Availability of Using Honeybees as Bioindicators of Pesticide Exposure in the Vicinity of Agricultural Environments in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participating Apiaries and Sample Collection
2.2. Sample Treatment and Analysis
2.3. Data Management and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.-C.; McCarl, B.A. An investigation of the relationship between pesticide usage and climate change. Clim. Chang. 2001, 50, 475–487. [Google Scholar] [CrossRef]
- Delcour, I.; Spanoghe, P.; Uyttendaele, M. Literature review: Impact of climate change on pesticide use. Food Res. Int. 2015, 68, 7–15. [Google Scholar] [CrossRef]
- Jurewicz, J.; Hanke, W. Prenatal and childhood exposure to pesticides and neurobehavioral development: Review of epidemiological studies. Int. J. Occup. Med. Environ. Health 2008, 21, 121–132. [Google Scholar] [CrossRef]
- Spanoghe, P.; Maes, A.; Steurbaut, W. Limitation of point source pesticide pollution: Results of bioremediation system. Commun. Agric. Appl. Biol. Sci. 2004, 69, 719–732. [Google Scholar]
- Simaremare, S.R.S.; Hung, C.-C.; Yu, T.-H.; Hsieh, C.-J.; Yiin, L.-M. Association between Pesticides in House Dust and Residential Proximity to Farmland in a Rural Region of Taiwan. Toxics 2021, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Fenske, R.A.; Simcox, N.J.; Kalman, D. Pesticide exposure of children in an agricultural community: Evidence of household proximity to farmland and take home exposure pathways. Environ. Res. 2000, 84, 290–302. [Google Scholar] [PubMed]
- Gunier, R.; Riggs, P.; Ward, M.; Reynolds, P.; Rull, R.; Hertz, A.; Colt, J.; Metayer, C.; Nishioka, M.; Buffler, P. Proximity to agricultural pesticide use and concentrations in carpet dust. Epidemiology 2008, 19, S269–S270. [Google Scholar]
- Béranger, R.; Billoir, E.; Nuckols, J.R.; Blain, J.; Millet, M.; Bayle, M.-L.; Combourieu, B.; Philip, T.; Schüz, J.; Fervers, B. Agricultural and domestic pesticides in house dust from different agricultural areas in France. Environ. Sci. Pollut. Res. 2019, 26, 19632–19645. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Mehler, L.; Beckman, J.; Diebolt-Brown, B.; Prado, J.; Lackovic, M.; Waltz, J.; Mulay, P.; Schwartz, A.; Mitchell, Y.; et al. Acute Pesticide Illnesses Associated with Off-Target Pesticide Drift from Agricultural Applications: 11 States, 1998–2006. Environ. Health Perspect. 2011, 119, 1162–1169. [Google Scholar]
- Siddig, A.A.H.; Ellison, A.M.; Ochs, A.; Villar-Leeman, C.; Lau, M.K. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol. Indic. 2016, 60, 223–230. [Google Scholar] [CrossRef]
- Burger, J. Bioindicators: A review of their use in the environmental literature 1970–2005. Environ. Bioindic. 2006, 1, 136–144. [Google Scholar] [CrossRef]
- Porrini, C.; Sabatini, A.G.; Girotti, S.; Fini, F.; Monaco, L.; Celli, G.; Bortolotti, L.; Ghini, S. The death of honey bees and environmental pollution by pesticides: The honey bees as biological indicators. Bull. Insectol. 2003, 56, 147–152. [Google Scholar]
- Girotti, S.; Ghini, S.; Ferri, E.; Bolelli, L.; Colombo, R.; Serra, G.; Porrini, C.; Sangiorgi, S. Bioindicators and biomonitoring: Honeybees and hive products as pollution impact assessment tools for the Mediterranean area. Euro-Mediterr. J. Environ. Integr. 2020, 5, 62. [Google Scholar] [CrossRef]
- Stokstad, E. The case of the empty hives. Science 2007, 316, 970–972. [Google Scholar] [CrossRef] [PubMed]
- Brandt, A.; Gorenflo, A.; Siede, R.; Meixner, M.; Büchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J. Insect. Physiol. 2016, 86, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Hung, Y.-T.; Cheng, Q. A review of sub-lethal neonicotinoid insecticides exposure and effects on pollinators. Curr. Pollut. Rep. 2020, 6, 137–151. [Google Scholar] [CrossRef]
- Furlan, L.; Pozzebon, A.; Duso, C.; Simon-Delso, N.; Sánchez-Bayo, F.; Marchand, P.A.; Codato, F.; Bijleveld van Lexmond, M.; Bonmatin, J.M. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3: Alternatives to systemic insecticides. Environ. Sci. Pollut. Res. 2021, 28, 11798–11820. [Google Scholar]
- Sánchez-Bayo, F.; Goulson, D.; Pennacchio, F.; Nazzi, F.; Goka, K.; Desneux, N. Are bee diseases linked to pesticides?—A brief review. Environ. Int. 2016, 89, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Almasri, H.; Tavares, D.A.; Pioz, M.; Sené, D.; Tchamitchian, S.; Cousin, M.; Brunet, J.-L.; Belzunces, L.P. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicol. Environ. Saf. 2020, 203, 111013. [Google Scholar] [CrossRef]
- Ulziibayar, D.; Jung, C. Comparison of acute toxicity of different groups of pesticides to honey bee workers (Apis mellifera L.). J. Apic. 2019, 34, 305–313. [Google Scholar] [CrossRef]
- Belsky, J.; Joshi, N.K. Effects of fungicide and herbicide chemical exposure on Apis and non-Apis bees in agricultural landscape. Front. Environ. Sci. 2020, 8, 81. [Google Scholar] [CrossRef]
- Farruggia, F.T.; Garber, K.; Hartless, C.; Jones, K.; Kyle, L.; Mastrota, N.; Milone, J.P.; Sankula, S.; Sappington, K.; Stebbins, K. A retrospective analysis of honey bee (Apis mellifera) pesticide toxicity data. PLoS ONE 2022, 17, e0265962. [Google Scholar] [CrossRef] [PubMed]
- Migdal, P.; Murawska, A.; Berbeć, E.; Plotnik, M.; Skorus, A.; Latarowski, K. Selected Biochemical Markers Change after Oral Administration of Pesticide Mixtures in Honey Bees. Toxics 2022, 10, 590. [Google Scholar] [CrossRef]
- Zawislak, J.; Adamczyk, J.; Johnson, D.R.; Lorenz, G.; Black, J.; Hornsby, Q.; Stewart, S.D.; Joshi, N. Comprehensive survey of area-wide agricultural pesticide use in southern United States row crops and potential impact on honey bee colonies. Insects 2019, 10, 280. [Google Scholar] [CrossRef]
- Main, A.R.; Hladik, M.L.; Webb, E.B.; Goyne, K.W.; Mengel, D. Beyond neonicotinoids–Wild pollinators are exposed to a range of pesticides while foraging in agroecosystems. Sci. Total Environ. 2020, 742, 140436. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.T.; Hladik, M.L.; Guzman, A.; Winsemius, S.; Bautista, A.; Kremen, C.; Mills, N.J. Pesticide exposure of wild bees and honey bees foraging from field border flowers in intensively managed agriculture areas. Sci. Total Environ. 2022, 831, 154697. [Google Scholar] [CrossRef]
- Ostiguy, N.; Drummond, F.A.; Aronstein, K.; Eitzer, B.; Ellis, J.D.; Spivak, M.; Sheppard, W.S. Honey bee exposure to pesticides: A four-year nationwide study. Insects 2019, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Berg, C.J.; King, H.P.; Delenstarr, G.; Kumar, R.; Rubio, F.; Glaze, T. Glyphosate residue concentrations in honey attributed through geospatial analysis to proximity of large-scale agriculture and transfer off-site by bees. PLoS ONE 2018, 13, e0198876. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-C.; Huang, F.-J.; Yang, Y.-Q.; Hsieh, C.-J.; Tseng, C.-C.; Yiin, L.-M. Pesticides in indoor and outdoor residential dust: A pilot study in a rural county of Taiwan. Environ. Sci. Pollut. Res. 2018, 25, 23349–23356. [Google Scholar] [CrossRef]
- Żaneta Bargańska, M.S.; Namieśnik, J. Determination of pesticide residues in honeybees using modified QUEChERS sample work-up and liquid chromatography-tandem mass spectrometry. Molecules 2014, 19, 14. [Google Scholar] [CrossRef]
- Fernández, M.; Picó, Y.; Manes, J. Analytical methods for pesticide residue determination in bee products. J. Food Prot. 2002, 65, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Kubik, M.; Nowacki, J.; Pidek, A.; Warakomska, Z.; Michalczuk, L.; Goszczyñski, W. Pesticide residues in bee products collected from cherry trees protected during blooming period with contact and systemic fungicides. Apidologie 1999, 30, 521–532. [Google Scholar] [CrossRef]
- Kubik, M.; Nowacki, J.; Pidek, A.; Warakomska, Z.; Michalczuk, L.; Goszczyñski, W.; Dwużpnik, B. Residues of captan (contact) and difenoconazole (systemic) fungicides in bee products from an apple orchard. Apidologie 2000, 31, 531–541. [Google Scholar] [CrossRef]
- Claudianos, C.; Ranson, H.; Johnson, R.; Biswas, S.; Schuler, M.; Berenbaum, M.; Feyereisen, R.; Oakeshott, J.G. A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 2006, 15, 615–636. [Google Scholar] [CrossRef]
- Gong, Y.; Diao, Q. Current knowledge of detoxification mechanisms of xenobiotic in honey bees. Ecotoxicology 2017, 26, 1–12. [Google Scholar] [CrossRef]
- Sartori, F.; Vidrio, E. Environmental fate and ecotoxicology of paraquat: A California perspective. Toxicol. Environ. Chem. 2018, 100, 479–517. [Google Scholar] [CrossRef]
- Lock, E.A.; Wilks, M.F. Paraquat. In Hayes’ Handbook of Pesticide Toxicology, 3rd ed.; Krieger, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 1, pp. 1771–1827. [Google Scholar]
- Halm, M.-P.; Rortais, A.; Arnold, G.; Taséi, J.; Rault, S. New risk assessment approach for systemic insecticides: The case of honey bees and imidacloprid (Gaucho). Environ. Sci. Technol. 2006, 40, 2448–2454. [Google Scholar] [CrossRef]
Type and Name | Analytical Method | Retention Time (min) | Main Use for Agriculture, Environmental Sanitation, or Both |
---|---|---|---|
Insecticide | |||
Acetamiprid | LC-MS | 2.31 | Agriculture |
Carbaryl | GC-MS | 27.21 | Agriculture |
Carbofuran | GC-MS | 23.92 | Agriculture |
Chlorpyrifos | GC-MS | 8.62 | Both |
Cypermethrin | GC-MS | 22.71 | Agriculture |
Fipronil | GC-MS | 6.31 | Both |
Imidacloprid | LC-MS | 1.93 | Both |
Permethrin | GC-MS | 21.92 | Both |
Prallethrin | GC-MS | 21.43 | Environmental sanitation |
Tetramethrin | GC-MS | 20.51 | Environmental sanitation |
Herbicide | |||
Glufosinate | LC-MS | 1.39 | Agriculture |
Glyphosate | LC-MS | 1.13 | Agriculture |
Paraquat | LC-MS | 3.29 | Agriculture |
Fungicide | |||
Benomyl | LC-MS | 5.41 | Agriculture |
Chlorothalonil | LC-MS | 7.43 | Agriculture |
Mancozeb | GC-MS | 11.76 | Agriculture |
Propineb | GC-MS | 12.44 | Agriculture |
Sample Type | Pesticide | DF (%) | 50th Percentile (ng/g) | 75th Percentile (ng/g) | Maximum (ng/g) |
---|---|---|---|---|---|
Bee (n = 112) | Insecticide | ||||
Carbaryl | 50.30 | 114.18 | 126.25 | 726.58 | |
Carbofuran | 44.68 | 207.63 | 254.31 | 823.22 | |
Chlorpyrifos | 41.03 | 366.21 | 403.64 | 331.35 | |
Herbicide | |||||
Glyphosate | 32.07 | 231.26 | 247.11 | 523.26 | |
Paraquat | 16.11 | 184.32 | 246.31 | 677.85 | |
Fungicide | |||||
Benomyl | 21.58 | 71.19 | 73.39 | 763.09 | |
Mancozeb | 22.19 | 126.76 | 215.33 | 449.11 | |
Propineb | 25.08 | 78.86 | 105.22 | 892.26 | |
Honey (n = 28) | Insecticide | ||||
Carbaryl | 3.57 | LOD | LOD | 50.23 | |
Carbofuran | ND | LOD | LOD | LOD | |
Chlorpyrifos | 7.14 | LOD | LOD | 79.22 | |
Herbicide | |||||
Glyphosate | ND | LOD | LOD | LOD | |
Paraquat | ND | LOD | LOD | LOD | |
Fungicide | |||||
Benomyl | 3.57 | LOD | LOD | 43.37 | |
Mancozeb | 7.14 | LOD | LOD | 126.25 | |
Propineb | 10.71 | LOD | LOD | 79.18 | |
Dust (n = 180) | Insecticide | ||||
Carbaryl | 47.78 | 337.26 | 368.54 | 2314.35 | |
Carbofuran | 59.44 | 206.54 | 245.33 | 2033.54 | |
Chlorpyrifos | 41.11 | 191.25 | 197.65 | 2778.52 | |
Herbicide | |||||
Glyphosate | 62.22 | 306.54 | 377.52 | 2788.5 | |
Paraquat | 52.22 | 317.85 | 404.17 | 1926.3 | |
Fungicide | |||||
Benomyl | 22.78 | 207.15 | 236.74 | 885.39 | |
Mancozeb | 36.11 | 155.23 | 283.31 | 1943.25 | |
Propineb | 23.89 | 289.65 | 303.97 | 7336.47 |
Pesticide Type | Distance from Apiary to Dust Collecting Location | |||||
---|---|---|---|---|---|---|
Near (0–1000 m) n = 84 | Middle (300–1000 m) n = 53 | Far (1000–5000 m) n = 43 | ||||
r | p | r | p | r | p | |
Insecticide | −0.386 | 0.155 | 0.075 | 0.791 | 0.674 | 0.006 |
Herbicide | 0.838 | <0.001 | 0.811 | <0.001 | 0.467 | 0.08 |
Fungicide | 0.783 | <0.001 | 0.834 | <0.001 | 0.752 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, C.-C.; Yiin, L.-M. Availability of Using Honeybees as Bioindicators of Pesticide Exposure in the Vicinity of Agricultural Environments in Taiwan. Toxics 2023, 11, 703. https://doi.org/10.3390/toxics11080703
Hung C-C, Yiin L-M. Availability of Using Honeybees as Bioindicators of Pesticide Exposure in the Vicinity of Agricultural Environments in Taiwan. Toxics. 2023; 11(8):703. https://doi.org/10.3390/toxics11080703
Chicago/Turabian StyleHung, Chien-Che, and Lih-Ming Yiin. 2023. "Availability of Using Honeybees as Bioindicators of Pesticide Exposure in the Vicinity of Agricultural Environments in Taiwan" Toxics 11, no. 8: 703. https://doi.org/10.3390/toxics11080703
APA StyleHung, C. -C., & Yiin, L. -M. (2023). Availability of Using Honeybees as Bioindicators of Pesticide Exposure in the Vicinity of Agricultural Environments in Taiwan. Toxics, 11(8), 703. https://doi.org/10.3390/toxics11080703