A Multiphase Coupled Hydrodynamic Model for Fate and Transport Simulation of Polycyclic Aromatic Hydrocarbons in a Semi-Closed Narrow Bay
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Situations of Study Region
2.2. Construction of the Model
2.2.1. The Primary Equations of the PAHs Dynamic Model
2.2.2. Toxicity Analysis Model of PAHs
2.3. Model Parameter Setting
2.4. Initial Conditions
2.5. Accuracy Verification of the Model
2.5.1. Collection and Experimental Analysis
2.5.2. Model Parameter Calibration
2.5.3. Model Accuracy Verification
3. Results and Discussion
3.1. Hydrodynamics Simulation Results
3.2. The Simulation Results of PAHs
3.3. Analysis of PAHs in Seawater-Sediment Exchange
3.4. Health Risk Assessment of PAHs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribbe, J.; Wolff, J.O.; Staneva, J.; Grawe, U. Assessing water renewal time scales for marine environments from three-dimensional modelling: A case study for Hervey Bay, Australia. Environ. Model. Softw. 2008, 23, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.N.; Johns, E.; Melo, N.; Smith, R.H.; Ortner, P.; Smith, D. On Florida Bay hypersalinity and water exchange. Bull. Mar. Sci. 2006, 79, 301–327. [Google Scholar]
- Nilsen, E.B.; Rosenbauer, R.J.; Fuller, C.C.; Jaffe, B.J. Sedimentary organic biomarkers suggest detrimental effects of PAHs on estuarine microbial biomass during the 20th century in San Francisco Bay, CA, USA. Chemosphere 2015, 119, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Delhez, E.J.; Heemink, A.W.; Deleersnijder, E. Residence time in a semi-enclosed domain from the solution of an adjoint problem. Estuar. Coast. Shelf Sci. 2004, 61, 691–702. [Google Scholar] [CrossRef]
- Huang, Y.P.; Liu, M.; Wang, R.Q.; Khan, S.K.; Gao, D.Z.; Zhang, Y.Z. Characterization and source apportionment of PAHs from a highly urbanized river sediments based on land use analysis. Chemosphere 2017, 184, 1334–1345. [Google Scholar] [CrossRef]
- James, D.; Daniel, D.; Philippe, G.; Walter, K. Multivariate Analysis of the PAH Contamination in the Sediments of the Bay of Biscay (France). Polycycl. Aromat. Compd. 1996, 23, 441–454. [Google Scholar]
- Khiari, N.; Charef, A.; Atoui, A.; Azouzi, R.; Khalil, N.; Khadhar, S. Southern Mediterranean coast pollution: Long-term assessment and evolution of PAH pollutants in Monastir Bay (Tunisia). Mar. Pollut. Bull. 2021, 167, 112268. [Google Scholar] [CrossRef] [PubMed]
- Mundo, R.; Matsunaka, T.; Iwai, H. Interannual Survey on Polycyclic Aromatic Hydrocarbons in Seawater of North Nanao Bay, Ishikawa, Japan, from 2015 to 2018: Sources, Pathways and Ecological Risk Assessment. Int. J. Environ. Res. Public Health 2020, 17, 904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Wu, X.; Zhang, H.; Sun, J.; Liu, W.; Zhu, L.; Li, X.; Tsang, D.C.W.; Tao, S.; Wang, X. Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China. Environ. Pollut. 2017, 230, 927–935. [Google Scholar] [CrossRef]
- Jia, T.; Guo, W.; Liu, W.; Xing, Y.; Lei, R.; Wu, X.; Sun, S. Spatial distribution of polycyclic aromatic hydrocarbons in the water-sediment system near chemical industry parks in the Yangtze River Delta, China. Sci. Total Environ. 2021, 754, 142176. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River Basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Baumard, P.; Budzinski, H.; Garrigues, P. Polycyclic aromatic hydrocarbons in sediments and mussels of the western mediterranean sea. Environ. Toxicol. Chem. 1998, 17, 765–776. [Google Scholar] [CrossRef]
- Neira, C.; Cossaboon, J.; Mendoza, G.; Hoh, E.; Levin, L.A. Occurrence and distribution of polycyclic aromatic hydrocarbons in surface sediments of San Diego Bay marinas. Mar. Pollut. Bull. 2017, 114, 466–479. [Google Scholar] [CrossRef] [Green Version]
- Merhaby, D.; Rabodonirina, S.; Net, S.; Ouddane, B.; Halwani, J. Overview of sediments pollution by PAHs and PCBs in mediterranean basin: Transport, fate, occurrence, and distribution. Mar. Pollut. Bull. 2019, 149, 110646. [Google Scholar] [CrossRef]
- Marinov, D.; Dueri, S.; Puillat, I.; Carafa, R.; Jurado, E.; Berrojalbiz, N.; Dachs, J.; Zaldívar, J.M. Integrated modelling of polycyclic aromatic hydrocarbons in the marine environment: Coupling of hydrodynamic, fate and transport, bioaccumulation and planktonic food-web models. Mar. Pollut. Bull. 2009, 58, 1554–1561. [Google Scholar] [CrossRef]
- Rastegari, M.; Keshavarzi, B.; Moore, F.; Fooladivanda, S.; Sorooshian, A.; Biester, H. Spatial distribution, environmental risk and sources of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in surface sediments northwest of Persian Gulf. Cont. Shelf Res. 2020, 193, 104036. [Google Scholar] [CrossRef]
- Wang, C.; Zou, X.; Li, Y.; Zhao, Y.; Song, Q.; Yu, W. Pollution levels and risks of polycyclic aromatic hydrocarbons in surface sediments from two typical estuaries in China. Mar. Pollut. Bull. 2017, 114, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.L.; Shen, J.; Qin, Q.B.; Du, J.B. Water exchange and its relationships with external forcings and residence time in Chesapeake Bay. J. Mar. Syst. 2021, 215, 103497. [Google Scholar] [CrossRef]
- Zhang, R.J.; Han, M.W.; Yu, K.F.; Kang, Y.R.; Wang, Y.H.; Huang, X.Y.; Li, J.; Yang, Y. Distribution, fate and sources of polycyclic aromatic hydrocarbons (PAHs) in atmosphere and surface water of multiple coral reef regions from the South China Sea: A case study in spring-summer. J. Hazard. Mater. 2021, 412, 125214. [Google Scholar] [CrossRef]
- Zhao, Z.; Gong, X.; Zhang, L.; Jin, M.; Cai, Y.; Wang, X. Riverine transport and water-sediment exchange of polycyclic aromatic hydrocarbons (PAHs) along the middle-lower Yangtze River, China. J. Hazard. Mater. 2021, 403, 123973. [Google Scholar] [CrossRef]
- Canizares, R.; Smith, E.; Alfageme, S. Three-dimensional modeling of the seasonal transition of salinity in San Francisco Bay: From well mixed to stratified conditions. In Estuarine & Coastal Modeling, Proceedings of the Seventh International Conference, St. Petersburg, FL, USA, 5–7 November 2001; ASCE: Reston, VA, USA, 2002; pp. 812–829. [Google Scholar]
- Adeniji, A.O.; Okoh, O.O.; Okoh, A.I. Distribution pattern and health risk assessment of polycyclic aromatic hydrocarbons in the water and sediment of Algoa Bay, South Africa. Environ. Geochem. Health 2019, 41, 1303–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brion, D.; Pelletier, E. Modelling PAHs adsorption and sequestration in freshwater and marine sediments. Chemosphere 2005, 61, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Lin, C.; Zhang, X.; Liu, X.; He, M.; Ouyang, W. Distribution, source, and ecological risks of polycyclic aromatic hydrocarbons in Lake Qinghai, China. Environ. Pollut. 2020, 266, 115401. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yang, C.; He, W.; Xu, F.L. Nationwide health risk assessment of juvenile exposure to polycyclic aromatic hydrocarbons (PAHs) in the water body of Chinese lakes. Sci. Total Environ. 2020, 723, 138099. [Google Scholar] [CrossRef]
- Lin, W.N.; Wang, N.; Fu, Q. Research on the pollutant bearing capacity of Bohai Sea under water exchange. Trans. Oceanol. Limnol. 2019, 5, 42–48. [Google Scholar]
- Wang, H.S.; Lei, K.; Li, Z.C.; Zhang, Z.; Zhou, L. Analysis of major pollutants flux into the sea and influencing factors on the north shore of the Liaodong Gulf. Acta Oceanolog. Sin. 2011, 33, 110–116. [Google Scholar]
- Luo, C.X.; Lin, L.; Shi, J.; Liu, Z.; Cai, Z.Y.; Guo, X.Y.; Gao, H.W. Seasonal variations in the water residence time in the Bohai Sea using 3D hydrodynamic model study and the adjoint method. Ocean Dyn. 2021, 71, 157–173. [Google Scholar] [CrossRef]
- Pintilie, S.; Branza, L.; Betianu, C.; Pavel, L.V.; Ungureanu, F.; Gavrilescu, M. Modelling and simulation of heavy metals transport in water and sediments. Environ. Eng. Manag. J. 2007, 6, 153–161. [Google Scholar]
- Zhang, X.X.; Li, D.; Wang, X.; Li, X.; Cheng, J.Y.; Zheng, B.H. Exploration of polycyclic aromatic hydrocarbon distribution in the sediments of marine environment by hydrodynamic simulation model. Mar. Pollut. Bulletin. 2021, 171, 112697. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund: Volume 1—Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals); USEPA: Washington, DC, USA, 2016. Available online: https://www.epa.gov/expobox_1034 (accessed on 10 March 2023).
- Knafla, A.; Phillipps, K.A.; Brecher, R.W.; Petrovic, S.; Richardson, M. Development of a dermal cancer slope factor for benzo[a]pyrene. Regul. Toxicol. Pharmacol. 2006, 45, 159–168. [Google Scholar] [CrossRef]
- Duca, F.; Montuori, P.; Trama, U.; Masucci, A.; Borrelli, G.M.; Triassi, M. Health Risk Assessment of PAHs from Estuarine Sediments in the South of Italy. Toxics 2023, 11, 172. [Google Scholar] [CrossRef]
- Montuori, P.; Rosa, E.; Cerino, P.; Pizzolante, A. Estimation of Polycyclic Aromatic Hydrocarbons in Groundwater from Campania Plain: Spatial Distribution, Source Attribution and Health Cancer Risk Evaluation. Toxics 2023, 11, 435. [Google Scholar] [CrossRef] [PubMed]
- Baracchini, T.; Hummel, S.; Verlaan, M.; Cimatoribus, A.; Wüest, A.; Bouffard, D. An automated calibration framework and open source tools for 3D lake hydrodynamic models. Environ. Modell. Softw. 2020, 134, 104787. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Han, J.B.; Zheng, B.H.; Wang, X.M.; Yang, Z.X.; Zhang, X.X. Exploring the influence of water exchange on the distribution of polycyclic aromatic hydrocarbons in marine sediments by numerical calculation model. J. Hydrol. 2021, 603, 126874. [Google Scholar] [CrossRef]
- Chao, X.; Jia, Y.; Shields, F.D.; Wang, S.S.Y.; Cooper, C.M. Three-dimensional numerical simulation of water quality and sediment-associated processes with application to a Mississippi Delta lake. J. Environ. Manag. 2010, 91, 1456–1466. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Zheng, B.; Wang, L.; Lei, K.; Nan, B. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao river estuary and the adjacent area, China. Chemosphere 2016, 149, 91–100. [Google Scholar] [CrossRef]
- Sankar, T.; Kumar, A.; Mahto, D.; Das, K.; Narayan, P.; Fukate, M.; Awachat, P.; Padghan, D.; Mohammad, F.; Al-Lohedan, H.A.; et al. The Health Risk and Source Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Soil of Industrial Cities in India. Toxics 2023, 11, 515. [Google Scholar] [CrossRef]
PAHs | TEFi | PAHs | TEFi |
---|---|---|---|
Naphtalene (NAP) | 0.001 | Benzo[a]anthracene BaA | 0.1 |
Acenaphthylene (ANY) | 0.001 | Chrysene (CHR) | 0.001 |
Acenaphthene (ANA) | 0.001 | Benzo[b]fluoranthene (BbF) | 0.1 |
Fluorene (FLU) | 0.001 | Benzo[k]fluoranthene (BkF) | 0.1 |
Fenanthrene (PHE) | 0.001 | Benzo[a]pyrene (BaP) | 1 |
Anthracene (ANT) | 0.01 | Indeno [1,2,3-cd]pyrene (IcdP) | 0.1 |
Fluoranthene (FLT) | 0.001 | Dibenzo[a,h]anthracene (DBA) | 1 |
Pyrene (PYR) | 0.001 | Benzo[g,h,i]perylene (BPE) | 0.01 |
Parameters | Unit | Value | Reference |
---|---|---|---|
EF | d/year | 350 | [31] |
ED | Year | 40 | [31] |
IRIngestion | mg/d | 100 | [31] |
SA | cm2/d | 5700 | [31] |
AF | mg/cm2 | 0.07 | [31] |
ABS | unitless | 0.13 | [31] |
AT | d | 70 × 365 | [31] |
PEF | m3/kg | 1.36 × 109 | [31] |
CSingestion | mg/(kg·d) | 7.3 | [32] |
CSdermal | mg/(kg·d) | 3.85 | [32] |
BW | kg | 70 | [32] |
Parameters | Unit | Value | Parameter | Unit | Value |
---|---|---|---|---|---|
Zero(th) Order Reaction Constant (In Previous Studies, Cheng, 2021) | mol/(L·s) | 0.003 | Percentage of Organics Adsorbed (In Previous Studies, Cheng, 2021) | % | 30.0 |
First Order Reaction Constant (In Previous Studies, Cheng, 2021) | d−1 | 0.017 | Percentage of Organism Adsorbed (In Previous Studies, Cheng, 2021) | % | 15.0 |
Volatilization Diffusion Flux (In Previous Studies, Cheng, 2021) | μg/(m2·d) | 0.723 | Percentage of Water Dissolved (In Previous Studies, Cheng, 2021) | % | 10.0 |
Atmospheric Deposition Flux (In Previous Studies, Cheng, 2021) | μg/d | 4.126 | Percentage of Particulates Adsorbed (In Previous Studies, Cheng, 2021) | % | 45.0 |
Transfusion Flux (In Previous Studies, Cheng, 2021) | m2 | 0.013 | Totally | % | 100.0 |
Parameter | Symbol | Unit | Calibration Frequency | Value Range | Parameter Value |
---|---|---|---|---|---|
The Seawater Viscosity Coefficient | Ve | m2/s | 7 | 1.44~1.57 | 1.50 |
The Chézy Coefficient | Ψ | m | 48 | 0.02~0.06 | 0.035 |
Transfer Coefficient For the Gas Film | kg | μg/(m2·d) | 9 | 0.73~0.78 | 0.76 |
Transfer Coefficient For the Liquid Film | kl | μg/(m2·d) | 12 | 4.12~4.19 | 4.15 |
The Diffusion Coefficient Between Water-Seabed | Dsw | μg/(m2·d) | 3 | 0.012~0.015 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Wang, Y.; Li, Y.; Kong, L.; Wang, X.; Han, J. A Multiphase Coupled Hydrodynamic Model for Fate and Transport Simulation of Polycyclic Aromatic Hydrocarbons in a Semi-Closed Narrow Bay. Toxics 2023, 11, 634. https://doi.org/10.3390/toxics11070634
Cheng J, Wang Y, Li Y, Kong L, Wang X, Han J. A Multiphase Coupled Hydrodynamic Model for Fate and Transport Simulation of Polycyclic Aromatic Hydrocarbons in a Semi-Closed Narrow Bay. Toxics. 2023; 11(7):634. https://doi.org/10.3390/toxics11070634
Chicago/Turabian StyleCheng, Jiayi, Ying Wang, Yuxia Li, Lingna Kong, Xiaomeng Wang, and Jianbo Han. 2023. "A Multiphase Coupled Hydrodynamic Model for Fate and Transport Simulation of Polycyclic Aromatic Hydrocarbons in a Semi-Closed Narrow Bay" Toxics 11, no. 7: 634. https://doi.org/10.3390/toxics11070634
APA StyleCheng, J., Wang, Y., Li, Y., Kong, L., Wang, X., & Han, J. (2023). A Multiphase Coupled Hydrodynamic Model for Fate and Transport Simulation of Polycyclic Aromatic Hydrocarbons in a Semi-Closed Narrow Bay. Toxics, 11(7), 634. https://doi.org/10.3390/toxics11070634