The Hematological and Biochemical Effects from Pesticide Exposure on Thai Vegetable Farmers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistics of Hazardous Chemicals Imported into Thailand. Available online: https://www.doa.go.th/ard/?page_id=386 (accessed on 20 May 2022).
- Panuwet, P.; Siriwong, W.; Prapamontol, T.; Ryan, P.B.; Fiedler, N.; Robson, M.G.; Barr, D.B. Agricultural Pesticide Management in Thailand: Situation and Population Health Risk. Environ. Sci. Policy 2012, 17, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Kongtip, P.; Nankongnab, N.; Mahaboonpeeti, R.; Bootsikeaw, S.; Batsungnoen, K.; Hanchenlaksh, C.; Tipayamongkholgul, M.; Woskie, S. Differences among Thai agricultural workers’ health, working conditions, and pesticide use by farm type. Ann. Work. Expo. Health 2018, 62, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Köhler, H.R.; Triebskorn, R. Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond? Science 2013, 341, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Ziliotto, M.; Kulmann-Leal, B.; Roitman, A.; Bogo Chies, J.A.; Ellwanger, J.H. Pesticide Pollution in the Brazilian Pampa: Detrimental Impacts on Ecosystems and Human Health in a Neglected Biome. Pollutants 2023, 3, 280–292. [Google Scholar] [CrossRef]
- Boedeker, W.; Watts, M.; Clausing, P.; Marquez, E. The global distribution of acute unintentional pesticide poisoning: Estimations based on a systematic review. BMC Public Health 2020, 20, 1875. [Google Scholar] [CrossRef]
- Kisby, G.E.; Muniz, J.F.; Scherer, J.; Lasarev, M.R.; Koshy, M.; Kow, Y.W.; McCauley, L. Oxidative stress and DNA damage in agricultural workers. J. Agromed. 2009, 14, 206–214. [Google Scholar] [CrossRef]
- Ledda, C.; Cannizzaro, E.; Cinà, D.; Filetti, V.; Vitale, E.; Paravizzini, G.; Di Naso, C.; Iavicoli, I.; Rapisarda, V. Oxidative stress and DNA damage in agricultural workers after exposure to pesticides. J. Occup. Med. Toxicol. 2021, 16, 1. [Google Scholar] [CrossRef]
- Alavanja, M.C.; Hoppin, J.A.; Kamel, F. Health effects of chronic pesticide exposure: Cancer and neurotoxicity. Annu. Rev. Public Health 2004, 25, 155–197. [Google Scholar] [CrossRef]
- Bassil, K.L.; Vakil, C.; Sanborn, M.; Cole, D.C.; Kaur, J.S.; Kerr, K.J. Cancer health effects of pesticides: Systematic review. Can. Fam. Physician 2007, 53, 1704–1711. [Google Scholar]
- Xie, B.; Hu, Y.; Liang, Z.; Liu, B.; Zheng, X.; Xie, L. Association between pesticide exposure and risk of kidney cancer: A meta-analysis. Onco Targets Ther. 2016, 28, 3893–3900. [Google Scholar] [CrossRef] [PubMed]
- VoPham, T.; Bertrand, K.A.; Hart, J.E.; Laden, F.; Brooks, M.M.; Yuan, J.M.; Talbott, E.O.; Ruddell, D.; Chang, C.H.; Weissfeld, J.L. Pesticide exposure and liver cancer: A review. Cancer Causes Control 2017, 28, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, G.; Beane Freeman, L.E.; Shearer, J.J.; Lerro, C.C.; Koutros, S.; Parks, C.G.; Blair, A.; Lynch, C.F.; Lubin, J.H.; Sandler, D.P.; et al. Occupational pesticide use and risk of renal cell carcinoma in the Agricultural Health Study. Environ. Health Perspect. 2020, 128, 67011. [Google Scholar] [CrossRef] [PubMed]
- Khan, D.A.; Bhatti, M.M.; Khan, F.A.; Naqvi, S.T.; Karam, A. Adverse effects of pesticides residues on biochemical markers in Pakistani tobacco farmers. Int. J. Clin. Exp. Med. 2008, 1, 274–282. [Google Scholar]
- Araoud, M.; Neffeti, F.; Douki, W.; Hfaiedh, H.B.; Akrout, M.; Hassine, M.; Najjar, M.F.; Kenani, A. Adverse effects of pesticides on biochemical and haematological parameters in Tunisian agricultural workers. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 243–247. [Google Scholar] [CrossRef]
- Patil, J.A.; Patil, A.J.; Govindwar, S.P. Biochemical effects of various pesticides on sprayers of grape gardens. Indian J. Clin. Biochem. 2003, 18, 16–22. [Google Scholar] [CrossRef]
- Rastogi, S.K.; Singh, V.K.; Kesavachandran, C.; Jyoti Siddiqui, M.K.; Mathur, N.; Bharti, R.S. Monitoring of plasma butyrylcholinesterase activity and hematological parameters in pesticide sprayers. Indian J. Occup. Environ. Med. 2008, 12, 29–32. [Google Scholar] [CrossRef]
- Fareed, M.; Pathak, M.K.; Bihari, V.; Kamal, R.; Srivastava, A.K.; Kesavachandran, C.N. Adverse respiratory health and hematological alterations among agricultural workers occupationally exposed to organophosphate pesticides: A cross-sectional study in North India. PLoS ONE 2013, 8, e69755. [Google Scholar] [CrossRef]
- Ahmadi, N.; Mandegary, A.; Jamshidzadeh, A.; Mohammadi-Sardoo, M.; Mohammadi-Sardo, M.; Salari, E.; Pourgholi, L. Hematological abnormality, oxidative stress, and genotoxicity induction in the greenhouse pesticide sprayers; investigating the role of NQO1 gene polymorphism. Toxics 2018, 6, 13. [Google Scholar] [CrossRef]
- Leili, M.; Ghafiuri-Khosroshahi, A.; Poorolajal, J.; Samiee, F.; Smadi, M.T.; Bahrami, A. Pesticide residues levels as hematological biomarkers-a case study, blood serum of greenhouse workers in the city of Hamadan, Iran. Environ. Sci. Pollut. Res. Int. 2022, 29, 38450–38463. [Google Scholar] [CrossRef]
- Khan, M.; Nazir, I.; Nazir, S.; Wadood, M.; Irfan, G.; Nasir, S.S. Impact of chronic exposure of organophosphorus pesticide on hematological and biochemical parameters of agriculture workers: A cross sectional study. J. Pharm. Negat. Results 2023, 14, 3059–3067. [Google Scholar]
- Suwannahong, K.; Sridon, A.; Pongstaporn, W.; Thongmuang, P.; Sudjaroen, Y. Biochemical and Hematological Status in Rice farmers with Chronic Pesticide Exposure, Suphan Buri, Thailand. Indian J. Public Health Res. Dev. 2020, 11, 1285–1290. [Google Scholar]
- Patil, J.A.; Patil, A.J.; Sontakke, A.V.; Govindwar, S.P. Occupational pesticides exposure of sprayers of grape gardens in western Maharashtra (India): Effects on liver and kidney function. J. Basic. Clin. Physiol. Pharmacol. 2009, 20, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Manfo, F.P.T.; Mboe, S.A.; Nantia, E.A.; Ngoula, F.; Telefo, P.B.; Moundipa, P.F.; Cho-Ngwa, F. Evaluation of the effects of agro pesticides use on liver and kidney function in farmers from Buea, Cameroon. J. Toxicol. 2020, 2020, 2305764. [Google Scholar] [CrossRef] [PubMed]
- Aroonvilairat, S.; Kespichayawattana, W.; Sornprachum, T.; Chaisuriya, P.; Siwadune, T.; Ratanabanangkoon, K. Effect of pesticide exposure on immunological, hematological and biochemical parameters in Thai orchid farmers—A cross-sectional study. Int. J. Environ. Res. Public Health 2015, 12, 5846–5861. [Google Scholar] [CrossRef]
- Sudjaroen, Y.; Suwannahong, K. Comparison of biochemical, hematological parameters and pesticide expose-related symptoms among organic and non-organic farmers, Singburi, Thailand. Asian J. Pharm. 2017, 11, 235–241. [Google Scholar]
- Jayasumana, C.; Paranagama, P.; Agampodi, S.; Wijewardane, C.; Gunatilake, S.; Siribaddana, S. Drinking well water and occupational exposure to Herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka. Environ. Health 2015, 14, 6. [Google Scholar] [CrossRef]
- Valcke, M.; Levasseur, M.E.; Soares da Silva, A.; Wesseling, C. Pesticide exposures and chronic kidney disease of unknown etiology: An epidemiologic review. Environ. Health 2017, 16, 49. [Google Scholar] [CrossRef]
- Prudente, I.R.G.; Cruz, C.L.; Nascimento, L.C.; Kaiser, C.C.; Guimarães, A.G. Evidence of risks of renal function reduction due to occupational exposure to agrochemicals: A systematic review. Environ. Toxicol. Pharmacol. 2018, 63, 21–28. [Google Scholar] [CrossRef]
- Wan, E.T.; Darssan, D.; Karatela, S.; Reid, S.A.; Osborne, N.J. Association of pesticides and kidney function among adults in the US population 2001–2010. Int. J. Environ. Res. Public Health 2021, 18, 10249. [Google Scholar] [CrossRef]
- Lebov, J.F.; Engel, L.S.; Richardson, D.; Hogan, S.L.; Hoppin, J.A.; Sandler, D.P. Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 2016, 73, 3–12. [Google Scholar] [CrossRef]
- García-Trabanino, R.; Jarquín, E.; Wesseling, C.; Johnson, R.J.; González-Quiroz, M.; Weiss, I.; Glaser, J.; José Vindell, J.; Stockfelt, L.; Roncal, C.; et al. Heat stress, dehydration, and kidney function in sugarcane cutters in El Salvador--A cross-shift study of workers at risk of Mesoamerican nephropathy. Environ. Res. 2015, 142, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Abdul, K.S.M.; De Silva, P.M.C.S.; Ekanayake, E.M.D.V.; Thakshila, W.A.K.G.; Gunarathna, S.D.; Gunasekara, T.D.K.S.C.; Jayasinghe, S.S.; Asanthi, H.B.; Chandana, E.P.S.; Chaminda, G.G.T.; et al. Occupational paraquat and glyphosate exposure may decline renal functions among rural farming communities in Sri Lanka. Int. J. Environ. Res. Public Health 2021, 18, 3278. [Google Scholar] [CrossRef] [PubMed]
- Prudente, I.R.G.; Souza, B.R.S.; Nascimento, L.C.; Gonçalves, V.S.D.S.; Silva, D.S.D.; Rabelo, T.K.; Alves, O.; Junior Santos, A.C.; de Rezende Neto, J.M.; Tavares, D.D.S.; et al. Nephrotoxic effects caused by occupational exposure to agrochemicals in a region of Northeastern Brazil: A cross-sectional study. Environ. Toxicol. Chem. 2021, 40, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Shearer, J.J.; Sandler, D.P.; Andreotti, G.; Murata, K.; Shrestha, S.; Parks, C.G.; Liu, D.; Alavanja, M.C.; Landgren, O.; Beane Freeman, L.E.; et al. Pesticide use and kidney function among farmers in the Biomarkers of Exposure and Effect in Agriculture study. Environ. Res. 2021, 199, 111276. [Google Scholar] [CrossRef] [PubMed]
- Sombatsawat, E.; Barr, D.B.; Panuwet, P.; Robson, M.G.; Siriwong, W. Pesticide-induced changes in cholinesterase activity and chronic kidney disease of unknown etiology among farmers in Nakhon Ratchasima, Thailand. Hum. Ecol. Risk Assess. 2021, 27, 2038–2050. [Google Scholar] [CrossRef]
- Blair, A.; Tarone, R.; Sandler, D.; Lynch, C.F.; Rowland, A.; Wintersteen, W.; Steen, W.C.; Samanic, C.; Dosemeci, M.; Alavanja, M.C. Reliability of reporting on life-style and agricultural factors by a sample of participants in the Agricultural Health Study from Iowa. Epidemiology 2002, 13, 94–99. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Rothman, K.J. No adjustments are needed for multiple comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef]
- Bender, R.; Lange, S. Adjusting for multiple testing—When and how? J. Clin. Epidemiol. 2001, 54, 343–349. [Google Scholar] [CrossRef]
- Schreinemachers, D.M.; Ghio, A.J. Effects of environmental pollutants on cellular iron homeostasis and ultimate links to human disease. Environ. Health Insights 2016, 10, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Wafa, T.; Nadia, K.; Amel, N.; Ikbal, C.; Insaf, T.; Asma, K.; Hedi, M.A.; Mohamed, H. Oxidative stress, hematological and biochemical alterations in farmers exposed to pesticides. J. Environ. Sci. Health B 2013, 48, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Celik, I.; Yilmaz, Z.; Turkoglu, V. Hematotoxic and hepatotoxic effects of dichlorvos at sublethal dosages in rats. Environ. Toxicol. 2009, 24, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Karami-Mohajeri, S.; Ahmadipour, A.; Rahimi, H.R.; Abdollahi, M. Adverse effects of organophosphorus pesticides on the liver: A brief summary of four decades of research. Arh. Za Hig. Rada Toksikol. 2017, 68, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.N.; Desai, P.V. Changes in renal clearance and renal tubular function in albino mice under the influence of Dichlorvos. Pestic. Biochem. Physiol. 2008, 91, 160–169. [Google Scholar] [CrossRef]
- Sobolev, V.E.; Sokolova, M.O.; Jenkins, R.O.; Goncharov, N.V. Molecular mechanisms of acute organophosphate nephrotoxicity. Int. J. Mol. Sci. 2022, 23, 8855. [Google Scholar] [CrossRef]
- Taira, K.; Kawakami, T.; Weragoda, S.K.; Herath, H.M.A.S.; Ikenaka, Y.; Fujioka, K.; Hemachandra, M.; Pallewatta, N.; Aoyama, Y.; Ishizuka, M.; et al. Urinary concentrations of neonicotinoid insecticides were related to renal tubular dysfunction and neuropsychological complaints in Dry-zone of Sri Lanka. Sci. Rep. 2021, 11, 22484. [Google Scholar] [CrossRef]
- Liu, B.C.; Tang, T.T.; Lv, L.L.; Lan, H.Y. Renal tubule injury: A driving force toward chronic kidney disease. Kidney Int. 2018, 93, 568–579. [Google Scholar] [CrossRef]
- Mueangkhiao, P.; Siviroj, P.; Sapbamrer, R.; Khacha-Ananda, S.; Lungkaphin, A.; Seesen, M.; Jaikwang, P.; Wunnapuk, K. Biological variation in kidney injury and kidney function biomarkers among farmers in Lamphun province, Thailand. Environ. Sci. Pollut. Res. Int. 2020, 27, 12386–12394. [Google Scholar] [CrossRef]
- Kshirsagar, A.V.; Zeitler, E.M.; Weaver, A.; Franceschini, N.; Engel, L.S. Environmental Exposures and Kidney Disease. Kidney360 2022, 3, 2174–2182. [Google Scholar] [CrossRef]
Factor | Pesticide Users (n = 57) | Non-Users (n = 67) | p-Value |
---|---|---|---|
Sex | <0.001 | ||
Male | 35 (61.4%) | 12 (17.9%) | |
Female | 22 (38.6%) | 55 (82.1%) | |
Age | 0.153 | ||
≤35 years | 5 (8.8%) | 13 (19.4%) | |
36–55 years | 34 (59.6%) | 40 (59.7%) | |
>55 years | 18 (31.6%) | 14 (20.9%) | |
Body mass index (BMI) | 0.261 | ||
Underweight (<18.5 kg/m2) | 1 (1.8%) | 2 (3.0%) | |
Normal (18.5–22.9 kg/m2) | 21 (36.8%) | 25 (37.3%) | |
Overweight (23.0–29.9 kg/m2) | 21 (36.8%) | 15 (22.4%) | |
Obese (≥30 kg/m2) | 14 (24.6%) | 25 (37.3%) | |
Marital status | 0.079 | ||
Single/Divorced/Widowed | 6 (10.5%) | 15 (22.4%) | |
Married | 51 (89.5%) | 52 (77.6%) | |
Education | 0.129 | ||
Primary school | 35 (61.4%) | 32 (47.8%) | |
Secondary school or higher | 22 (38.6%) | 35 (52.2%) | |
Monthly family income | 0.816 | ||
<10,000 Baht (<285 USD) | 25 (43.9%) | 28 (41.8%) | |
≥10,000 Baht (≥285 USD) | 32 (56.1%) | 39 (58.2%) | |
Farm proximity | 0.489 | ||
<300 m. | 23 (40.4%) | 23 (34.3%) | |
>300 m. | 34 (59.6%) | 44 (65.7%) | |
Work experience | 0.079 | ||
≤5 years | 11 (19.3%) | 23 (34.3%) | |
6–10 years | 9 (15.8%) | 14 (20.9%) | |
11–20 years | 13 (22.8%) | 15 (22.4%) | |
≥21 years | 24 (42.1%) | 15 (22.4%) | |
Farm size | 0.170 | ||
<8000 m2 | 27 (47.4%) | 40 (59.7%) | |
≥8000 m2 | 30 (52.6%) | 27 (40.3%) | |
Growing babycorn | 0.186 | ||
No | 23 (40.4%) | 35 (52.2%) | |
Yes | 34 (59.6%) | 32 (47.8%) | |
Other vegetable cultivation | 0.389 | ||
No | 22 (38.6%) | 31 (46.3%) | |
Yes | 35 (61.4%) | 36 (53.7%) | |
Growing rice | 0.252 | ||
No | 40 (70.2%) | 53 (79.1%) | |
Yes | 17 (29.8%) | 14 (20.9%) |
Chemical Class | Common Name | WHO Class | Pesticide Users (n = 57) |
---|---|---|---|
Herbicide | 30 (52.6%) | ||
Bipyridylium | Paraquat | II | 14 (24.6%) |
Glycine | Glyphosate | III | 11 (19.3%) |
Phenoxy | 2,4-D | II | 3 (5.3%) |
Chloroacetamide/Anilide | Alachlor | II | 1 (1.8%) |
Triazines | Atrazine | III | 1 (1.8%) |
Insecticide | 48 (84.2%) | ||
Organophosphate | Chlorpyrifos | II | 1 (1.8%) |
Methamidophos | Ib | 1 (1.8%) | |
Dichlorvos | Ib | 1 (1.8%) | |
Profenofos | II | 1 (1.8%) | |
Carbamate | Carbaryl | II | 12 (21.0%) |
Methomyl | Ib | 8 (14.0%) | |
Carbofuran | Ib | 3 (5.3%) | |
Carbosulfan | II | 2 (3.5%) | |
Neonicotinoid | Acetamiprid | II | 15 (26.3%) |
Imidacloprid | II | 8 (14.0%) | |
Dinotefuran | III | 1 (1.8%) | |
Avermectin | Abamectin | Ib | 7 (12.3%) |
Emamectin | II | 4 (7.0%) | |
Pyrethroid | Cypermethrin | II | 4 (7.0%) |
Phenylpyrazole | Fipronil | II | 5 (8.8%) |
Spinosyn | Spinetoram | U | 4 (7.0%) |
Outcome | Pesticide Users (n = 57) | Non-Users (n = 67) | p-Value | |
---|---|---|---|---|
Mean (SD) | Mean (SD) | |||
WBC (mm3) | All | 6979 (1596) | 6671 (1669) | 0.299 a |
Male | 7021 (1612) | 6818 (1323) | 0.696 a | |
Female | 6912 (1605) | 6639 (1744) | 0.528 a | |
HGB (g/dL) | All | 13.76 (1.56) | 12.92 (1.71) | 0.005 a |
Male | 14.44 (1.20) | 14.73 (1.42) | 0.497 a | |
Female | 12.69 (1.48) | 12.52 (1.51) | 0.666 a | |
HCT (%) | All | 42.84 (4.37) | 41.64 (5.10) | 0.166 a |
Male | 44.51 (3.45) | 47.08 (4.17) | 0.040 a | |
Female | 40.18 (4.44) | 40.46 (4.50) | 0.810 a | |
MCV (fL) | All | 84.91 (10.91) | 81.22 (12.44) | 0.149 b |
Male | 87.76 (9.33) | 83.08 (13.07) | 0.294 b | |
Female | 80.36 (11.88) | 80.81 (12.39) | 0.588 b | |
MCH (pg) | All | 27.31 (4.05) | 25.24 (4.07) | 0.005 b |
Male | 28.56 (3.60) | 26.01 (4.20) | 0.047 b | |
Female | 25.31 (4.00) | 25.08 (4.06) | 0.822 b | |
MCHC (g/dL) | All | 32.11 (1.29) | 31.05 (0.67) | <0.001 b |
Male | 32.48 (1.34) | 31.29 (0.48) | 0.017 b | |
Female | 31.53 (0.96) | 31.00 (0.69) | 0.014 b | |
RBC (106/mm3) | All | 5.10 (0.62) | 5.18 (0.70) | 0.502 a |
Male | 5.12 (0.66) | 5.74 (0.60) | 0.006 a | |
Female | 5.08 (0.57) | 5.06 (0.67) | 0.942 a | |
PLT (mm3) | All | 249,947 (58,755) | 267,567 (58,711) | 0.098 a |
Male | 234,971 (49,762) | 240,417 (30,485) | 0.724 a | |
Female | 273,773 (65,024) | 273,491 (61,839) | 0.986 a |
Outcome | Pesticide Users (n = 57) | Non-Users (n = 67) | p-Value | |
---|---|---|---|---|
Mean (SD) | Mean (SD) | |||
ALP (U/L) | All | 73.84 (24.64) | 65.30 (20.11) | 0.036 a |
Male | 71.63 (23.72) | 71.83 (14.48) | 0.978 a | |
Female | 77.36 (26.22) | 63.87 (20.98) | 0.020 a | |
AST (U/L) | All | 29.65 (24.86) | 18.85 (8.58) | <0.001 b |
Male | 35.91 (29.87) | 24.08 (13.88) | 0.033 b | |
Female | 19.68 (5.87) | 17.71 (6.58) | 0.115 b | |
ALT (U/L) | All | 29.28 (24.06) | 19.57 (14.30) | <0.001 b |
Male | 35.83 (28.31) | 30.17 (20.35) | 0.366 b | |
Female | 18.86 (7.85) | 17.25 (11.63) | 0.029 b | |
eGFR (mL/min/1.73 m2) | All | 102.75 (13.59) | 106.54 (11.56) | 0.169 b |
Male | 99.66 (14.60) | 110.00 (11.07) | 0.020 b | |
Female | 107.66 (10.31) | 105.79 (11.63) | 0.569 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunsri, S.; Muenchamnan, N.; Naksen, W.; Ong-Artborirak, P. The Hematological and Biochemical Effects from Pesticide Exposure on Thai Vegetable Farmers. Toxics 2023, 11, 707. https://doi.org/10.3390/toxics11080707
Bunsri S, Muenchamnan N, Naksen W, Ong-Artborirak P. The Hematological and Biochemical Effects from Pesticide Exposure on Thai Vegetable Farmers. Toxics. 2023; 11(8):707. https://doi.org/10.3390/toxics11080707
Chicago/Turabian StyleBunsri, Siriphan, Nutnichawan Muenchamnan, Warangkana Naksen, and Parichat Ong-Artborirak. 2023. "The Hematological and Biochemical Effects from Pesticide Exposure on Thai Vegetable Farmers" Toxics 11, no. 8: 707. https://doi.org/10.3390/toxics11080707
APA StyleBunsri, S., Muenchamnan, N., Naksen, W., & Ong-Artborirak, P. (2023). The Hematological and Biochemical Effects from Pesticide Exposure on Thai Vegetable Farmers. Toxics, 11(8), 707. https://doi.org/10.3390/toxics11080707