The Association between 4-Tertiary-Octylphenol, Apoptotic Microparticles, and Carotid Intima-Media Thickness in a Young Taiwanese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Measurement of Serum 4-tOP Levels
2.3. Measurement of Apoptotic Microparticles
2.4. Measurement of CIMT
2.5. Covariates
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, M.P.; Harvey, A.J.; Finger, B.J.; Tarulli, G.A. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. Environ. Res. 2021, 194, 110694. [Google Scholar] [CrossRef]
- Nimrod, A.C.; Benson, W.H. Environmental estrogenic effects of alkylphenol ethoxylates. Crit. Rev. Toxicol. 1996, 26, 335–364. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, S.; Xia, L.; Yang, Q.; Zhang, L.; Zhang, X.; Liu, H.; Huo, R.; Cao, G.; Huang, C.; et al. Associations of urinary phenolic environmental estrogens exposure with blood glucose levels and gestational diabetes mellitus in Chinese pregnant women. Sci. Total Environ. 2021, 754, 142085. [Google Scholar] [CrossRef]
- Klaschka, U. Where are the SVHCs?: 10 years consumer’s ‘right to know’ about substances of very high concern. Environ. Sci. Eur. 2017, 29, 24. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Wu, C.; Lu, D.; Qi, X.; Xu, H.; Guo, J.; Liang, W.; Chang, X.; Wang, G.; Zhou, Z. Birth outcome measures and prenatal exposure to 4-tert-octylphenol. Environ. Pollut. 2016, 212, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.W.; Ding, W.H.; Ku, H.Y.; Chao, H.R.; Chen, H.Y.; Huang, M.C.; Wang, S.L. Alkylphenols in human milk and their relations to dietary habits in central Taiwan. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2010, 48, 1939–1944. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Hwang, Y.T.; Chen, P.C.; Sung, F.C.; Su, T.C. Association of serum levels of 4-tertiary-octylphenol with cardiovascular risk factors and carotid intima-media thickness in adolescents and young adults. Environ. Pollut. 2019, 246, 107–113. [Google Scholar] [CrossRef]
- Tran, D.N.; Jung, E.M.; Yoo, Y.M.; Jeung, E.B. 4-tert-Octylphenol Exposure Disrupts Brain Development and Subsequent Motor, Cognition, Social, and Behavioral Functions. Oxidative Med. Cell. Longev. 2020, 2020, 8875604. [Google Scholar] [CrossRef]
- Bian, Q.; Qian, J.; Xu, L.; Chen, J.; Song, L.; Wang, X. The toxic effects of 4-tert-octylphenol on the reproductive system of male rats. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2006, 44, 1355–1361. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, M.; Wu, W.; Xu, B.; Tang, R.; Chen, X.; Du, G.; Lu, C.; Meeker, J.D.; Zhou, Z.; et al. Interactions between urinary 4-tert-octylphenol levels and metabolism enzyme gene variants on idiopathic male infertility. PLoS ONE 2013, 8, e59398. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, R.; Liu, T.; Liang, J.; Wu, Y.; Feng, B.; Liu, S.; Li, H.; Pan, D.; Qiu, X.; et al. Relationship between exposure of alkylphenols in serum of pregnant women during early pregnancy and adverse birth outcomes. Environ. Sci. Pollut. Res. 2022, 29, 52954–52963. [Google Scholar] [CrossRef] [PubMed]
- Melzer, D.; Osborne, N.J.; Henley, W.E.; Cipelli, R.; Young, A.; Money, C.; McCormack, P.; Luben, R.; Khaw, K.T.; Wareham, N.J.; et al. Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation 2012, 125, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Xia, W.; Zhou, Z.; Li, Y.; Lin, Y.; Wei, J.; Wei, Z.; Xu, B.; Shen, J.; Li, W.; et al. Low-level phenolic estrogen pollutants impair islet morphology and beta-cell function in isolated rat islets. J. Endocrinol. 2012, 215, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Koriem, K.M.; Arbid, M.S.; Emam, K.R. Therapeutic effect of pectin on octylphenol induced kidney dysfunction, oxidative stress and apoptosis in rats. Environ. Toxicol. Pharmacol. 2014, 38, 14–23. [Google Scholar] [CrossRef]
- Kang, H.S.; Yang, H.; Ahn, C.; Kang, H.Y.; Hong, E.J.; Jaung, E.B. Effects of xenoestrogens on streptozotocin-induced diabetic mice. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2014, 65, 273–282. [Google Scholar]
- Ruehlmann, D.O.; Steinert, J.R.; Valverde, M.A.; Jacob, R.; Mann, G.E. Environmental estrogenic pollutants induce acute vascular relaxation by inhibiting L-type Ca2+ channels in smooth muscle cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1998, 12, 613–619. [Google Scholar]
- Kim, J.; Kang, E.J.; Park, M.N.; Kim, J.E.; Kim, S.C.; Jeung, E.B.; Lee, G.S.; Hwang, D.Y.; An, B.S. The adverse effect of 4-tert-octylphenol on fat metabolism in pregnant rats via regulation of lipogenic proteins. Environ. Toxicol. Pharmacol. 2015, 40, 284–291. [Google Scholar] [CrossRef]
- Chen, M.; Guan, Y.; Huang, R.; Duan, J.; Zhou, J.; Chen, T.; Wang, X.; Xia, Y.; London, S.J. Associations between the Maternal Exposome and Metabolome during Pregnancy. Environ. Health Perspect. 2022, 130, 37003. [Google Scholar] [CrossRef]
- Zhang, T.; Tian, F.; Wang, J.; Jing, J.; Zhou, S.S.; Chen, Y.D. Atherosclerosis-Associated Endothelial Cell Apoptosis by MiR-429-Mediated Down Regulation of Bcl-2. Cell. Physiol. Biochem. 2015, 37, 1421–1430. [Google Scholar] [CrossRef]
- Zhang, J. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev. Cardiovasc. Med. 2022, 23, 73. [Google Scholar] [CrossRef]
- Kakarla, R.; Hur, J.; Kim, Y.J.; Kim, J.; Chwae, Y.J. Apoptotic cell-derived exosomes: Messages from dying cells. Exp. Mol. Med. 2020, 52, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Burger, D.; Schock, S.; Thompson, C.S.; Montezano, A.C.; Hakim, A.M.; Touyz, R.M. Microparticles: Biomarkers and beyond. Clin. Sci. 2012, 124, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Christersson, C.; Thulin, Å.; Siegbahn, A. Microparticles during long-term follow-up after acute myocardial infarction. Assoc. Atheroscler. Burd. Risk Cardiovasc. Events. Thromb. Haemost. 2017, 117, 1571–1581. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Chen, P.C.; Lo, S.C.; Torng, P.L.; Sung, F.C.; Su, T.C. The association of carotid intima-media thickness with serum Level of perfluorinated chemicals and endothelium-platelet microparticles in adolescents and young adults. Environ. Int. 2016, 94, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, M.; Litwiller, R.D.; Owen, W.G.; Miller, V.M. Circulating microparticles and endogenous estrogen in newly menopausal women. Climacteric J. Int. Menopause Soc. 2009, 12, 177–184. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chen, C.W.; Lee, H.L.; Wu, C.; Wang, C.; Sung, F.C.; Su, T.C. Global DNA methylation mediates the association between urine mono-2-ethylhexyl phthalate and serum apoptotic microparticles in a young Taiwanese population. Sci. Total Environ. 2022, 808, 152054. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wen, L.L.; Lin, L.Y.; Wen, T.W.; Lien, G.W.; Hsu, S.H.; Chien, K.L.; Liao, C.C.; Sung, F.C.; Chen, P.C.; et al. The associations between serum perfluorinated chemicals and thyroid function in adolescents and young adults. J. Hazard. Mater. 2013, 244–245, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Chien, C.J.; Tsai, M.S.; Hsieh, C.J.; Hsieh, W.S.; Chen, P.C. Prenatal phenolic compounds exposure and neurobehavioral development at 2 and 7years of age. Sci. Total Environ. 2017, 605–606, 801–810. [Google Scholar] [CrossRef]
- Murphy, E. Estrogen signaling and cardiovascular disease. Circ. Res. 2011, 109, 687–696. [Google Scholar] [CrossRef]
- Iorga, A.; Cunningham, C.M.; Moazeni, S.; Ruffenach, G.; Umar, S.; Eghbali, M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol. Sex Differ. 2017, 8, 33. [Google Scholar] [CrossRef]
- Schug, T.T.; Janesick, A.; Blumberg, B.; Heindel, J.J. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol. 2011, 127, 204–215. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, J.H.; Lee, H.J.; Yoon, Y.D. Octylphenol reduces the expressions of steroidogenic enzymes and testosterone production in mouse testis. Environ. Toxicol. 2007, 22, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Paone, S.; Baxter, A.A.; Hulett, M.D.; Poon, I.K.H. Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis. Cell. Mol. Life Sci. CMLS 2019, 76, 1093–1106. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, M.E.; Karas, R.H. Molecular and cellular basis of cardiovascular gender differences. Science 2005, 308, 1583–1587. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Hsieh, C.J.; Lo, S.C.; Chen, P.C.; Torng, P.L.; Hu, A.; Sung, F.C.; Su, T.C. Positive association between concentration of phthalate metabolites in urine and microparticles in adolescents and young adults. Environ. Int. 2016, 92–93, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Weeks, T.L.; Hazen, S.L. Gut Microbiota and Cardiovascular Disease. Circ. Res. 2020, 127, 553–570. [Google Scholar] [CrossRef]
- Novakovic, M.; Rout, A.; Kingsley, T.; Kirchoff, R.; Singh, A.; Verma, V.; Kant, R.; Chaudhary, R. Role of gut microbiota in cardiovascular diseases. World J. Cardiol. 2020, 12, 110–122. [Google Scholar] [CrossRef]
- Nirmalkar, K.; Murugesan, S.; Pizano-Zárate, M.L.; Villalobos-Flores, L.E.; García-González, C.; Morales-Hernández, R.M.; Nuñez-Hernández, J.A.; Hernández-Quiroz, F.; Romero-Figueroa, M.D.S.; Hernández-Guerrero, C.; et al. Gut Microbiota and Endothelial Dysfunction Markers in Obese Mexican Children and Adolescents. Nutrients 2018, 10, 2009. [Google Scholar] [CrossRef]
- Direito, R.; Rocha, J.; Sepodes, B.; Eduardo-Figueira, M. Phenolic Compounds Impact on Rheumatoid Arthritis, Inflammatory Bowel Disease and Microbiota Modulation. Pharmaceutics 2021, 13, 145. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y.; Gao, J.; Li, X. Effects of octylphenol exposure on the lipid metabolism and microbiome of the intestinal tract of Rana chensinensis tadpole by RNAseq and 16s amplicon sequencing. Ecotoxicol. Environ. Saf. 2020, 197, 110650. [Google Scholar] [CrossRef]
- de Silva, P.S.; Yang, X.; Korzenik, J.R.; Goldman, R.H.; Arheart, K.L.; Caban-Martinez, A.J. Association of urinary phenolic compounds, inflammatory bowel disease and chronic diarrheal symptoms: Evidence from the National Health and Nutrition Examination Survey. Environ. Pollut 2017, 229, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.H.; Zhu, C.X.; Quan, Y.S.; Yang, Z.Y.; Wu, S.; Luo, W.W.; Tan, B.; Wang, X.Y. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J. Gastroenterol. 2018, 24, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Lin, L.Y.; Wen, T.W.; Lien, G.W.; Chien, K.L.; Hsu, S.H.; Liao, C.C.; Sung, F.C.; Chen, P.C.; Su, T.C. Association between levels of serum perfluorooctane sulfate and carotid artery intima-media thickness in adolescents and young adults. Int. J. Cardiol. 2013, 168, 3309–3316. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Database on Child Growth and Malnutrition. Available online: http://www.who.int/nutgrowthdb/software/en/ (accessed on 15 March 2023).
- Keskin, M.; Kurtoglu, S.; Kendirci, M.; Atabek, M.E.; Yazici, C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 2005, 115, e500–e503. [Google Scholar] [CrossRef]
- Khoury, M.; Urbina, E.M. Hypertension in adolescents: Diagnosis, treatment, and implications. Lancet. Child Adolesc. Health 2021, 5, 357–366. [Google Scholar] [CrossRef]
4-tOP (ng/mL) | CD31+/CD42a− (counts/µL) | CD31+/CD42a+ (counts/µL) | CIMT (µm) | |||
---|---|---|---|---|---|---|
n (%) | Mean (SD) | Mean (SD) | Mean (SD) | n (%) | Mean (SD) | |
Total | 886 (100) | 36.9 (17.3) | 369.6 (697.7) | 11,261.3 (18,448.2) | 883 (100) | 448.2 (54.0) |
Gender | ||||||
Female | 536 (60.5) | 36.5 (16.5) | 341.7 (742.2) | 11,346.4 (18,921.1) | 533 (60.4) | 441.5 (51.1) ‡ |
Male | 350 (39.5) | 37.4 (18.4) | 412.3 (622.2) | 11,205.7 (18,151.0) | 350 (39.6) | 458.3 (56.6) ‡ |
Age (years) | ||||||
12–19 | 275 (31.0) | 33.9 (16.4) ‡ | 453.3 (674.6) * | 13,545.8 (18,713.4) * | 275 (31.1) | 445.8 (51.9) |
20–30 | 611 (69.0) | 38.2 (17.5) ‡ | 332.0 (704.9) * | 10,259.6 (18,236.6) * | 608 (68.9) | 449.2 (54.9) |
Household income | ||||||
<50,000 TWD/per month | 342 (38.7) | 37.8 (16.7) | 363.4 (646.2) | 11,819.3 (19,177.1) | 341 (38.7) | 449.2 (56.3) |
≥50,000 TWD/per month | 542 (61.3) | 36.3 (17.6) | 374.1 (729.6) | 10,943.4 (18,020.7) | 540 (61.3) | 447.3 (52.5) |
BMI z score | ||||||
≤−0.19 | 443 (49.9) | 37.0 (16.8) | 293.6 (715.2) ‡ | 10,445.4 (17,197.5) | 442 (50.0) | 438.3 (46.5) ‡ |
>−0.19 | 443 (50.1) | 36.7 (17.8) | 445.5 (672.1) ‡ | 12,075.2 (19,603.2) | 441 (50.0) | 458.1 (59.0) ‡ |
Smoking status | ||||||
Active smoker | 109 (12.4) | 39.5 (18.5) | 438.6 (783.3) | 10,871.0 (16437.0) | 109 (12.4) | 454.6 (52.9) |
Inactive smoker | 776 (87.6) | 36.5 (17.1) | 379.2 (715.2) | 11,580.0 (18,702.6) | 773 (87.6) | 447.2 (60.8) |
Current drinking | ||||||
No | 807 (91.2) | 36.8 (17.1) | 369.5 (711.2) | 11,021.1 (18,065.9) | 804 (91.2) | 446.8 (53.4) * |
Yes | 78 (8.8) | 37.3 (19.3) | 373.5 (552.2) | 13,749.2 (22,004.4) | 78 (8.8) | 462.1 (57.9) * |
Hypertension | ||||||
Yes | 66 (7.4) | 34.1 (17.3) | 681.7 (937.3) ‡ | 14,680.6 (26,740.2) | 66 (7.5) | 476.7 (71.8) ‡ |
No | 820 (92.6) | 37.1 (16.1) | 343.9 (668.5) ‡ | 10,979.2 (17,585.6) | 817 (92.5) | 445.9 (51.6) ‡ |
Diabetes Mellitus | ||||||
Yes | 17 (1.9) | 36.6 (16.4) | 1082.1 (1393.3) ‡ | 10,724.1 (13,747.7) | 17 (1.9) | 486.0 (89.9) ‡ |
No | 869 (98.1) | 36.9 (17.3) | 356.0 (671.8) ‡ | 11,271.5 (18,532.5) | 866 (98.1) | 447.4 (52.8) ‡ |
SBP (mm Hg) | BMI z Score (kg/m2) | LDL-C (mg/dL) | HDL-C (mg/dL) | Ln Triglyceride (mg/dL) | Uric Acid (mg/dL) | Ln HOMA-IR | CIMT * (µm) | |
---|---|---|---|---|---|---|---|---|
Ln 4-t-OP | −0.549 (0.809) | −0.234 (0.065) | 2.135 (1.924) | 2.453 (0.568) | 0.038 (0.029) | 0.030 (0.073) | −0.305 (0.059) | −30.684 (3.190) |
p value | 0.497 | <0.001 | 0.267 | <0.001 | 0.192 | 0.678 | <0.001 | <0.001 |
Ln CD31+/CD42a− | 1.074 (0.336) | 0.173 (0.027) | 2.783 (0.799) | −1.019 (0.238) | 0.069 (0.012) | 0.040 (0.031) | 0.203 (0.024) | 14.129 (1.321) |
p value | 0.001 | <0.001 | 0.001 | <0.001 | <0.001 | 0.193 | <0.001 | <0.001 |
Ln CD31+/CD42a+ | 0.194 (0.253) | 0.046 (0.020) | 0.668 (0.601) | 0.056 (0.179) | −0.022 (0.009) | 0.006 (0.023) | 0.130 (0.018) | 6.757 (1.024) |
p value | 0.443 | 0.024 | 0.266 | 0.756 | 0.017 | 0.793 | <0.001 | <0.001 |
ln 4-tOP (ng/mL) | |||||
---|---|---|---|---|---|
Model 1 | Model 2 | ||||
n | Adjusted β (S.E.) | p Value | Adjusted β (S.E.) | p Value | |
Ln CD31+/CD42a− | 884 | −0.736 (0.077) | <0.001 | −0.672 (0.076) | <0.001 |
Ln CD31+/CD42a+ | 884 | −0.730 (0.105) | <0.001 | −0.609 (0.105) | <0.001 |
CIMT (µm) | 882 | −30.864 (3.190) | <0.001 | −28.394 (3.142) | <0.001 |
No. | Odds Ratio | 95% C.I. | p Value | ||
---|---|---|---|---|---|
Lower | Upper | ||||
Total | 882 | 0.243 | 0.165 | 0.358 | <0.001 |
CD31+/CD42a− ≤ 50%ile | 441 | 0.095 | 0.037 | 0.241 | <0.001 |
CD31+/CD42a− > 50%ile | 441 | 0.420 | 0.270 | 0.654 | <0.001 |
CD31+/CD42a+ ≤ 50%ile | 441 | 0.057 | 0.023 | 0.139 | 0.009 |
CD31+/CD42a+ > 50%ile | 441 | 0.425 | 0.272 | 0.663 | <0.001 |
CD31+/CD42a− ≤ 50%ile and CD31+/CD42a+ ≤ 50%ile | 319 | 0.048 | 0.015 | 0.232 | <0.001 |
CD31+/CD42a− > 50%ile and CD31+/CD42a+ > 50%ile | 319 | 0.553 | 0.340 | 0.901 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Chen, C.-W.; Wang, C.; Sung, F.-C.; Su, T.-C. The Association between 4-Tertiary-Octylphenol, Apoptotic Microparticles, and Carotid Intima-Media Thickness in a Young Taiwanese Population. Toxics 2023, 11, 757. https://doi.org/10.3390/toxics11090757
Lin C-Y, Chen C-W, Wang C, Sung F-C, Su T-C. The Association between 4-Tertiary-Octylphenol, Apoptotic Microparticles, and Carotid Intima-Media Thickness in a Young Taiwanese Population. Toxics. 2023; 11(9):757. https://doi.org/10.3390/toxics11090757
Chicago/Turabian StyleLin, Chien-Yu, Ching-Way Chen, Chikang Wang, Fung-Chang Sung, and Ta-Chen Su. 2023. "The Association between 4-Tertiary-Octylphenol, Apoptotic Microparticles, and Carotid Intima-Media Thickness in a Young Taiwanese Population" Toxics 11, no. 9: 757. https://doi.org/10.3390/toxics11090757
APA StyleLin, C. -Y., Chen, C. -W., Wang, C., Sung, F. -C., & Su, T. -C. (2023). The Association between 4-Tertiary-Octylphenol, Apoptotic Microparticles, and Carotid Intima-Media Thickness in a Young Taiwanese Population. Toxics, 11(9), 757. https://doi.org/10.3390/toxics11090757