Air, Dermal, and Urinary Metabolite Levels of Backpack and Tractor Sprayers Using the Herbicide Acetochlor in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.1.1. Personal Breathing Zone Air Sampling
2.1.2. Dermal Patch Sampling
2.2. Analysis of Personal Breathing Zone Air Samples and Dermal Patch Samples
2.2.1. Chemical Reagents
2.2.2. Analysis of Personal Breathing Zone Air Samples
2.2.3. Analysis of Dermal Patch Samples
2.2.4. Analysis of Urine Sample
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Statistical Office. Statistics of Land, Whole Kingdom: 2012–2022. Available online: http://statbbi.nso.go.th/staticreport/Page/sector/TH/report/sector_11_18_TH_.xls (accessed on 1 April 2023). (In Thai)
- National Statistical Office. The Informal Employment Survey 2022. 2022. Available online: http://www.nso.go.th/sites/2014/Pages/สำรวจ/ด้านสังคม/แรงงาน/แรงงานนอกระบบ.aspx (accessed on 1 April 2023). (In Thai)
- Bureau of Occupational and Environmental Diseases, Ministry of Public Health. Report Occupational and Environmental Diseases and Health Hazards in 2017. Available online: https://ddc.moph.go.th/uploads/ckeditor2//files/01_envocc_situation_60.pdf (accessed on 1 April 2023). (In Thai)
- Office of Agricultural Economics. Quantity and Value of Imports of Agricultural Pesticides 2018–2022. Available online: http://www.oae.go.th/view/1/ปัจจัยการผลิต/TH–TH (accessed on 1 April 2023). (In Thai)
- Heydens, W.F.; Lamb, I.C.; Wilson, A.G. Chloracetanilides. In Hayes’ Handbook of Pesticide Toxicology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1753–1769. [Google Scholar]
- Environmental Protection Agency. Federal Register Office of the Federal Register; National Archives and Records Administration: Washington, DC, USA, 1994.
- Department of Agriculture. Report The Herbicide Imported in 2007–2021. Available online: https://data.go.th/dataset/importherbicidevol (accessed on 1 April 2023). (In Thai)
- Office of the Cane and Sugar Board. Sugarcane Area Report 2021–2022. Available online: http://www.ocsb.go.th/upload/journal/fileupload/13813–1585.pdf (accessed on 1 April 2023). (In Thai)
- Ashby, J.; Kier, L.; Wilson, A.; Green, T.; Lefevre, P.; Tinwell, H. Evaluation of the potential carcinogenicity and genetic toxicity to humans of the herbicide acetochlor. Hum. Exp. Toxicol. 1996, 15, 702–735. [Google Scholar] [CrossRef]
- Dearfield, K.L.; McCarroll, N.E.; Protzel, A.; Stack, H.F.; Jackson, M.A.; Waters, M.D. A survey of EPA/OPP and open literature on selected pesticide chemicals: II. Mutagenicity and carcinogenicity of selected chloroacetanilides and related compounds. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 1999, 443, 183–221. [Google Scholar] [CrossRef] [PubMed]
- Lerro, C.C.; Koutros, S.; Andreotti, G.; Hines, C.J.; Blair, A.; Lubin, J. Use of acetochlor and cancer incidence in the Agricultural Health Study. Int. J. Cancer 2015, 137, 1167–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crump, D.; Werry, K.; Veldhoen, N.; Van, A.G.; Helbing, C.C. Exposure to the herbicide acetochlor alters thyroid hormone-dependent gene expression and metamorphosis in Xenopus Laevis. Environ. Health Perspect. 2002, 110, 1199–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Wang, M.; Chen, S.; Zhao, W.; Zhao, Y.; Wang, X. A urinary metabonomics analysis of long-term effect of acetochlor exposure on rats by ultra-performance liquid chromatography/mass spectrometry. Pestic. Biochem. Physiol. 2016, 128, 82–88. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance acetochlor. EFSA J. 2011, 9, 2143. [Google Scholar]
- Das, N.; Maske, N.; Khawas, V.; Chaudhary, S.; Dhete, R. Agricultural fertilizers and pesticides sprayers—A review. Int. J. Innov. Res. Sci. Technol. 2015, 1, 44–47. [Google Scholar]
- Bhatkar, A.K.; Khope, P.; Chaudhari, P. A Review: Development of Pesticide Spraying Machine. IJRET Int. J. Res. Eng. Technol. 2016, 5, 470–472. [Google Scholar]
- Franke, A.; Kempenaar, C.; Holterman, H.; Van, Z.J. Spray Drift from Knapsack Sprayers: A Study Conducted within the Framework of the Sino-Dutch Pesticide Environmental Risk Assessment Project PERAP; Plant Research International: Wageningen, The Netherlands, 2010. [Google Scholar]
- Kongtip, P.; Nankongnab, N.; Pundee, R.; Kallayanatham, N.; Pengpumkiat, S.; Chungcharoen, J.; Phommalachai, C.; Choochouy, N.; Sowanthip, P.; Khangkhun, P.; et al. Acute changes in thyroid hormone levels among Thai pesticide sprayers. Toxics 2021, 9, 16. [Google Scholar] [CrossRef]
- NIOSH Manual of Analytical Methods. Chlorinated and Organonitrogen Herbicides: Method 5602 (Air Sampling); DHHS (NIOSH) Pub.: Cincinnati, OH, USA, 1994; pp. 94–113. [Google Scholar]
- Mahaboonpeeti, R.; Kongtip, P.; Nankongnab, N.; Tipayamongkholgul, M.; Bunngamchairat, A.; Yoosook, W. Evaluation of dermal exposure to the herbicide alachlor among vegetable farmers in Thailand. Ann. Work Expo. Health 2018, 62, 1147–1158. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Occupational and Residential Exposure Test Guidelines: OPPTS 875.2400 Dermal Exposure. Available online: https://www.regulations.gov/document?D=EPAHQ–OPPT–2009–0157–0012 (accessed on 1 April 2023).
- Shah, P.; Moretto, A. Acetochlor. In Proceedings of the Pesticide Residues in Food 2015, Joint FAO/WHO Meeting on Pesticide Residues, Geneva, Switzerland, 15–24 September 2015. [Google Scholar]
- Driskell, W.; Hill, R., Jr.; Shealy, D.; Hull, R.; Hines, C. Identification of a major human urinary metabolite of alachlor by LC–MS/MS. Bull. Environ. Contam. Toxicol. 1996, 56, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Beckmann Coulter, Instruction for Use. Creatinine. Available online: https://www.beckmancoulter.com/wsrportal/techdocs?docname=/cis/A69463/%%/EN (accessed on 1 April 2023).
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Bootsikeaw, S.; Kongtip, P.; Nankongnab, N.; Chantanakul, S.; Sujirarat, D.; Mahaboonpeeti, R. Urinary glyphosate biomonitoring of sprayers in vegetable farm in Thailand. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 1019–1036. [Google Scholar] [CrossRef]
- Jallow, M.F.; Awadh, D.G.; Albaho, M.S.; Devi, V.Y.; Thomas, B.M. Pesticide knowledge and safety practices among farm workers in Kuwait: Results of a survey. Int. J. Environ. Res. Public Health 2017, 14, 340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mergia, M.T.; Weldemariam, E.D.; Eklo, O.M.; Yimer, G.T. Small-scale farmer pesticide knowledge and practice and impacts on the environment and human health in Ethiopia. J. Health Pollut. 2021, 11, 210607. [Google Scholar] [CrossRef]
- Wang, W.; Jin, J.; He, R.; Gong, H. Gender differences in pesticide use knowledge, risk awareness and practices in Chinese farmers. Sci. Total Environ. 2017, 590, 22–28. [Google Scholar] [CrossRef]
- Jitnarin, N.; Kosulwat, V.; Rojroongwasinkul, N.; Boonpraderm, A.; Haddock, C.K.; Poston, W.S. Socioeconomic status and smoking among thai adults: Results of the National Thai Food Consumption Survey. Asia Pac. J. Public Health 2011, 23, 672–681. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, M.; McKetin, R.; Banwell, C.; Yiengprugsawan, V.; Kelly, M.; Seubsman, S. Alcohol consumption patterns in Thailand and their relationship with non-communicable disease. BMC Public Health 2015, 15, 1297. [Google Scholar] [CrossRef] [Green Version]
- Barr, D.B.; Hines, C.J.; Olsson, A.O.; Deddens, J.A.; Bravo, R.; Striley, C.A. Identification of human urinary metabolites of acetochlor in exposed herbicide applicators by high-performance liquid chromatography-tandem mass spectrometry. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 559–566. [Google Scholar] [CrossRef]
- Gustin, C.A.; Moran, S.J.; Fuhrman, J.D.; Kurtzweil, M.L.; Kronenberg, J.M.; Gustafson, D.I. Applicator exposure to acetochlor based on biomonitoring. Regul. Toxicol. Pharmacol. 2005, 43, 141–149. [Google Scholar] [CrossRef]
- Curwin, B.D.; Hein, M.J.; Sanderson, W.T.; Barr, D.B.; Heederik, D.; Reynolds, S.J. Urinary and hand wipe pesticide levels among farmers and nonfarmers in Iowa. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 500–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hines, C.J.; Deddens, J.A.; Tucker, S.P.; Hornung, R.W. Distributions and determinants of pre-emergent herbicide exposures among custom applicators. Ann. Occup. Hyg. 2001, 45, 227–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hines, C.J.; Deddens, J.A.; Striley, C.A.; Biagini, R.E.; Shoemaker, D.A.; Brown, K.K.; MacKenzie, B.A.; Hull, R.D. Biological monitoring for selected herbicide biomarkers in the urine of exposed custom applicators: Application of mixed-effect models. Ann. Occup. Hyg. 2003, 47, 503–517. [Google Scholar] [PubMed] [Green Version]
Variables | Total (n) | Conventional Farmers n (%) | |
---|---|---|---|
Age | |||
Min–max | 60 | 18–69 | |
Mean (SD) | 49.7 (12.9) | ||
Sex | |||
Male | 45 | 45 (75.0) | |
Female | 15 | 15 (25.0) | |
Educational level | |||
Elementary | 29 | 29 (48.3) | |
High school or higher | 31 | 30 (51.7) | |
Marital status | |||
Single | 7 | 7 (11.7) | |
Married | 51 | 51 (85.0) | |
Widowed/divorced | 2 | 2 (3.3) | |
Alcohol intake | |||
Current drinker | 40 | 40 (66.7) | |
Nondrinker | 20 | 20 (33.3) | |
Smoking | |||
Current smoker | 11 | 11 (18.3) | |
Nonsmoker | 49 | 49 (81.7) | |
BMI (kg/m2) | |||
Underweight (<18.5) | 7 | 7 (11.7) | |
Healthy Weight (18.5–<25.00) | 26 | 26 (43.3) | |
Overweight (25.00–<30.00) | 19 | 19 (31.7) | |
Obesity (30.0 or higher) | 8 | 8 (13.3) | |
Spraying pesticides in agricultural fields (years) | |||
≤10 | 14 | 14 (23.3) | |
>10 | 46 | 46 (76.7) | |
Spraying equipment | |||
Backpack sprayers | 50 | 50 (83.3) | |
Tractor sprayers | 10 | 10 (16.7) |
PPE | Backpack (n = 50) n (%) | Tractor (n = 10) n (%) |
---|---|---|
Goggles | 2 (4) | 0 |
Cloth gloves | 12 (24) | 0 |
Latex gloves | 2 (4) | 1 (10) |
Long sleeve shirts | 50 (100) | 10 (100) |
Shoes | 40 (80) | 8 (80) |
Boots | 6 (12) | 0 |
Socks | 7 (14) | 0 |
Short pants | 1 (2) | 2 (20) |
Long pants | 49 (98) | 8 (80) |
Large brim straw hat | 16 (32) | 1 (10) |
Cloth wrapped around face | 31 (62) | 6 (60) |
Cotton mask | 3 (6) | 2 (20) |
Balaclava | 11 (22) | 3 (30) |
Urine Collection | EMA (µg/g Creatinine) | Comparison of EMA between Backpack vs. Tractor 1 | |||
---|---|---|---|---|---|
Total Farmers (n = 60) | Backpack (n = 50) | Tractor (n = 10) | |||
The day before spraying | |||||
Detection frequency (%) | 40 (66.7) | 31 (62.0) | 9 (90.0) | ||
GM (GSD) 2 | 11.5 (8.6) | 10.2 (9.2) | 20.7 (5.7) | p = 0.242 | |
Range (Min–Max) | 0.6–1099.0 | 0.6–1099.0 | 1.4–308.6 | ||
The end of spraying task | |||||
Detection frequency (%) | 54 (90.0) | 44 (88.0) | 10 (100.0) | ||
GM (GSD) 2 | 88.5 (8.6) | 84.0 (10.0) | 115.1 (3.2) | p = 0.937 | |
Range (Min–Max) | 1.2–3849.8 | 1.2–3849.8 | 11.4–1155.6 | ||
The day after spraying | |||||
Detection frequency (%) | 56 (93.3) | 46 (92.0) | 10 (100.0) | ||
GM (GSD) 2 | 111.0 (6.4) | 117.3 (6.6) | 84.3 (5.8) | p = 0.579 | |
Range (Min–Max) | 1.3–1865.3 | 1.3–1865.3 | 4.6–823.4 | ||
Comparison of total farmers’ EMA 3 | |||||
The day before spraying and the end of spraying task | p < 0.001 * | ||||
The day before and after spraying | p < 0.001 * | ||||
The end of spraying task and the day after spraying | p = 0.350 |
Acetochlor/EMA Concentrations | Backpack (n = 50) | Tractor (n = 10) | p-Value | |
---|---|---|---|---|
Breathing zone air sample (µg/m3) | 0.403 | |||
Detection frequency (%) | 50 (100.0) | 10 (100.0) | ||
GM (GSD) 1 | 13.7 (3.4) | 9.3 (6.1) | ||
Range (Min–Max) | 0.3–92.2 | 0.1–83.9 | ||
Dermal patch sample (µg/h) | ||||
Forehead | 0.051 | |||
Detection frequency (%) | 50 (100.0) | 10 (100.0) | ||
GM (GSD) 1 | 5.3 (3.5) | 12.9 (3.9) | ||
Range (Min–Max) | 0.8–1398.7 | 1.2–105.2 | ||
Chest | 0.052 | |||
Detection frequency (%) | 50 (100.0) | 10 (100.0) | ||
GM (GSD) 1 | 24.1 (2.8) | 52.6 (5.1) | ||
Range (Min–Max) | 3.4–1358.8 | 6.4–3353.0 | ||
Back | 0.814 | |||
Detection frequency (%) | 50 (100.0) | 10 (100.0) | ||
GM (GSD) 1 | 41.0 (6.3) | 35.2 (7.6) | ||
Range (Min–Max) | 2.8–10,472.8 | 5.9–9945.2 | ||
Arms | 0.400 | |||
Detection frequency (%) | 50 (100.0) | 10 (100.0) | ||
GM (GSD) 1 | 33.4 (2.9) | 45.6 (2.8) | ||
Range (Min–Max) | 4.5–4368.1 | 19.0–697.1 | ||
Legs | 0.798 | |||
Detection frequency (%) | 50 (100.0) | 10 (100.0) | ||
GM (GSD) 1 | 201.8 (4.7) | 231.6 (4.4) | ||
Range (Min–Max) | 10.5–32,403.7 | 36.9–6309.8 | ||
Total body | 0.884 | |||
Detection frequency (%) | 50 (100.0) | 10 (100.0) | ||
GM (GSD) 1 | 503.0 (4.5) | 466.0 (4.6) | ||
Range (Min–Max) | 24.7–37,645.8 | 75.6–19,788.2 | ||
Spraying information | ||||
Sprayed area (Ha) | <0.001 * | |||
GM (GSD) 1 | 0.5 (1.8) | 1.6 (1.7) | ||
Range (Min–Max) | 0.2–3.0 | 0.5–2.4 | ||
Acetochlor solution used (L) | <0.001 * | |||
GM (GSD) 1 | 83.4 (1.5) | 823.8 (1.5) | ||
Range (Min–Max) | 40–200 | 300–1000 | ||
Spraying duration (min) | 0.027 * | |||
GM (GSD) 1 | 35.5 (1.4) | 45.1 (1.8) | ||
Range (Min–Max) | 20–120 | 25–120 |
Acetochlor/EMA Concentrations | Correlation | p-Value | |
---|---|---|---|
Breathing zone air sample (µg/m3) | |||
Total body dermal patch samples (µg/h) | 0.269 | 0.037 * | |
Urinary EMA concentrations the day after spraying (µg/g creatinine) | 0.381 | 0.003 * | |
Total body dermal patch samples (µg/h) | |||
Urinary EMA concentrations the day after spraying (µg/g creatinine) | 0.022 | 0.867 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kallayanatham, N.; Pengpumkiat, S.; Kongtip, P.; Pundee, R.; Nankongnab, N.; Kongtawelert, A.; Woskie, S.R. Air, Dermal, and Urinary Metabolite Levels of Backpack and Tractor Sprayers Using the Herbicide Acetochlor in Thailand. Toxics 2023, 11, 622. https://doi.org/10.3390/toxics11070622
Kallayanatham N, Pengpumkiat S, Kongtip P, Pundee R, Nankongnab N, Kongtawelert A, Woskie SR. Air, Dermal, and Urinary Metabolite Levels of Backpack and Tractor Sprayers Using the Herbicide Acetochlor in Thailand. Toxics. 2023; 11(7):622. https://doi.org/10.3390/toxics11070622
Chicago/Turabian StyleKallayanatham, Nichcha, Sumate Pengpumkiat, Pornpimol Kongtip, Ritthirong Pundee, Noppanun Nankongnab, Amarin Kongtawelert, and Susan R. Woskie. 2023. "Air, Dermal, and Urinary Metabolite Levels of Backpack and Tractor Sprayers Using the Herbicide Acetochlor in Thailand" Toxics 11, no. 7: 622. https://doi.org/10.3390/toxics11070622
APA StyleKallayanatham, N., Pengpumkiat, S., Kongtip, P., Pundee, R., Nankongnab, N., Kongtawelert, A., & Woskie, S. R. (2023). Air, Dermal, and Urinary Metabolite Levels of Backpack and Tractor Sprayers Using the Herbicide Acetochlor in Thailand. Toxics, 11(7), 622. https://doi.org/10.3390/toxics11070622