Predictive Modeling of Indoor Environmental Parameters for Assessing Comfort Conditions in a Kindergarten Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Collection and Instrumentation
2.3. Data Preparation and Analysis
2.4. ARIMA
2.5. Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN)
2.6. Comfort Conditions
3. Results and Discussion
3.1. CO Concentrations Prediction—ARIMA vs. LSTM
3.2. Comfort Conditions Prediction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leech, J.A.; Nelson, W.C.; Burnett, R.T.; Aaron, S.; Raizenne, M.E. It’s about time: A comparison of Canadian and American time-activity patterns. J. Expo. Sci. Envoron. Epidemiol. 2002, 12, 427–432. [Google Scholar] [CrossRef]
- The European Comission. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_03_1278 (accessed on 26 June 2023).
- Seppänen, O.A.; Fisk, W.J.; Mendell, M.J. Association of Ventilation Rates and CO2 Concentrations with Health and Other Responses in Commercial and Institutional Buildings. Indoor Air 1999, 9, 226–252. [Google Scholar] [CrossRef] [PubMed]
- Jaakkola, J.J.K.; Heinonen, O.P.; Seppänen, O. Sick building syndrome, sensation of dryness and thermal comfort in relation to room temperature in an office building: Need for individual control of temperature. Environ. Int. 1989, 15, 163–168. [Google Scholar] [CrossRef]
- Sofuoglu, S.C.; Moschandreas, D.J. The link between symptoms of office building occupants and in-office air pollution: The indoor air pollution index. Indoor Air 2003, 13, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Moschandreas, D.J.; Sofuoglu, S.C. The indoor environmental index and its relationship with symptoms of office building occupants. J. Air Waste Manag. Assoc. 2004, 54, 1440–1451. [Google Scholar] [CrossRef] [PubMed]
- Mäkeläinen, I.; Moisio, S.; Reisbacka, H.; Turtiainen, T. Indoor occupancy and radon exposure in Finland. Radioact. Environ. 2005, 7, 687–693. [Google Scholar]
- Joshi, S.M. The sick building syndrome. Sick Build. Syndr. 2008, 12, 61–64. [Google Scholar] [CrossRef]
- Weuve, J. Exposure to Particulate Air Pollution and Cognitive Decline in Older Women. Arch. Intern. Med. 2012, 172, 219–227. [Google Scholar] [CrossRef]
- Kaiser, J. How Dirty Air Hurts the Heart. Science 2005, 307, 1858–1859. [Google Scholar] [CrossRef]
- World Health Organization. Principles for Evaluating Health Risks in Children Associated with Exposure to Chemicals; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Pope, C.A., III; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Pope, C.A., III; Ezzati, M.; Dockery, D.W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Indoor Air Hygiene Institute. Available online: https://www.indoorairhygiene.org/pm2-5-explained/ (accessed on 26 June 2023).
- Coley, D.A.; Greeves, R.; Saxby, B.K. The Effect of Low Ventilation Rates on the Cognitive Function of a Primary School Class. Int. J. Vent. 2007, 6, 107–112. [Google Scholar] [CrossRef]
- Gaihre, S.; Semple, S.; Miller, J.; Fielding, S.; Turner, S. Classroom Carbon Dioxide Concentration, School Attendance, and Educational Attainment. J. Sch. Health 2014, 84, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Simoni, M.; Annesi-Maesano, I.; Sigsgaard, T.; Norback, D.; Wieslander, G.; Nystad, W.; Canciani, M.; Sestini, P.; Viegi, G. School air quality related to dry cough, rhinitis and nasal patency in children. Eur. Respir. J. 2010, 35, 742–749. [Google Scholar] [CrossRef]
- Simanic, B.; Nordquist, B.; Bagge, H.; Johansson, D. Indoor air temperatures, CO2 concentrations and ventilation rates: Long-term measurements in newly built low-energy schools in Sweden. J. Build. Eng. 2019, 25, 100827. [Google Scholar] [CrossRef]
- Teli, D.; Bourikas, L.; James, P.A.B.; Bahaj, A.S. Thermal Performance Evaluation of School Buildings using a Children-based Adaptive Comfort Model. Procedia Environ. Sci. 2017, 38, 844–851. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. Indoor air quality prediction systems for smart environments: A systematic review. J. Ambient Intell. Smart Environ. 2017, 12, 433–453. [Google Scholar] [CrossRef]
- Bellinger, C.; Jabbar, M.S.M.; Zaïane, O.; Osornio-Vargas, A. A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health 2017, 17, 907. [Google Scholar] [CrossRef]
- Mustafa, M.F.; Talib, A.M.; Rashid, R.Z.J.A.; Ismail, I.; Awang, A.; Saad, M.N.M.; Zahari, M.S. Development of Gas Flow Characteristic Prediction for Industrial Flow Meter using Long Short-Term Memory (LSTM). In Proceedings of the 2022 International Conference on Future Trends in Smart Communities (ICFTSC), Kuching, Malaysia, 1–2 December 2022. [Google Scholar]
- Shah, D.; Campbell, W.; Zulkernine, F.H. A Comparative Study of LSTM and DNN for Stock Market Forecasting. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018. [Google Scholar]
- Xu, X.; Zhang, Y. Thermal coal price forecasting via the neural network. Intell. Syst. Appl. 2022, 14, 200084. [Google Scholar] [CrossRef]
- Kotu, V. Bala Deshpande. In Data Science: Concepts and Practice, 2nd ed.; Morgan Kaufmann Publishers: Burlington, MA, USA, 2019. [Google Scholar]
- Flores, J.H.F.; Engel, P.M.; Pinto, R.C. Autocorrelation and partial autocorrelation functions to improve neural networks models on univariate time series forecasting. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012. [Google Scholar]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Smagulova, K.; James, A.P. Overview of Long Short-Term Memory Neural Networks. In Deep Learning Classifiers with Memristive Networks: Theory and Applications; James, A.P., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 139–153. [Google Scholar]
- Ordinance № 3 from 05.02.2007 Regarding Health Requirements in Kindergartens. Available online: https://www.mh.government.bg/media/filer_public/2015/04/17/naredba3-ot-05-02-2007g-zdravni-iziskvania-detski-gradini.pdf (accessed on 26 June 2023).
- Tagliabue, L.C.; Cecconi, F.R.; Rinaldi, S.; Ciribini, A.L.C. Data driven indoor air quality prediction in educational facilities based on IoT network. Energy Build. 2021, 236, 110782. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Palpanas, T.; Vlachos, M.; Keogh, E.; Gunopulos, D.; Truppel, W. Online amnesic approximation of streaming time series. In Proceedings of the 20th International Conference on Data Engineering, Boston, MA, USA, 2 April 2004; pp. 339–349. [Google Scholar]
T (C) | RH (%) | CO (ppm) | PM (g/m) | |
---|---|---|---|---|
mean | 21.14 | 41.96 | 753.8 | 7.96 |
std | 3.14 | 7.25 | 436.4 | 4.59 |
min | 12.93 | 19.47 | 374.0 | 0.00 |
25% | 18.48 | 36.87 | 439.0 | 4.00 |
50% | 20.55 | 41.73 | 568.3 | 7.00 |
75% | 23.60 | 46.70 | 904.8 | 10.67 |
max | 31.04 | 66.70 | 3247.0 | 38.00 |
Parameter | L1 | L2 |
---|---|---|
Temperature (C) | 18 | 21 |
Relative Humidity (%) | 30 | 60 |
Carbon Dioxide (ppm) | 600 | 1000 |
N. | Temperature, T (C) | Relative Humidity, RH (%) | Carbon Dioxide, CO (ppm) |
---|---|---|---|
27 | T above L2 | RH above L2 | CO above L2 |
26 | T above L2 | RH below L1 | CO above L2 |
25 | T below L1 | RH above L2 | CO above L2 |
24 | T above L2 | RH between L1 and L2 | CO above L2 |
23 | T below L1 | RH below L1 | CO above L2 |
22 | T below L1 | RH between L1 and L2 | CO above L2 |
21 | T between L1 and L2 | RH above L2 | CO above L2 |
20 | T between L1 and L2 | RH below L1 | CO above L2 |
19 | T between L1 and L2 | RH between L1 and L2 | CO above L2 |
18 | T above L2 | RH above L2 | CO between L1 and L2 |
17 | T above L2 | RH below L1 | CO between L1 and L2 |
16 | T above L2 | RH between L1 and L2 | CO between L1 and L2 |
15 | T below L1 | RH above L2 | CO between L1 and L2 |
14 | T between L1 and L2 | RH above L2 | CO between L1 and L2 |
13 | T above L2 | RH above L2 | CO below L1 |
12 | T above L2 | RH below L1 | CO below L1 |
11 | T above L2 | RH between L1 and L2 | CO below L1 |
10 | T below L1 | RH above L2 | CO below L1 |
9 | T below L1 | RH below L1 | CO between L1 and L2 |
8 | T between L1 and L2 | RH above L2 | CO below L1 |
7 | T below L1 | RH between L1 and L2 | CO between L1 and L2 |
6 | T between L1 and L2 | RH between L1 and L2 | CO between L1 and L2 |
5 | T below L1 | RH below L1 | CO below L1 |
4 | T between L1 and L2 | RH below L1 | CO between L1 and L2 |
3 | T below L1 | RH between L1 and L2 | CO below L1 |
2 | T between L1 and L2 | RH below L1 | CO below L1 |
1 | T between L1 and L2 | RH between L1 and L2 | CO below L1 |
Layer | Type | Shape | Parameters |
---|---|---|---|
1 | LSTM | (None, 10, 64) | 17,408 |
2 | LSTM | (None, 64) | 33,024 |
3 | Dense | (None, 32) | 2080 |
4 | Dense | (None, 4) | 132 |
N. | Precision | Recall | f1-Score | Support |
---|---|---|---|---|
1 | 0.92 | 0.94 | 0.93 | 5098 |
2 | 0.75 | 0.79 | 0.77 | 317 |
3 | 0.92 | 0.93 | 0.93 | 2406 |
4 | 0.63 | 0.64 | 0.63 | 233 |
5 | 0.89 | 0.54 | 0.67 | 78 |
6 | 0.90 | 0.87 | 0.89 | 3571 |
7 | 0.91 | 0.93 | 0.92 | 1896 |
8 | 0.67 | 0.50 | 0.57 | 4 |
9 | 0.31 | 0.19 | 0.24 | 21 |
11 | 0.98 | 0.96 | 0.97 | 8524 |
12 | 0.88 | 0.73 | 0.80 | 173 |
13 | 0.96 | 0.90 | 0.93 | 219 |
14 | 0.00 | 0.00 | 0.00 | 1 |
15 | 0.00 | 0.00 | 0.00 | 1 |
16 | 0.81 | 0.84 | 0.82 | 2090 |
17 | 0.70 | 0.74 | 0.72 | 245 |
18 | 0.61 | 0.45 | 0.52 | 31 |
19 | 0.91 | 0.89 | 0.90 | 2861 |
20 | 0.58 | 0.53 | 0.55 | 62 |
21 | 0.94 | 0.94 | 0.94 | 17 |
22 | 0.89 | 0.91 | 0.90 | 570 |
24 | 0.87 | 0.92 | 0.90 | 2865 |
26 | 0.75 | 0.82 | 0.78 | 211 |
27 | 0.96 | 0.80 | 0.87 | 30 |
accuracy | 0.91 | 31,524 | ||
average | 0.74 | 0.70 | 0.71 | 31,524 |
weighted avg | 0.91 | 0.91 | 0.91 | 31,524 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitkov, R.; Petrova-Antonova, D.; Hristov, P.O. Predictive Modeling of Indoor Environmental Parameters for Assessing Comfort Conditions in a Kindergarten Setting. Toxics 2023, 11, 709. https://doi.org/10.3390/toxics11080709
Mitkov R, Petrova-Antonova D, Hristov PO. Predictive Modeling of Indoor Environmental Parameters for Assessing Comfort Conditions in a Kindergarten Setting. Toxics. 2023; 11(8):709. https://doi.org/10.3390/toxics11080709
Chicago/Turabian StyleMitkov, Radostin, Dessislava Petrova-Antonova, and Petar O. Hristov. 2023. "Predictive Modeling of Indoor Environmental Parameters for Assessing Comfort Conditions in a Kindergarten Setting" Toxics 11, no. 8: 709. https://doi.org/10.3390/toxics11080709
APA StyleMitkov, R., Petrova-Antonova, D., & Hristov, P. O. (2023). Predictive Modeling of Indoor Environmental Parameters for Assessing Comfort Conditions in a Kindergarten Setting. Toxics, 11(8), 709. https://doi.org/10.3390/toxics11080709