Trace Elements in Portuguese Children: Urinary Levels and Exposure Predictors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects and Sample Collection
2.2. Determination of Creatinine
2.3. Determination of Trace Elements
2.4. Sample Preparation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Study Subjects
3.2. Urinary Levels
This Study | Biomonitoring Guidance Value | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elements | LOD | μg/L | μg/g Creatinine | ||||||||||||
[µg/L] | Min | Median | 95th | Max. | Min | Median | 95th | Max. | Age Group | Agency | Type | Value | Units | Ref | |
Cooper (Cu) | 0.11 | 5.30 | 21.9 | 52.6 | 94.4 | 5.05 | 19.9 | 40.6 | 50.2 | 3 to 5 | Canada (2009–2011) | RV95 | 29 | µg/L | [54] |
6 to 19 | Canada (2009–2011) | RV95 | 25 | µg/L | [54] | ||||||||||
Iodine (I) | 0.89 | 16.39 | 125.5 | 302.6 | 536.9 | 20.65 | 122.52 | 213.8 | 316.3 | 6–10 | ATSDR (2004) | BE | 360 | µg/L | [55] |
IPCS (2009) | BE | 360 | µg/L | ||||||||||||
IOM (2001) | BE | 580 | µg/L | ||||||||||||
ATSDR (2004) | BE | 470 | µg/g creatinine | ||||||||||||
IPCS (2009) | BE | 470 | µg/g creatinine | ||||||||||||
IOM (2001) | BE | 760 | µg/g creatinine | ||||||||||||
Adults | ATSDR (2004) | BE | 450 | µg/L | |||||||||||
IPCS (2009) | BE | 450 | µg/L | ||||||||||||
IOM (2001) | BE | 730 | µg/L | ||||||||||||
ATSDR (2004) | BE | 450 | µg/g creatinine | ||||||||||||
IPCS (2009) | BE | 450 | µg/g creatinine | ||||||||||||
IOM (2001) | BE | 730 | µg/g creatinine | ||||||||||||
Molybdenum (Mo) | 0.25 | 8.38 | 54.6 | 112.2 | 149.8 | 10.99 | 51.53 | 101 | 200.6 | not specified | Health Canada (2016) | BE | 7516 | µg/L | [56] |
US EPA (1992) | BE | 206 | µg/L | [57] | |||||||||||
RIVM (2000) | BE | 442 | µg/L | ||||||||||||
IOM (2001) | BE | 1326 | µg/L | ||||||||||||
OECD SIDS (2013) | BE | 7516 | µg/L | ||||||||||||
US EPA (1992) | BE | 206 | µg/g creatinine | ||||||||||||
RIVM (2000) | BE | 442 | µg/g creatinine | ||||||||||||
IOM (2001) | BE | 1326 | µg/g creatinine | ||||||||||||
OECD SIDS (2013) | BE | 7516 | µg/g creatinine | ||||||||||||
6–19 | Health Canada (2009–2011) | RV95 | 230 | µg/L | [54] | ||||||||||
3–5 | RV95 | 290 | µg/L | ||||||||||||
Cobalt (Co) | 0.0083 | 0.13 | 0.76 | 1.81 | 2.89 | 0.14 | 0.69 | 2.41 | 3.26 | >17 | Mayo Clinic | Clinical Interpretative value | <1.7 | µg/g creatinine | [58] |
Manganese (Mn) | 0.0074 | 0.50 | 2.1 | 8.04 | 27.9 | 0.33 | 1.90 | 4.19 | 12.2 | >18 | Mayo Clinic | Clinical Interpretative value | <40 | µg/g creatinine | [58] |
Nickel (Ni) | 0.069 | 1.13 | 4.74 | 12.2 | 24.8 | 1.05 | 4.18 | 8.9 | 35.2 | 3 to 14 | Germany (2003–2006) | RV95 | 4.5 | µg/L | [59] |
3 to 79 | Canada (2009–2011) | RV95 | 4.4 | µg/L | [54] | ||||||||||
Arsenic (As) | 0.27 | 3.95 | 37.9 | 170.3 | 435.7 | 6.19 | 30 | 158 | 610.4 | 3 to 14 | Germany (2003–2006) | RV95 | 15 | µg/L | [59] |
3 to 79 | Canada (2009–2011) | RV95 | 27 | µg/L | [54] | ||||||||||
Antimony (Sb) | 0.0023 | 0.02 | 0.09 | 0.28 | 0.32 | 0.02 | 0.08 | 0.16 | 0.20 | 3 to 14 | Germany (2003–2006) | RV95 | 0.3 | µg/L | [59] |
3 to 79 | Canada (2009–2011) | RV95 | 0.17 | µg/L | [54] | ||||||||||
Cadmium (Cd) | 0.0062 | 0.05 | 0.29 | 0.58 | 0.72 | 0.08 | 0.27 | 0.52 | 1.08 | children and adolescents | HBM Commission (2011) | HBM-I | 0.5 | µg/L | [60] |
children and adolescents | HBM Commission (2011) | HBM-II | 2 | µg/L | |||||||||||
3 to 14 | Germany (2003–2006) | RV95 | 0.2 | µg/L | [59] | ||||||||||
3 to 5 | Health Canada (2009–2011) | RV95 | 0.69 | µg/L | [54] | ||||||||||
6 to 19 | RV95 | 0.68 | µg/L | ||||||||||||
Lead (Pb) | 0.016 | 0.31 | 0.94 | 7.57 | 19.9 | 0.19 | 0.90 | 4.08 | 17.1 | 3 to 5 | RV95 | 1.7 | µg/L | ||
6 to 19 | RV95 | 1.3 | µg/L | ||||||||||||
Tin (Sn) | 0.0052 | 0.08 | 0.45 | 3.8 | 30.1 | 0.06 | 0.40 | 2.81 | 37 | not specified | Health Canada (2016) | BE | 20 | µg/L | [61] |
not specified | BE | 26 | µg/g creatinine | ||||||||||||
Thallium (Tl) | 0.0079 | 0.01 | 0.39 | 1.37 | 2.68 | 0.06 | 0.38 | 1.03 | 1.84 | 3 to 14 | Germany (2003–2006) | RV95 | 0.6 | µg/L | [59] |
3 to 5 | Canada (2009–2011) | RV95 | 0.64 | µg/L | [54] | ||||||||||
6 to 19 | Canada (2009–2011) | RV95 | 0.59 | µg/L |
Countries | Sampling Period | Age (Years) | n | Cu | Co | Mo | Mn | Ni | As | Sb | Cd | Pb | Sn | Tl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Europe (16 European countries) [53] | 2011–2012 | 5–12 | 1680 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.07 * | n.a. | n.a. | n.a. |
Italy [41] | 2007–2008 | 5–11 | 110 | 37.9 | 0.99 | n.a. | 0.68 | 6.80 | n.a. | 0.07 | 0.38 | 1.24 | 1.25 | n.a |
Spain [40] | 2015 | 6–11 | 120 | 35.3 | 1.43 | 63.2 | 0.43 | 4.32 | 33.9 | 0.79 | 0.18 | 1.18 | n.a | 0.19 |
US [27] | 2015–2016 | 6–11 | 379 | n.a. | 0.53 | 56.2 | <0.13 | n.a. | 4.89 | 0.06 | <LOD | 0.26 | 0.87 | 0.17 |
12–19 | 402 | n.a. | 0.57 | 47.7 | <0.13 | n.a. | 5.00 | 0.06 | 0.05 | 0.20 | 0.49 | 0.17 | ||
Portugal (this study) | 2014–2015 | 4–18 | 110 | 18.6 | 0.65 | 48.1 | 1.80 | 4.20 | 33.9 | 0.08 | 0.25 | 1.03 | 0.48 | 0.36 |
3.3. Predictors of Exposure
4. Conclusions
Strength and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Florea, A.-M.; Büsselberg, D. Occurrence, use and potential toxic effects of metals and metal compounds. BioMetals 2006, 19, 419–427. [Google Scholar] [CrossRef]
- Zhu, C.; Tian, H.; Hao, J. Global anthropogenic atmospheric emission inventory of twelve typical hazardous trace elements, 1995–2012. Atmos. Environ. 2020, 220, 117061. [Google Scholar] [CrossRef]
- Mehri, A. Trace Elements in Human Nutrition (II)—An Update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar] [PubMed]
- Aliasgharpour, M.; Farzami, M.R. Trace elements in human nutrition: A review. Int. J. Med. Investig. 2013, 2, 3. [Google Scholar]
- Birgisdottir, B.; Knutsen, H.; Haugen, M.; Gjelstad, I.; Jenssen, M.; Ellingsen, D.; Thomassen, Y.; Alexander, J.; Meltzer, H.; Brantsæter, A. Essential and toxic element concentrations in blood and urine and their associations with diet: Results from a Norwegian population study including high-consumers of seafood and game. Sci. Total Environ. 2013, 463–464, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Bocca, B.; Ruggieri, F.; Pino, A.; Rovira, J.; Calamandrei, G.; Mirabella, F.; Martínez, M.; Domingo, J.L.; Alimonti, A.; Schuhmacher, M. Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part B: Predictors of exposure. Environ. Res. 2020, 182, 109108. [Google Scholar] [CrossRef]
- Sangeetha, K.S.; Umamaheswari, S. Human Exposure to Lead, Mechanism of Toxicity and Treatment Strategy- A Review. J. Clin. Diagn. Res. 2020, 14, LE01–LE05. [Google Scholar] [CrossRef]
- Urbano, T.; Zagnoli, F.; Malavolti, M.; Halldorsson, T.I.; Vinceti, M.; Filippini, T. Dietary intake of potentially toxic elements and children’s chemical exposure. Curr. Opin. Environ. Sci. Health 2022, 30, 100393. [Google Scholar] [CrossRef]
- Patriarca, M.; Menditto, A.; Rossi, B.; Lyon, T.; Fell, G. Environmental exposure to metals of newborns, infants and young children. Microchem. J. 2000, 67, 351–361. [Google Scholar] [CrossRef]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef]
- World Health Organization. Principles for Evaluating Health Risks in Children Associated with Exposure to Chemicals; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Wu, Y.; Wang, J.; Wei, Y.; Chen, J.; Kang, L.; Long, C.; Wu, S.; Shen, L.; Wei, G. Maternal exposure to endocrine disrupting chemicals (EDCs) and preterm birth: A systematic review, meta-analysis, and meta-regression analysis. Environ. Pollut. 2022, 292, 118264. [Google Scholar] [CrossRef]
- Stojsavljević, A.; Rovčanin, M.; Jagodić, J.; Miković, Ž.; Jeremić, A.; Perović, M.; Manojlović, D. Evaluation of Maternal Exposure to Multiple Trace Elements and Their Detection in Umbilical Cord Blood. Expo. Health 2022, 14, 623–633. [Google Scholar] [CrossRef]
- Bauer, J.A.; Fruh, V.; Howe, C.G.; White, R.F.; Henn, B.C. Associations of Metals and Neurodevelopment: A Review of Recent Evidence on Susceptibility Factors. Curr. Epidemiol. Rep. 2020, 7, 237–262. [Google Scholar] [CrossRef]
- Awadh, S.M.; Yaseen, Z.M.; Al-Suwaiyan, M.S. The role of environmental trace element toxicants on autism: A medical biogeochemistry perspective. Ecotoxicol. Environ. Saf. 2023, 251, 114561. [Google Scholar] [CrossRef] [PubMed]
- Stojsavljević, A.; Rovčanin, B. Impact of Essential and Toxic Trace Metals on Thyroid Health and Cancer: A Review. Expo. Health 2021, 13, 613–627. [Google Scholar] [CrossRef]
- Zheng, K.; Zeng, Z.; Tian, Q.; Huang, J.; Zhong, Q.; Huo, X. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. Sci. Total Environ. 2023, 868, 161691. [Google Scholar] [CrossRef]
- Bimonte, V.M.; Besharat, Z.M.; Antonioni, A.; Cella, V.; Lenzi, A.; Ferretti, E.; Migliaccio, S. The endocrine disruptor cadmium: A new player in the pathophysiology of metabolic diseases. J. Endocrinol. Investig. 2021, 44, 1363–1377. [Google Scholar] [CrossRef] [PubMed]
- Planchart, A.; Green, A.; Hoyo, C.; Mattingly, C.J. Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies. Curr. Environ. Health Rep. 2018, 5, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Tinkov, A.A.; Aschner, M.; Ke, T.; Ferrer, B.; Zhou, J.-C.; Chang, J.-S.; Santamaría, A.; Chao, J.C.-J.; Aaseth, J.; Skalny, A.V. Adipotropic effects of heavy metals and their potential role in obesity. Fac. Rev. 2021, 10, 32. [Google Scholar] [CrossRef]
- Nasab, H.; Rajabi, S.; Eghbalian, M.; Malakootian, M.; Hashemi, M.; Mahmoudi-Moghaddam, H. Association of As, Pb, Cr, and Zn urinary heavy metals levels with predictive indicators of cardiovascular disease and obesity in children and adolescents. Chemosphere 2022, 294, 133664. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Huang, P.-C.; Wu, C.; Sung, F.-C.; Su, T.-C. Association between urine lead levels and cardiovascular disease risk factors, carotid intima-media thickness and metabolic syndrome in adolescents and young adults. Int. J. Hyg. Environ. Health 2020, 223, 248–255. [Google Scholar] [CrossRef]
- Shao, W.; Liu, Q.; He, X.; Liu, H.; Gu, A.; Jiang, Z. Association between level of urinary trace heavy metals and obesity among children aged 6–19 years: NHANES 1999–2011. Environ. Sci. Pollut. Res. Int. 2017, 24, 11573–11581. [Google Scholar] [CrossRef]
- Uche, U.I.; Suzuki, S.; Fulda, K.G.; Zhou, Z. Environment-wide association study on childhood obesity in the U.S. Environ. Res. 2020, 191, 110109. [Google Scholar] [CrossRef]
- Vrijheid, M.; Fossati, S.; Maitre, L.; Márquez, S.; Roumeliotaki, T.; Agier, L.; Andrusaityte, S.; Cadiou, S.; Casas, M.; De Castro, M.; et al. Early-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach. Environ. Health Perspect. 2020, 128, 067009. [Google Scholar] [CrossRef]
- Błażewicz, A.; Klatka, M.; Astel, A.; Partyka, M.; Kocjan, R. Differences in Trace Metal Concentrations (Co, Cu, Fe, Mn, Zn, Cd, and Ni) in Whole Blood, Plasma, and Urine of Obese and Nonobese Children. Biol. Trace Elem. Res. 2013, 155, 190–200. [Google Scholar] [CrossRef]
- CDC. Fourth National Report on Human Exposure to Environmental Chemicals—Updated Tables, January 2017, Volume One. 2017. Available online: https://www.cdc.gov/biomonitoring/pdf/FourthReport_UpdatedTables_Volume1_Jan2017.pdf (accessed on 8 March 2017).
- Health Canada. Third Report on Human Biomonitoring of Environmental Chemicals in Canada—Results of the Canadian Health Measures Survey Cycle 3 (2012–2013). 2015. Available online: http://www.hc-sc.gc.ca/ewh-semt/alt_formats/pdf/pubs/contaminants/chms-ecms-cycle3/chms-ecms-cycle3-eng.pdf (accessed on 20 January 2016).
- Vogel, N.; Murawski, A.; Schmied-Tobies, M.I.; Rucic, E.; Doyle, U.; Kämpfe, A.; Höra, C.; Hildebrand, J.; Schäfer, M.; Drexler, H.; et al. Lead, cadmium, mercury, and chromium in urine and blood of children and adolescents in Germany—Human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V). Int. J. Hyg. Environ. Health 2021, 237, 113822. [Google Scholar] [CrossRef] [PubMed]
- Jaffé, M. Ueber den Niederschlag, welchen Pikrinsäure in normalem harn erzeugt und über eine neue reaction des kreatinins. (About the precipitation caused by pikrinic acid in normal urine and about a new reaction of creatinine). Physiol. Chem. 1986, 10, 391–400. (In German) [Google Scholar]
- CDC. Urine Multi-Element ICP-DRC-MS Renamed from “Inductively Coupled Plasma-Mass Spectrometry (ICP-DRC-MS)”. Method No: 3018.3(15elementpanel)and 3018A.2 (Total Arsenic). 2012. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/UTAS_UTASS_UM_UMS_I_MET.PDF (accessed on 20 January 2015).
- Leite, J.C.; Keating, E.; Pestana, D.; Fernandes, V.C.; Maia, M.L.; Norberto, S.; Pinto, E.; Moreira-Rosário, A.; Sintra, D.; Moreira, B.; et al. Iodine Status and Iodised Salt Consumption in Portuguese School-Aged Children: The Iogeneration Study. Nutrients 2017, 9, 458. [Google Scholar] [CrossRef] [PubMed]
- ICH. Harmonised Tripartite Guideline: Clinical Investigation of Medicinal Products in the Pediatric Population. 2000. Available online: http://www.ich.org/products/guidelines/efficacy/efficacy-single/article/clinical-investigation-of-medicinal-products-in-the-pediatric-population.html (accessed on 1 November 2015).
- Costello, A.B.; Osborne, J. Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most From Your Analysis. Pract. Assess. 2005, 10, 1–9. [Google Scholar]
- WHO. Biological Monitoring of Chemical Exposure in the Workplace: Guidelines. 1996. Available online: http://apps.who.int/iris/bitstream/10665/41856/1/WHO_HPR_OCH_96.1.pdf (accessed on 8 March 2017).
- Koch, H.M.; Wittassek, M.; Brüning, T.; Angerer, J.; Heudorf, U. Exposure to phthalates in 5–6 years old primary school starters in Germany—A human biomonitoring study and a cumulative risk assessment. Int. J. Hyg. Environ. Health 2011, 214, 188–195. [Google Scholar] [CrossRef]
- Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary Creatinine Concentrations in the U.S. Population: Implications for Urinary Biologic Monitoring Measurements. Environ. Health Perspect. 2005, 113, 192–200. [Google Scholar] [CrossRef]
- WHO. Growth Reference 5–19 Years—Body Mass Index. 2007. Available online: http://www.who.int/growthref/who2007_bmi_for_age/en/ (accessed on 6 January 2016).
- WHO/UNICEF/ICCIDD. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers, 3rd ed.; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Roca, M.; Sánchez, A.; Pérez, R.; Pardo, O.; Yusà, V. Biomonitoring of 20 elements in urine of children. Levels and predictors of exposure. Chemosphere 2016, 144, 1698–1705. [Google Scholar] [CrossRef] [PubMed]
- Protano, C.; Astolfi, M.L.; Canepari, S.; Vitali, M. Urinary levels of trace elements among primary school-aged children from Italy: The contribution of smoking habits of family members. Sci. Total Environ. 2016, 557–558, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Filho, J.A.; de Carvalho-Vivas, C.F.; Viana, G.F.; Ferreira, J.R.; Nunes, L.S.; Mergler, D.; Abreu, N. Elevated manganese exposure and school-aged children’s behavior: A gender-stratified analysis. NeuroToxicology 2014, 45, 293–300. [Google Scholar] [CrossRef]
- Reis, A.; Patinha, C.; Wragg, J.; Dias, A.; Cave, M.; Sousa, A.; Batista, M.; Prazeres, C.; Costa, C.; da Silva, E.F.; et al. Urban geochemistry of lead in gardens, playgrounds and schoolyards of Lisbon, Portugal: Assessing exposure and risk to human health. Appl. Geochem. 2014, 44, 45–53. [Google Scholar] [CrossRef]
- Coelho, S.D.; Pastorinho, M.R.; Itai, T.; Isobe, T.; Kunisue, T.; Nogueira, A.J.; Tanabe, S.; Sousa, A.C. Lead in duplicate diet samples from an academic community. Sci. Total Environ. 2016, 573, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Reis, M.F.; Sampaio, C.; Brantes, A.; Aniceto, P.; Melim, M.; Cardoso, L.; Gabriel, C.; Simão, F.; Miguel, J.P. Human exposure to heavy metals in the vicinity of Portuguese solid waste incinerators—Part 3: Biomonitoring of Pb in blood of children under the age of 6 years. Int. J. Hyg. Environ. Health 2007, 210, 455–459. [Google Scholar] [CrossRef]
- Figueira, R.; Sérgio, C.; Lopes, J.L.; Sousa, A.J. Detection of exposition risk to arsenic in Portugal assessed by air deposition in biomonitors and water contamination. Int. J. Hyg. Environ. Health 2007, 210, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Pereira, A.; Silva, L.; Pena, A. Arsenic in Portuguese Rice: Is There Any Risk? Foods 2022, 11, 277. [Google Scholar] [CrossRef]
- Pena, A.; Duarte, S.; Pereira, A.M.P.T.; Silva, L.J.G.; Laranjeiro, C.S.M.; Oliveira, M.; Lino, C.; Morais, S. Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part I—Lessons Learned on Polycyclic Aromatic Hydrocarbons, Metals, Metalloids, and Pesticides. Molecules 2022, 27, 242. [Google Scholar] [CrossRef]
- Coelho, P.; Costa, S.; Silva, S.; Walter, A.; Ranville, J.; Sousa, A.C.A.; Costa, C.; Coelho, M.; García-Lestón, J.; Pastorinho, M.R.; et al. Metal(Loid) Levels in Biological Matrices from Human Populations Exposed to Mining Contamination—Panasqueira Mine (Portugal). J. Toxicol. Environ. Health Part A 2012, 75, 893–908. [Google Scholar] [CrossRef]
- Chou, C.-H.; Harper, C.; ATSDR. Toxicological Profile for Arsenic; United States Department of Health and Human Services: Washington, DC, USA, 2007.
- Karbowska, B. Presence of thallium in the environment: Sources of contaminations, distribution and monitoring methods. Environ. Monit. Assess. 2016, 188, 640. [Google Scholar] [CrossRef]
- Ventura, M.; Coelho, I.; Gueifao, S.; Rego, A.; Castanheira, I. The Contribution of Metrology in Total Diet Studies: Portuguese Case. Extraction 2016, 113, 7. [Google Scholar]
- Berglund, M.; Larsson, K.; Grandér, M.; Casteleyn, L.; Kolossa-Gehring, M.; Schwedler, G.; Castaño, A.; Esteban, M.; Angerer, J.; Koch, H.M.; et al. Exposure determinants of cadmium in European mothers and their children. Environ. Res. 2015, 141, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Saravanabhavan, G.; Werry, K.; Walker, M.; Haines, D.; Malowany, M.; Khoury, C. Human biomonitoring reference values for metals and trace elements in blood and urine derived from the Canadian Health Measures Survey 2007–2013. Int. J. Hyg. Environ. Health 2017, 220, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Hays, S.M.; Poddalgoda, D.; Macey, K.; Aylward, L.; Nong, A. Biomonitoring Equivalents for interpretation of urinary iodine. Regul. Toxicol. Pharmacol. 2018, 94, 40–46. [Google Scholar] [CrossRef]
- Faure, S.; Noisel, N.; Werry, K.; Karthikeyan, S.; Aylward, L.L.; St-Amand, A. Evaluation of human biomonitoring data in a health risk based context: An updated analysis of population level data from the Canadian Health Measures Survey. Int. J. Hyg. Environ. Health 2020, 223, 267–280. [Google Scholar] [CrossRef]
- Hays, S.M.; Macey, K.; Poddalgoda, D.; Lu, M.; Nong, A.; Aylward, L.L. Biomonitoring Equivalents for molybdenum. Regul. Toxicol. Pharmacol. 2016, 77, 223–229. [Google Scholar] [CrossRef]
- Mayo Clinic. Mayo Clinic Labs—Test Catalogue. Available online: https://www.mayocliniclabs.com/test-catalog/search?q=lead (accessed on 10 January 2022).
- Schulz, C.; Wilhelm, M.; Heudorf, U.; Kolossa-Gehring, M. Update of the reference and HBM values derived by the German Human Biomonitoring Commission. Int. J. Hyg. Environ. Health 2011, 215, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Apel, P.; Angerer, J.; Wilhelm, M.; Kolossa-Gehring, M. New HBM values for emerging substances, inventory of reference and HBM values in force, and working principles of the German Human Biomonitoring Commission. Int. J. Hyg. Environ. Health 2017, 220, 152–166. [Google Scholar] [CrossRef]
- Poddalgoda, D.; Macey, K.; Jayawardene, I.; Krishnan, K. Derivation of biomonitoring equivalent for inorganic tin for interpreting population-level urinary biomonitoring data. Regul. Toxicol. Pharmacol. 2016, 81, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.; Liu, W.; Liu, G. The relationships between serum copper levels and overweight/total obesity and central obesity in children and adolescents aged 6-18 years. J. Trace Elem. Med. Biol. 2020, 61, 126557. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wei, Y.; Long, T.; Wang, R.; Li, Z.; Yu, C.; Wu, T.; He, M. Association between urinary metals levels and metabolic phenotypes in overweight and obese individuals. Chemosphere 2020, 254, 126763. [Google Scholar] [CrossRef]
- Swayze, S.; Rotondi, M.; Kuk, J.L. The Associations between Blood and Urinary Concentrations of Metal Metabolites, Obesity, Hypertension, Type 2 Diabetes, and Dyslipidemia among US Adults: NHANES 1999–2016. J. Environ. Public Health 2021, 2021, 2358060. [Google Scholar] [CrossRef] [PubMed]
- Warwick, M.; Marcelo, C.; Marcelo, C.; Shaw, J.; Qayyum, R. The relationship between chronic arsenic exposure and body measures among US adults: National Health and Nutrition Examination Survey 2009-2016. J. Trace Elem. Med. Biol. 2021, 67, 126771. [Google Scholar] [CrossRef]
- Lehmler, H.-J.; Gadogbe, M.; Liu, B.; Bao, W. Environmental tin exposure in a nationally representative sample of U.S. adults and children: The National Health and Nutrition Examination Survey 2011–2014. Environ. Pollut. 2018, 240, 599–606. [Google Scholar] [CrossRef]
Healthy Diet/Obese and Overweight (n = 67) a | Regular Diet/Normal Weight (n = 43) a | Total Sample (n = 110) | p Value * | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Median | 95th | Max | Median | 95th | Max | Median | 95th | Max | ||
Age (years) | 9.00 | 16 | 17.0 | 11.0 | 17 | 18.0 | 10.0 | 16.5 | 18.0 | 0.422 |
Sex (%) | Female 44% Male 56% | Female 50% Male 50% | Female 50% Male 50% | |||||||
Weight (kg) | 45.5 | 82.3 | 120 | 34.8 | 64.8 | 75.0 | 44.3 | 80.8 | 120 | ≤0.001 |
Height (cm) | 141 | 168 | 182 | 143 | 181 | 184 | 142 | 172 | 184 | 0.670 |
BMI (kg/m2) | 24.6 | 34.4 | 42.3 | 17.1 | 22.9 | 24.1 | 21.9 | 30.5 | 42.3 | ≤0.001 |
Creatinine (g/L) | 0.95 | 3.81 | 2.82 | 0.88 | 2.55 | 2.64 | 0.92 | 2.60 | 3.81 | 0.790 |
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | |
---|---|---|---|---|---|
Weight and diet group | −0.514 | 0.199 | 0.383 | −0.127 | 0.57 |
Region | −0.437 | −0.034 | 0.725 | 0.051 | −0.012 |
Age | −0.202 | −0.773 | 0.053 | −0.014 | 0.275 |
Cu | 0.802 | 0.35 | −0.062 | −0.002 | 0.092 |
Co | 0.221 | 0.047 | 0.775 | −0.119 | 0.128 |
I | 0.267 | 0.683 | 0.269 | −0.082 | 0.078 |
Mo | 0.155 | 0.622 | 0.096 | 0.618 | −0.015 |
Mn | 0.76 | 0.067 | 0.126 | 0.113 | 0.014 |
Ni | 0.605 | 0.092 | 0.577 | 0.044 | 0.077 |
Sb | 0.797 | 0.404 | 0.057 | 0.11 | 0.087 |
As | 0.384 | −0.127 | 0.078 | 0.093 | 0.786 |
Cd | 0.246 | 0.524 | 0.239 | 0.629 | 0.101 |
Pb | 0.489 | 0.198 | −0.120 | −0.170 | 0.16 |
Sn | 0.074 | 0.146 | 0.175 | −0.671 | 0.00 |
Tl | 0.134 | 0.561 | −0.322 | −0.002 | 0.332 |
Elements | Factors | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | 95% Confidence Interval for ß | R | Adj R | 95% Confidence Interval for ß | gMR | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ß | Std. Error | ß | Lower Bound | Upper Bound | Lower Bound | Upper Bound | |||||||
Cu | Diet and weight group | −0.38 | 0.12 | −0.31 | −3.08 | 0.003 | −0.62 | 0.13 | 0.436 | 0.420 | 0.54 | 1.14 | 0.69 |
Region | −0.33 | 0.13 | −0.25 | −2.45 | 0.016 | −0.59 | −0.06 | 0.55 | 0.94 | 0.72 | |||
Age | −0.06 | 0.01 | −0.33 | −4.45 | <0.0001 | −0.08 | −0.03 | 0.92 | 0.97 | 0.94 | |||
Co | Diet and weight group | −0.20 | 0.14 | −0.18 | −1.40 | 0.164 | −0.47 | 0.08 | 0.116 | 0.091 | 0.62 | 1.08 | 0.82 |
Region | 0.53 | 0.15 | 0.44 | 3.48 | <0.0001 | 0.23 | 0.83 | 1.26 | 2.29 | 1.70 | |||
Age | −0.01 | 0.02 | −0.04 | −0.47 | 0.643 | −0.04 | 0.02 | 0.96 | 1.02 | 0.99 | |||
I | Diet and weight group | 0.05 | 0.15 | 0.04 | 0.34 | 0.736 | −0.24 | 0.34 | 0.340 | 0.321 | 0.79 | 1.40 | 1.05 |
Region | 0.15 | 0.16 | 0.11 | 0.97 | 0.336 | −0.16 | 0.47 | 0.85 | 1.60 | 1.17 | |||
Age | −0.12 | 0.02 | −0.59 | −7.27 | <0.0001 | −0.15 | −0.08 | 0.86 | 0.92 | 0.89 | |||
Mo | Diet and weight group | −0.15 | 0.11 | −0.16 | −1.32 | 0.191 | −0.37 | 0.07 | 0.194 | 0.172 | 0.69 | 1.08 | 0.86 |
Region | 0.10 | 0.12 | 0.10 | 0.85 | 0.397 | −0.14 | 0.34 | 0.87 | 1.41 | 1.11 | |||
Age | −0.06 | 0.01 | −0.41 | −4.56 | <0.001 | −0.08 | −0.03 | 0.92 | 0.97 | 0.95 | |||
Mn | Diet and weight group | −0.68 | 0.17 | −0.42 | −4.04 | <0.001 | −1.02 | −0.35 | 0.424 | 0.408 | 0.36 | 0.71 | 0.50 |
Region | −0.10 | 0.19 | −0.06 | −0.55 | 0.581 | −0.47 | 0.26 | 0.63 | 1.30 | 0.90 | |||
Age | −0.09 | 0.02 | −0.39 | −5.11 | <0.001 | −0.13 | −0.06 | 0.88 | 0.94 | 0.91 | |||
Ni | Diet and weight group | −0.51 | 0.14 | −0.43 | −3.54 | <0.001 | −0.80 | −0.22 | 0.188 | 0.165 | 0.45 | 0.80 | 0.60 |
Region | 0.55 | 0.16 | 0.42 | 3.47 | <0.001 | 0.23 | 0.86 | 1.26 | 2.35 | 1.72 | |||
Age | −0.04 | 0.02 | −0.24 | −2.68 | 0.009 | −0.07 | −0.01 | 0.93 | 0.99 | 0.96 | |||
Sb | Diet and weight group | −0.56 | 0.14 | −0.41 | −4.11 | <0.001 | −0.84 | −0.29 | 0.468 | 0.453 | 0.43 | 0.75 | 0.57 |
Region | −0.02 | 0.15 | −0.01 | −0.12 | 0.902 | −0.32 | 0.28 | 0.73 | 1.32 | 0.98 | |||
Age | −0.10 | 0.02 | −0.47 | −6.48 | <0.001 | −0.13 | −0.07 | 0.88 | 0.94 | 0.91 | |||
As | Diet and weight group | 0.51 | 0.21 | 0.33 | 2.49 | 0.014 | 0.11 | 0.92 | 0.069 | 0.042 | 1.11 | 2.51 | 1.67 |
Region | −0.57 | 0.23 | −0.33 | −2.55 | 0.012 | −1.02 | −0.13 | 0.36 | 0.88 | 0.56 | |||
Age | −0.02 | 0.02 | −0.07 | −0.74 | 0.464 | −0.06 | 0.03 | 0.94 | 1.03 | 0.98 | |||
Cd | Diet and weight group | 0.03 | 0.10 | 0.03 | 0.27 | 0.788 | −0.18 | 0.23 | 0.140 | 0.115 | 0.84 | 1.26 | 1.03 |
Region | 0.03 | 0.11 | 0.03 | 0.24 | 0.814 | −0.20 | 0.25 | 0.82 | 1.28 | 1.03 | |||
Age | −0.05 | 0.01 | −0.38 | −4.13 | <0.001 | −0.07 | −0.02 | 0.94 | 0.98 | 0.96 | |||
Pb | Diet and weight group | −0.40 | 0.22 | −0.22 | −1.87 | 0.065 | −0.83 | 0.03 | 0.218 | 0.196 | 0.44 | 1.03 | 0.67 |
Region | 0.00 | 0.24 | 0.00 | 0.01 | 0.994 | −0.46 | 0.47 | 0.63 | 1.60 | 1.00 | |||
Age | −0.10 | 0.02 | −0.37 | −4.20 | <0.001 | −0.14 | −0.05 | 0.87 | 0.95 | 0.91 | |||
Sn | Diet and weight group | 0.46 | 0.28 | 0.21 | 1.63 | 0.107 | −0.10 | 1.02 | 0.104 | 0.079 | 0.90 | 2.76 | 1.58 |
Region | −0.16 | 0.31 | −0.07 | −0.51 | 0.610 | −0.77 | 0.45 | 0.46 | 1.57 | 0.85 | |||
Age | −0.10 | 0.03 | −0.31 | −3.31 | 0.001 | −0.16 | −0.04 | 0.85 | 0.96 | 0.90 | |||
Tl | Diet and weight group | 0.22 | 0.20 | 0.14 | 1.10 | 0.276 | −0.18 | 0.61 | 0.129 | 0.104 | 0.84 | 1.84 | 1.24 |
Region | −0.75 | 0.22 | −0.43 | −3.46 | <0.001 | −1.18 | −0.32 | 0.31 | 0.73 | 0.47 | |||
Age | 0.02 | 0.02 | 0.10 | 1.09 | 0.276 | −0.02 | 0.07 | 0.98 | 1.07 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia-Sá, L.; Fernandes, V.C.; Maia, M.L.; Pinto, E.; Norberto, S.; Almeida, A.; Santos, C.; Delerue-Matos, C.; Calhau, C.; Domingues, V.F. Trace Elements in Portuguese Children: Urinary Levels and Exposure Predictors. Toxics 2023, 11, 767. https://doi.org/10.3390/toxics11090767
Correia-Sá L, Fernandes VC, Maia ML, Pinto E, Norberto S, Almeida A, Santos C, Delerue-Matos C, Calhau C, Domingues VF. Trace Elements in Portuguese Children: Urinary Levels and Exposure Predictors. Toxics. 2023; 11(9):767. https://doi.org/10.3390/toxics11090767
Chicago/Turabian StyleCorreia-Sá, Luísa, Virgínia C. Fernandes, Maria Luz Maia, Edgar Pinto, Sónia Norberto, Agostinho Almeida, Cristina Santos, Cristina Delerue-Matos, Conceição Calhau, and Valentina F. Domingues. 2023. "Trace Elements in Portuguese Children: Urinary Levels and Exposure Predictors" Toxics 11, no. 9: 767. https://doi.org/10.3390/toxics11090767
APA StyleCorreia-Sá, L., Fernandes, V. C., Maia, M. L., Pinto, E., Norberto, S., Almeida, A., Santos, C., Delerue-Matos, C., Calhau, C., & Domingues, V. F. (2023). Trace Elements in Portuguese Children: Urinary Levels and Exposure Predictors. Toxics, 11(9), 767. https://doi.org/10.3390/toxics11090767