Disinfection By-Products Formation from Chlor(am)ination of Algal Organic Matter of Chlorella sorokiniana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Methods
2.2. Chlor(am)ination Tests and DBP Quantification
2.3. Experimental Design
2.4. Bromine Incorporation Factor (BIF)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Impact of AOM Concentration on DBP Formation
3.2. Effect of pH on DBP Formation
3.3. Effect of Humic Acid (HA) Concentration on DBP Formation
3.4. Effect of Bromide Concentration on DBP Formation
3.5. Multiple Parameters
3.6. Modeling DBP Yields
3.7. Discussion: Implications for Water Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Griffith, A.W.; Gobler, C.J. Harmful Algal Blooms: A Climate Change Co-Stressor in Marine and Freshwater Ecosystems. Harmful Algae 2020, 91, 101590. [Google Scholar] [CrossRef] [PubMed]
- Vilar, M.; Ferrão-Filho, A. (Eco)Toxicology of Cyanobacteria and Cyanotoxins: From Environmental Dynamics to Adverse Effects. Toxics 2022, 10, 648. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Li, P.; He, C.; Wang, Y.; Shi, Q. Eutrophication and Watershed Characteristics Shape Changes in Dissolved Organic Matter Chemistry along Two River-Estuarine Transects. Water Res. 2022, 214, 118196. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, K.T.O.; Alcântara, E.; de Souza Filho, C.R. Satellite Evidence for Pervasive Water Eutrophication in the Doce River Reservoirs Following the Collapse of the Fundao Dam in Brazil. Environ. Pollut. 2021, 272, 116014. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.K.; Baker, A.; Parsons, S.A.; Jefferson, B. Characterisation of Algogenic Organic Matter Extracted from Cyanobacteria, Green Algae and Diatoms. Water Res. 2008, 42, 3435–3445. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.; Lin, J.; Chen, P.; Huang, C. Chemical Structures of Extra- and Intra-Cellular Algogenic Organic Matters as Precursors to the Formation of Carbonaceous Disinfection Byproducts. Chem. Eng. J. 2017, 328, 1022–1030. [Google Scholar] [CrossRef]
- Naceradska, J.; Novotna, K.; Cermakova, L.; Cajthaml, T.; Pivokonsky, M. Investigating the Coagulation of Non-Proteinaceous Algal Organic Matter: Optimizing Coagulation Performance and Identification of Removal Mechanisms. J. Environ. Sci. 2019, 79, 25–34. [Google Scholar] [CrossRef]
- Pivokonsky, M.; Naceradska, J.; Kopecka, I.; Baresova, M.; Jefferson, B.; Li, X.; Henderson, R.K. The Impact of Algogenic Organic Matter on Water Treatment Plant Operation and Water Quality: A Review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 291–335. [Google Scholar] [CrossRef]
- Henderson, R.K.; Parsons, S.A.; Jefferson, B. The Impact of Differing Cell and Algogenic Organic Matter (AOM) Characteristics on the Coagulation and Flotation of Algae. Water Res. 2010, 44, 3617–3624. [Google Scholar] [CrossRef] [Green Version]
- Leite, L.d.S.; Ogura, A.P.; dos Santos, D.V.; Espíndola, E.L.G.; Daniel, L.A. Acute Toxicity of Disinfection By-Products from Chlorination of Algal Organic Matter to the Cladocerans Ceriodaphnia silvestrii and Daphnia similis: Influence of Bromide and Quenching Agent. Environ. Sci. Pollut. Res. 2022, 29, 35800–35810. [Google Scholar] [CrossRef]
- Li, X.; Rao, N.R.H.; Linge, K.L.; Joll, C.A.; Khan, S.; Henderson, R.K. Formation of Algal-Derived Nitrogenous Disinfection by-Products during Chlorination and Chloramination. Water Res. 2020, 183, 116047. [Google Scholar] [CrossRef] [PubMed]
- Park, K.Y.; Choi, S.Y.; Ahn, S.K.; Kweon, J.H. Disinfection By-Product Formation Potential of Algogenic Organic Matter from Microcystis Aeruginosa: Effects of Growth Phases and Powdered Activated Carbon Adsorption. J. Hazard. Mater. 2021, 408, 124864. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, X.J.; Zhu, L.X.; Liu, J.; He, W.J.; Han, H.D. Disinfection By-Products and Their Precursors in a Water Treatment Plant in North China: Seasonal Changes and Fraction Analysis. Sci. Total Environ. 2008, 397, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, B.; Liu, Y. Effect of Ozone on Algal Organic Matters as Precursors for Disinfection By-Products Production. Environ. Technol. 2014, 35, 1753–1759. [Google Scholar] [CrossRef]
- Fang, J.; Ma, J.; Yang, X.; Shang, C. Formation of Carbonaceous and Nitrogenous Disinfection By-Products from the Chlorination of Microcystis Aeruginosa. Water Res. 2010, 44, 1934–1940. [Google Scholar] [CrossRef]
- Wei, Y.Y.; Liu, Y.; Dai, R.H.; Liu, X.; Wu, J.J.; Shi, Z.; Ren, J.; Zhang, Y. Trihalomethanes and Haloacetic Acid Species from the Chlorination of Algal Organic Matter and Bromide. Water Sci. Technol. 2011, 63, 1111–1120. [Google Scholar] [CrossRef]
- Fang, J.; Yang, X.; Ma, J.; Shang, C.; Zhao, Q. Characterization of Algal Organic Matter and Formation of DBPs from Chlor(Am)Ination. Water Res. 2010, 44, 5897–5906. [Google Scholar] [CrossRef]
- EU Council Directive. Directive (EU) 2020/2184 of the European Parliament and of the Council; EU Council: Brussels, Belgium, 2020. [Google Scholar]
- Plewa, M.J.; Wagner, E.D.; Muellner, M.G.; Hsu, K.-M.; Richardson, S.D. Comparative Mammalian Cell Toxicity of N-DBPs and C-DBPs. Disinfection By-Products in Drinking Water. In Disinfection By-Products in Drinking Water: Occurrence, Formation, Helth Effects, and Control; American Chemical Society: Washington, DC, USA, 2008; Volume 995, pp. 36–50. ISBN 9780841269507. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum, 4th ed.; WHO: Geneva, Switzerland, 2017; ISBN 9789241549950. [Google Scholar]
- Goslan, E.H.; Seigle, C.; Purcell, D.; Henderson, R.; Parsons, S.A.; Jefferson, B.; Judd, S.J. Carbonaceous and Nitrogenous Disinfection By-Product Formation from Algal Organic Matter. Chemosphere 2017, 170, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.-L.; Westerhoff, P.; Baker, L.; Hu, Q.; Esparza-Soto, M.; Sommerfeld, M. Characteristics and Reactivity of Algae-Produced Dissolved Organic Carbon. J. Environ. Eng. 2005, 131, 1574–1582. [Google Scholar] [CrossRef]
- Sun, H.; Song, X.; Ye, T.; Hu, J.; Hong, H.; Chen, J.; Lin, H.; Yu, H. Formation of Disinfection By-Products during Chlorination of Organic Matter from Phoenix Tree Leaves and Chlorella Vulgaris. Environ. Pollut. 2018, 243, 1887–1893. [Google Scholar] [CrossRef]
- Huang, J.; Graham, N.; Templeton, M.R.; Zhang, Y.; Collins, C.; Nieuwenhuijsen, M. A Comparison of the Role of Two Blue-Green Algae in THM and HAA Formation. Water Res. 2009, 43, 3009–3018. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Xu, B.; Qi, F. Effect of Phosphate Loading on the Generation of Extracellular Organic Matters of Microcystis Aeruginosa and Its Derived Disinfection By-Products. Water. Air. Soil Pollut. 2016, 227, 264. [Google Scholar] [CrossRef]
- Zhou, S.; Zhu, S.; Shao, Y.; Gao, N. Characteristics of C-, N-DBPs Formation from Algal Organic Matter: Role of Molecular Weight Fractions and Impacts of Pre-Ozonation. Water Res. 2015, 72, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gao, N.; Li, L.; Zhu, M.; Yang, J.; Lu, X.; Zhang, Y. Disinfection By-Product Formation during Chlor(Am)Ination of Algal Organic Matters (AOM) Extracted from Microcystis Aeruginosa: Effect of Growth Phases, AOM and Bromide Concentration. Environ. Sci. Pollut. Res. 2017, 24, 8469–8478. [Google Scholar] [CrossRef]
- Ma, L.; Peng, F.; Dong, Q.; Li, H.; Yang, Z. Identification of the Key Biochemical Component Contributing to Disinfection Byproducts in Chlorinating Algogenic Organic Matter. Chemosphere 2022, 296, 133998. [Google Scholar] [CrossRef]
- Wang, X.X.; Liu, B.M.; Lu, M.F.; Li, Y.P.; Jiang, Y.Y.; Zhao, M.X.; Huang, Z.X.; Pan, Y.; Miao, H.F.; Ruan, W.Q. Characterization of Algal Organic Matter as Precursors for Carbonaceous and Nitrogenous Disinfection Byproducts Formation: Comparison with Natural Organic Matter. J. Environ. Manag. 2021, 282, 111951. [Google Scholar] [CrossRef] [PubMed]
- Nihemaiti, M.; Le Roux, J.; Croué, J.-P. Formation of Emerging Disinfection By-Products by Chlorination/Chloramination of Seawater Impacted by Algal Organic Matter. In Recent Progress in Desalination, Environmental and Marine Outfall Systems; Baawain, M., Choudri, B., Ahmed, M., Purnama, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 285–294. ISBN 9783319191232. [Google Scholar]
- Zhang, J.L.; Zheng, B.H.; Liu, L.S.; Wang, L.P.; Huang, M.S.; Wu, G.Y. Seasonal Variation of Phytoplankton in the DaNing River and Its Relationships with Environmental Factors after Impounding of the Three Gorges Reservoir: A Four-Year Study. Procedia Environ. Sci. 2010, 2, 1479–1490. [Google Scholar] [CrossRef] [Green Version]
- Rieper, M. Investigations on the Relationships between Algal Blooms and Bacterial Populations in the Schlei Fjord (Western Baltic Sea). Helgoländer Wiss. Meeresunters. 1976, 28, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Zou, S.; Huang, Z.; Wu, X.; Yu, X. Physiological and Genetic Regulation for High Lipid Accumulation by Chlorella Sorokiniana Strains from Different Environments of an Arctic Glacier, Desert, and Temperate Lake under Nitrogen Deprivation Conditions. Microbiol. Spectr. 2022, 10, e00394-22. [Google Scholar] [CrossRef]
- Reyna-Martinez, R.; Gomez-Flores, R.; López-Chuken, U.; Quintanilla-Licea, R.; Caballero-Hernandez, D.; Rodríguez-Padilla, C.; Beltrán-Rocha, J.C.; Tamez-Guerra, P. Antitumor Activity of Chlorella Sorokiniana and Scenedesmus Sp. Microalgae Native of Nuevo León State, México. PeerJ 2018, 2018, e4358. [Google Scholar] [CrossRef] [Green Version]
- Khalid, A.A.H.; Yaakob, Z.; Abdullah, S.R.S.; Takriff, M.S. Growth Improvement and Metabolic Profiling of Native and Commercial Chlorella Sorokiniana Strains Acclimatized in Recycled Agricultural Wastewater. Bioresour. Technol. 2018, 247, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Cuaresma, M.; Janssen, M.; Vílchez, C.; Wijffels, R.H. Productivity of Chlorella Sorokiniana in a Short Light-Path (SLP) Panel Photobioreactor under High Irradiance. Biotechnol. Bioeng. 2009, 104, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Kessler, E. Upper Limits of Temperature for Growth in Chlorella (Chlorophyceae). Plant Syst. Evol. 1985, 151, 67–71. [Google Scholar] [CrossRef]
- Leite, L.d.S.; Hoffmann, M.T.; de Vicente, F.S.; dos Santos, D.V.; Daniel, L.A. Adsorption of Algal Organic Matter on Activated Carbons from Alternative Sources: Influence of Physico-Chemical Parameters. J. Water Process Eng. 2021, 44, 102435. [Google Scholar] [CrossRef]
- Daniel, L.A.d.S.; Pivokonsky, M.; Novotna, K.; Branyikova, I.; Branyik, T. Interference of Model Wastewater Components with Flocculation of Chlorella Sorokiniana Induced by Calcium Phosphate Precipitates. Bioresour. Technol. 2019, 286, 121352. [Google Scholar] [CrossRef]
- APHA. Standard Methods for Examination of Water and Wastewater, 23rd ed.; APHA: Washington, DC, USA, 2017; ISBN 9780875532875. [Google Scholar]
- Health Canada. Chloramines in Drinking Water; Health Canada: Ottawa, ON, Canada, 2018. [Google Scholar]
- U.S. EPA. Method 551.1; Determination of Chlorination Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid-Liquid Extraction and Gas Chromatography with Electron-Capture Detection. United States Environmental Protection Agency: Cincinnati, OH, USA, 1995.
- Wengrat, S.; Bicudo, D.d.C. Spatial Evaluation of Water Quality in an Urban Reservoir (Billings Complex, Southeastern Brazil). Acta Limnol. Bras. 2011, 23, 200–216. [Google Scholar] [CrossRef]
- Alcântara, E.; Curtarelli, M.; Ogashawara, I.; Stech, M.; Souza, A. A System for Environmental Monitoring of Hydroelectric Reservoirs in Brazil. Rev. Ambient. Água 2014, 8, 1–17. [Google Scholar] [CrossRef]
- Khan, A.L.; Sokol, E.R.; McKnight, D.M.; Saunders, J.F.; Hohner, A.K.; Summers, R.S. Phytoplankton Drivers of Dissolved Organic Material Production in Colorado Reservoirs and the Formation of Disinfection By-Products. Front. Environ. Sci. 2021, 9, 673627. [Google Scholar] [CrossRef]
- Weinberg, H.S.; Krasner, S.W.; Richardson, S.D.; Thruston, A.D. The Occurrence of Disinfection By-Products (DBPs) of Health Concern in Drinking Water: Results of a Nationwide DBP Occurrence Study; U.S. Environmental Protection Agency: Washington, DC, USA, 2002.
- Bond, T.; Huang, J.; Graham, N.J.D.; Templeton, M.R. Examining the Interrelationship between DOC, Bromide and Chlorine Dose on DBP Formation in Drinking Water—A Case Study. Sci. Total Environ. 2014, 470–471, 469–479. [Google Scholar] [CrossRef]
- Magazinovic, R.S.; Nicholson, B.C.; Mulcahy, D.E.; Davey, D.E. Bromide Levels in Natural Waters: Its Relationship to Levels of Both Chloride and Total Dissolved Solids and the Implications for Water Treatment. Chemosphere 2004, 57, 329–335. [Google Scholar] [CrossRef]
- Liu, C.; Ersan, M.S.; Plewa, M.J.; Amy, G.; Karanfil, T. Formation of Regulated and Unregulated Disinfection Byproducts during Chlorination of Algal Organic Matter Extracted from Freshwater and Marine Algae. Water Res. 2018, 142, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Champagne, P.; McLellan, P.J. Models for Predicting Disinfection Byproduct (DBP) Formation in Drinking Waters: A Chronological Review. Sci. Total Environ. 2009, 407, 4189–4206. [Google Scholar] [CrossRef] [PubMed]
- Barrott, L. Chloral Hydrate: Formation and Removal by Drinking Water Treatment. J. Water Supply Res. Technol. AQUA 2004, 53, 381–390. [Google Scholar] [CrossRef]
- Bond, T.; Goslan, E.H.; Parsons, S.A.; Jefferson, B. A Critical Review of Trihalomethane and Haloacetic Acid Formation from Natural Organic Matter Surrogates. Environ. Technol. Rev. 2012, 1, 93–113. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Shang, C.; Westerhoff, P. Factors Affecting Formation of Haloacetonitriles, Haloketones, Chloropicrin and Cyanogen Halides during Chloramination. Water Res. 2007, 41, 1193–1200. [Google Scholar] [CrossRef]
- Zhang, X.; Minear, R.A. Decomposition of Trihaloacetic Acids and Formation of the Corresponding Trihalomethanes in Drinking Water. Water Res. 2002, 36, 3665–3673. [Google Scholar] [CrossRef]
- Gao, Z.C.; Lin, Y.L.; Xu, B.; Xia, Y.; Hu, C.Y.; Zhang, T.Y.; Qian, H.; Cao, T.C.; Gao, N.Y. Effect of Bromide and Iodide on Halogenated By-Product Formation from Different Organic Precursors during UV/Chlorine Processes. Water Res. 2020, 182, 116035. [Google Scholar] [CrossRef]
- Zhao, Z.; Ray, M.B.; Mao, T.; Sun, W. Impact of UV Irradiation on Disinfection By-Product Formation and Speciation from Post-Chlorination of Dissolved Organic Matter. AQUA Water Infrastruct. Ecosyst. Soc. 2021, 70, 1181–1191. [Google Scholar] [CrossRef]
- Singer, P.C. Humic Substances as Precursors for Potentially Harmful Disinfection By-Products. Water Sci. Technol. 1999, 40, 25–30. [Google Scholar] [CrossRef]
- Liu, C.; Ersan, M.S.; Wagner, E.; Plewa, M.J.; Amy, G.; Karanfil, T. Toxicity of Chlorinated Algal-Impacted Waters: Formation of Disinfection Byproducts vs. Reduction of Cyanotoxins. Water Res. 2020, 184, 116145. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, C.; Qi, F.; Xu, B. The Formation of Haloacetamides, as an Emerging Class of N-DBPs, from Chlor(Am)Ination of Algal Organic Matter Extracted from Microcystis Aeruginosa, Scenedesmus Quadricauda and Nitzschia Palea. RSC Adv. 2017, 7, 7679–7687. [Google Scholar] [CrossRef] [Green Version]
- Ersan, M.S.; Liu, C.; Amy, G.; Karanfil, T. The Interplay between Natural Organic Matter and Bromide on Bromine Substitution. Sci. Total Environ. 2019, 646, 1172–1181. [Google Scholar] [CrossRef]
- Yang, X.; Guo, W.; Shen, Q. Formation of Disinfection Byproducts from Chlor(Am)Ination of Algal Organic Matter. J. Hazard. Mater. 2011, 197, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Ersan, G.; Ersan, M.S.; Kanan, A.; Karanfil, T. Predictive Modeling of Haloacetonitriles under Uniform Formation Conditions. Water Res. 2021, 201, 117322. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.C.; Lin, J.L.; Chao, S.J.; Huang, C. Probing Algogenic Organic Matter (AOM) by Size-Exclusion Chromatography to Predict AOM-Derived Disinfection by-Product Formation. Sci. Total Environ. 2018, 645, 71–78. [Google Scholar] [CrossRef]
- Xue, K.; Yang, C.; He, Y. A Review of Technologies for Bromide and Iodide Removal from Water. Environ. Technol. Rev. 2023, 12, 129–148. [Google Scholar] [CrossRef]
- Zhu, M.; Gao, N.; Chu, W.; Zhou, S.; Zhang, Z.; Xu, Y.; Dai, Q. Impact of Pre-Ozonation on Disinfection by-Product Formation and Speciation from Chlor(Am)Ination of Algal Organic Matter of Microcystis Aeruginosa. Ecotoxicol. Environ. Saf. 2015, 120, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Sheng, D.; Wu, Y.; Sun, J.; Bu, L.; Zhu, S.; Zhou, S. Molecular Insights into Formation of Nitrogenous Disinfection Byproducts from Algal Organic Matter in UV-LEDs/Chlorine Process Based on FT-ICR Analysis. Sci. Total Environ. 2022, 812, 152457. [Google Scholar] [CrossRef]
AOM Concentration (mg DOC·L−1) | pH | HA Concentration (mg DOC·L−1) | Bromide Concentration (mg Br·L−1) |
---|---|---|---|
0.5, 1.0, 2.0, 4.0, 5.0, 7.5, and 10 | 5, 6, 7, 8, 9, and 10 | 0.10, 0.25, 0.50, 0.75, 1.00, and 1.50 | 0.10, 0.25, 0.50, 0.75, 1.00, and 1.50 |
Conditions | Composition | ||
C0 | 5 mg DOC·L−1 AOM | ||
C1 | 5 mg DOC·L−1 AOM + 0.1 mg DOC·L−1 HA + 0.1 mg Br·L−1 | ||
C2 | 5 mg DOC·L−1 AOM + 0.5 mg DOC·L−1 HA + 0.5 mg Br·L−1 | ||
C3 | 5 mg DOC·L−1 AOM + 1.0 mg DOC·L−1 HA + 1.0 mg Br·L−1 | ||
C4 | 5 mg DOC·L−1 AOM + 1.5 mg DOC·L−1 HA + 1.5 mg Br·L−1 |
Algal Species | Disinfection Parameters (Cl2:DOC/TOC(w·w−1); pH, Temperature, Contact Time) | DBPs (µg·mg DOC−1) | References | ||||
---|---|---|---|---|---|---|---|
THM | CH | HK | HAN | CPN | |||
Anabaena flos-aquae | Chlorination (5:1, 7.0, 20 °C, 7 d) | 26–26.6 | 0.39 | 0.16 | [21,24] | ||
Aphanizomenon flos-aquae | Chlorination (5:1, 7.0, 20 °C, 7 d) | 56.6 | 0.12 | 0.11 | [21] | ||
Asterionella formosa | Chlorination (5:1, 7.0, 20 °C, 7 d) | 18.7 | 0.53 | 0.24 | [21] | ||
Chaetoceros mulleri | Chlorination (5:1, 7.0, 20 °C, 7 d) | 30 | [22] | ||||
Chlorella vulgaris | Chlorination (10:1, 7.0, 20 °C, 3 d) | 23.7 | 3.5 | 2.1 | [23] | ||
Chlorella sorokiniana | Chlorination (5:1, 8.0, 20 °C, 7 d) | 57.9 | 46.0 | This study | |||
Chloramination (5:1, 8.0, 20 °C, 7 d) | 33.6 | 29.8 | 2.1 | 16.7 | 1.2 | ||
Melosira sp. | Chlorination (5:1, 7.0, 20 °C, 7 d) | 19.5 | 0.87 | 0.36 | [21] | ||
Microcystis aeruginosa | Chlorination (3–10:1, 7.0, 20–25 °C, 3–7 d) | 8–176.8 | 7.0–27.5 | 0.0–77.5 | 0.0–62.5 | 0.0–27.5 | [17,21,24,25,26,27,28] |
Chloramination (3–5:1, 7.0, 20–22 °C, 1–3 d) | 0.0–9.0 | 0.2–32.5 | 0.36–27.5 | 0.0–57.5 | 0.1–22.5 | [17,25,26,27] | |
Oscillatoria prolifera | Chlorination (5:1, 7.0, 20 °C, 7 d) | 30 | [22] | ||||
Scenedesmus quadricauda | Chlorination (5:1, 7.0, 20 °C, 7 d) | 48–64 | [22] | ||||
Scenedesmus subspicatus | Chlorination (5:1, 7.0, 20 °C, 7 d) | 19.9 | 1.10 | <LD | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, L.d.S.; dos Santos, D.V.; Paschoalato, C.F.P.R.; Bond, T.; Daniel, L.A. Disinfection By-Products Formation from Chlor(am)ination of Algal Organic Matter of Chlorella sorokiniana. Toxics 2023, 11, 690. https://doi.org/10.3390/toxics11080690
Leite LdS, dos Santos DV, Paschoalato CFPR, Bond T, Daniel LA. Disinfection By-Products Formation from Chlor(am)ination of Algal Organic Matter of Chlorella sorokiniana. Toxics. 2023; 11(8):690. https://doi.org/10.3390/toxics11080690
Chicago/Turabian StyleLeite, Luan de Souza, Danilo Vitorino dos Santos, Cristina Filomena Pereira Rosa Paschoalato, Tom Bond, and Luiz Antonio Daniel. 2023. "Disinfection By-Products Formation from Chlor(am)ination of Algal Organic Matter of Chlorella sorokiniana" Toxics 11, no. 8: 690. https://doi.org/10.3390/toxics11080690
APA StyleLeite, L. d. S., dos Santos, D. V., Paschoalato, C. F. P. R., Bond, T., & Daniel, L. A. (2023). Disinfection By-Products Formation from Chlor(am)ination of Algal Organic Matter of Chlorella sorokiniana. Toxics, 11(8), 690. https://doi.org/10.3390/toxics11080690