar] [CrossRef]
- Singh, S. Zinc oxide nanoparticles impacts: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol. Mech. Methods 2019, 29, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, E.; Aksoy, S.; Onel, T.; Yaba, A. Gonadal development and sex determination in mouse. Reprod. Biol. 2020, 20, 115–126. [Google Scholar] [CrossRef]
- Sánchez, F.; Smitz, J. Molecular control of oogenesis. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 1896–1912. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Ochoa, I.; Paulose, T.; Flaws, J.A. Ovarian Toxicology. In Comprehensive Toxicology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 341–361. [Google Scholar] [CrossRef]
- Santacruz-Márquez, R.; Santos, M.G.-D.L.; Hernández-Ochoa, I. Ovarian toxicity of nanoparticles. Reprod. Toxicol. 2021, 103, 79–95. [Google Scholar] [CrossRef]
- Schädlich, A.; Hoffmann, S.; Mueller, T.; Caysa, H.; Rose, C.; Göpferich, A.; Li, J.; Kuntsche, J.; Mäder, K. Accumulation of nanocarriers in the ovary: A neglected toxicity risk? J. Control. Release 2012, 160, 105–112. [Google Scholar] [CrossRef]
- Saber, M.; Hayaei-Tehrani, R.-S.; Mokhtari, S.; Hoorzad, P.; Esfandiari, F. In vitro cytotoxicity of zinc oxide nanoparticles in mouse ovarian germ cells. Toxicol. Vitr. 2020, 70, 105032. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, Y.; Ge, W.; Zhang, P.; Liu, X.; Zhang, W.; Hao, Y.; Yu, S.; Li, L.; Chu, M.; et al. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways. Oncotarget 2017, 8, 42673–42692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santacruz-Márquez, R.; Solorio-Rodríguez, A.; González-Posos, S.; García-Zepeda, S.P.; Santoyo-Salazar, J.; De Vizcaya-Ruiz, A.; Hernández-Ochoa, I. Comparative effects of TiO2 and ZnO nanoparticles on growth and ultrastructure of ovarian antral follicles. Reprod. Toxicol. 2020, 96, 399–412. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Peretz, J.; Neese, S.L.; Flaws, J.A. Mouse strain does not influence the overall effects of bisphenol a-induced toxicity in adult antral follicles. Biol. Reprod. 2013, 89, 108. [Google Scholar] [CrossRef] [Green Version]
- Bai, D.-P.; Zhang, X.-F.; Zhang, G.-L.; Huang, Y.-F.; Gurunathan, S. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int. J. Nanomed. 2017, 12, 6521–6535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoica, G.E.; Franke, T.F.; Moroni, M.; Mueller, S.; Morgan, E.; Iann, M.C.; Winder, A.D.; Reiter, R.; Wellstein, A.; Martin, M.B.; et al. Effect of estradiol on estrogen receptor-α gene expression and activity can be modulated by the ErbB2/PI 3-K/Akt pathway. Oncogene 2003, 22, 7998–8011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J.I.; Zink, J.I.; Nel, A.E. Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano 2008, 2, 2121–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [Green Version]
- Eixenberger, J.E.; Anders, C.B.; Hermann, R.J.; Brown, R.J.; Reddy, K.M.; Punnoose, A.; Wingett, D.G. Rapid Dissolution of ZnO Nanoparticles Induced by Biological Buffers Significantly Impacts Cytotoxicity. Chem. Res. Toxicol. 2017, 30, 1641–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, S.K.; Dybowska, A.; Berhanu, D.; Luoma, S.N.; Valsami-Jones, E. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci. Total Environ. 2012, 438, 225–232. [Google Scholar] [CrossRef]
- Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Harper, B.J.; Harper, S.L. Comparative dissolution, uptake, and toxicity of zinc oxide particles in individual aquatic species and mixed populations. Environ. Toxicol. Chem. 2019, 38, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Saptarshi, S.R.; Duschl, A.; Lopata, A.L. Biological reactivity of zinc oxide nanoparticles with mammalian test systems: An overview. Nanomedicine 2015, 10, 2075–2092. [Google Scholar] [CrossRef]
- Liu, J.; Kang, Y.; Yin, S.; Song, B.; Wei, L.; Chen, L.; Shao, L. Zinc oxide nanoparticles induce toxic responses in human neuroblastoma SHSY5Y cells in a size-dependent manner. Int. J. Nanomed. 2017, 12, 8085–8099. [Google Scholar] [CrossRef] [Green Version]
- Connolly, M.; Fernández, M.; Conde, E.; Torrent, F.; Navas, J.M.; Fernández-Cruz, M.L. Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci. Total Environ. 2016, 551–552, 334–343. [Google Scholar] [CrossRef]
- Bishop, G.M.; Dringen, R.; Robinson, S.R. Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Radic. Biol. Med. 2007, 42, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Oxid. Med. Cell. Longev. 2018, 2018, 9156285. [Google Scholar] [CrossRef] [Green Version]
- Knez, M.; Graham, R.D.; Welch, R.M.; Stangoulis, J.C.R. New perspectives on the regulation of iron absorption via cellular zinc concentrations in humans. Crit. Rev. Food Sci. Nutr. 2015, 57, 2128–2143. [Google Scholar] [CrossRef]
- Gao, G.; Ze, Y.; Li, B.; Zhao, X.; Zhang, T.; Sheng, L.; Hu, R.; Gui, S.; Sang, X.; Sun, Q.; et al. Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles. J. Hazard. Mater. 2012, 243, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Minghetti, M.; Schirmer, K. Interference of silver nanoparticles with essential metal homeostasis in a novel enterohepatic fish in vitro system. Environ. Sci. Nano 2019, 6, 1777–1790. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Z.; Zhang, Y.; Ma, L.; Song, E.; Song, Y. “Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis. Cell Death Dis. 2020, 11, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelzer, R.; Hutz, R.J. Gold Nanoparticles Enter Rat Ovarian Granulosa Cells and Subcellular Organelles, and Alter In-Vitro Estrogen Accumulation. J. Reprod. Dev. 2009, 55, 685–690. [Google Scholar] [CrossRef] [Green Version]
- Om, A.-S.; Chung, K.-W. Dietary Zinc Deficiency Alters 5α-Reduction and Aromatization of Testosterone and Androgen and Estrogen Receptors in Rat Liver. J. Nutr. 1996, 126, 842–848. [Google Scholar] [CrossRef] [Green Version]
- Chouchene, L.; Pellegrini, E.; Gueguen, M.-M.; Hinfray, N.; Brion, F.; Piccini, B.; Kah, O.; Saïd, K.; Messaoudi, I.; Pakdel, F. Inhibitory effect of cadmium on estrogen signaling in zebrafish brain and protection by zinc. J. Appl. Toxicol. 2016, 36, 863–871. [Google Scholar] [CrossRef]
- Chu, Q.; Chi, Z.-H.; Zhang, X.; Liang, D.; Wang, X.; Zhao, Y.; Zhang, L.; Zhang, P. A potential role for zinc transporter 7 in testosterone synthesis in mouse Leydig tumor cells. Int. J. Mol. Med. 2016, 37, 1619–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nephew, K.P.; Long, X.; Osborne, E.; Burke, K.A.; Ahluwalia, A.; Bigsby, R.M. Effect of estradiol on estrogen receptor expression in rat uterine cell types. Biol. Reprod. 2000, 62, 168–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoseini, S.M.; Moshrefi, A.H.; Amani, R.; Razavimehr, S.V.; Aghajanikhah, M.H.; Sokouti, Z.; Holari, B.B. Subchronic effects of different doses of Zinc oxide nanoparticle on reproductive organs of female rats: An experimental study. Int. J. Reprod. BioMed. (IJRM) 2019, 17, 107. [Google Scholar] [CrossRef] [PubMed]
- Saceda, M.; Lindsey, R.K.; Solomon, H.; Angeloni, S.V.; Martin, M.B. Estradiol regulates estrogen receptor mRNA stability. J. Steroid Biochem. Mol. Biol. 1998, 66, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Azadmanesh, K.; Shokrgozar, M.A.; Journeay, W.S.; Laurent, S. Effect of Nanoparticles on the Cell Life Cycle. Chem. Rev. 2011, 111, 3407–3432. [Google Scholar] [CrossRef]
Gene Name | Symbol | Forward Primer | Reverse Primer |
---|---|---|---|
Actin, beta | Actb | 5′-GGGCACAGTGTGGGTGAC-3′ | 5′-CTGGCACCACACCTTCTAC-3′ |
Steroidogenic acute regulatory protein | Star | 5′-CAGGGAGAGGTGGCTATGCA-3′ | 5′-CCGTGTCTTTTCCAATCCTCTG-3′ |
Cytochrome-P450 cholesterol side-chain cleavage | Cyp11a1 | 5′-AGATCCCTTCCCCTGGTGACAATG-3′ | 5′-CGCATGAGAAGAGTATCGACGCATC-3′ |
Cytochrome P450 steroid 17-α-hydroxylase 1 | Cyp17a1 | 5′-CCAGGACCCAAGTGTGTTCT-3′ | 5′-CCTGATACGAAGCACTTCTCG-3′ |
3β-hydroxysteroid dehydrogenase 1 | Hsd3b1 | 5′-CAGGAGAAAGAACTGCAGGAGGTC-3′ | 5′-GCACACTTGCTTGAACACAGGC-3′ |
17β-hydroxysteroid dehydrogenase 1 | Hsd17b1 | 5′-AAGCGGTTCGTGGAGAAGTAG-3′ | 5′-ACTGTGCCAGCAAGTTTGCG-3′ |
Cytochrome P450 aromatase | Cyp19a1 | 5′-CATGGTCCCGGAAACTGTGA-3′ | 5′-GTAGTAGTTGCAGGCACTTC-3′ |
Nuclear respiratory factor 1 | Nrf2 | 5′-TGAAGCTCAGCTCGCATTGA-3′ | 5′-TGCTCCAGCTCGACAATGTT-3′ |
Catalase | Cat | 5′-GCAGATACCTGTGAACTGTC-3′ | 5′-GTAGAATGTCCGCACCTGAG-3′ |
Glutathione reductase | Gsr | 5′-CAGTTGGCATGTCATCAAGCA-3′ | 5′-CGAATGTTGCATAGCCGTGG-3′ |
Superoxide dismutase 1 | Sod1 | 5′-TTCCGTCCGTCGGCTTCTCGT-3′ | 5′-CGCACACCGCTTTCATCGCC-3′ |
Glutathione peroxidase | Gpx | 5′-CCTCAAGTACGTCCGACCTG | 5′-CAATGTCGTTGCGGCACACC-3′ |
Bcl2-associated X protein | Bax | 5′-TGAAGACAGGGGCCTTTTTG | 5′-AATTCGCCGGAGACACTCG-3′ |
B cell leukemia/lymphoma 2 | Bcl2 | 5′-ATGCCTTTGTGGAACTATATGGC | 5′-GGTATGCACCCAGAGTGATGC-3′ |
Caspase 3 | Cas3 | 5′-TGGTGATGAAGGGGTCATTTATG | 5′-TTCGGCTTTCCAGTCAGACTC-3′ |
Marker of proliferation Ki-67 | Mki67 | 5′-GCTCACCTGGTCACCATCAA | 5′-ACTACAGGCAGCTGGATACG-3′ |
Cyclin-dependent kinase 4 | Cdk4 | 5′-AGAAACCCTCGCTGAAGCGGCA | 5′-TGGGGGTGAACCTCGTAAGGAGA-3′ |
Cyclin-dependent kinase inhibitor 1A (P21) | Cdkn1a | 5′-TTAGGCAGCTCCAGTGGCAACC | 5′-ACCCCCACCACCACACACCATA-3′ |
FSH receptor | Fshr | 5′-AGCAAGTTTGGCTGTTATGAGG | 5′-GTTCTGGACTGAATGATTTAGAGG-3′ |
LH receptor | Lhcgr | 5′-AACCCGGTGCTTTTTACAAACC | 5′-TCCCATTGAATGCATGGCTT-3′ |
Androgen receptor | Ar | 5′-GGCGGTCCTTCACTAATGTCAACT | 5′-GAGACTTGTGCATGCGGTACTCAT-3′ |
Estrogen receptor 1 (alpha) | Esr1 | 5′-AATTCTGACAATCGACGCCAG | 5′-GTGCTTCAACATTCTCCCTCCTC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santacruz-Márquez, R.; Flaws, J.A.; Sánchez-Peña, L.d.C.; Hernández-Ochoa, I. Exposure to Zinc Oxide Nanoparticles Increases Estradiol Levels and Induces an Antioxidant Response in Antral Ovarian Follicles In Vitro. Toxics 2023, 11, 602. https://doi.org/10.3390/toxics11070602
Santacruz-Márquez R, Flaws JA, Sánchez-Peña LdC, Hernández-Ochoa I. Exposure to Zinc Oxide Nanoparticles Increases Estradiol Levels and Induces an Antioxidant Response in Antral Ovarian Follicles In Vitro. Toxics. 2023; 11(7):602. https://doi.org/10.3390/toxics11070602
Chicago/Turabian StyleSantacruz-Márquez, Ramsés, Jodi A. Flaws, Luz del Carmen Sánchez-Peña, and Isabel Hernández-Ochoa. 2023. "Exposure to Zinc Oxide Nanoparticles Increases Estradiol Levels and Induces an Antioxidant Response in Antral Ovarian Follicles In Vitro" Toxics 11, no. 7: 602. https://doi.org/10.3390/toxics11070602
APA StyleSantacruz-Márquez, R., Flaws, J. A., Sánchez-Peña, L. d. C., & Hernández-Ochoa, I. (2023). Exposure to Zinc Oxide Nanoparticles Increases Estradiol Levels and Induces an Antioxidant Response in Antral Ovarian Follicles In Vitro. Toxics, 11(7), 602. https://doi.org/10.3390/toxics11070602