Bifenthrin Diminishes Male Fertility Potential by Inducing Protein Defects in Mouse Sperm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Media
2.2. Sample Collection and Treatment
2.3. Sperm Motility and Kinematics
2.4. Capacitation Status
2.5. Intracellular ATP Levels and Cell Viability
2.6. Two-Dimensional Electrophoresis
2.7. Protein Identification
2.7.1. In-Gel Digestion
2.7.2. Desalting and Concentration
2.7.3. Liquid Chromatography MS/MS (LC–MS/MS)
2.7.4. Database Search
2.8. Western Blot Analysis
2.9. Functional Annotation, Signaling Pathways, and Protein–Protein Interaction Networks of DEPs
2.10. Statistical Analysis
3. Results
3.1. Sperm Motility and Kinematics
3.2. Capacitation Status
3.3. Intracellular ATP Level and Cell Viability
3.4. Differentially Expressed Proteins
3.5. Verification of the DEPs
3.6. Bioinformatics Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casida, J.E.; Quistad, G.B. Golden Age of Insecticide Research: Past, Present, or Future? Annu. Rev. Entomol. 1998, 43, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Chinn, K.; Narahashi, T. Stabilization of sodium channel states by deltamethrin in mouse neuroblastoma cells. J. Physiol. 1986, 380, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Holloway, S.F.; Salgado, V.L.; Wu, C.H.; Narahashi, T. Kinetic properties of single sodium channels modified by fenvalerate in mouse neuroblastoma cells. Pflügers Arch. Eur. J. Physiol. 1989, 414, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.E. CHAPTER 59—Pyrethroid Insecticides: Mechanisms of Toxicity, Systemic Poisoning Syndromes, Paresthesia, and Therapy. In Handbook of Pesticide Toxicology, 2nd ed.; Krieger, R.I., Krieger, W.C., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 1289–1303. [Google Scholar]
- Soderlund, D.M.; Bloomquist, J.R. Neurotoxic actions of pyrethroid insecticides. Annu. Rev. Entomol. 1989, 34, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Shafer Timothy, J.; Meyer Douglas, A.; Crofton Kevin, M. Developmental Neurotoxicity of Pyrethroid Insecticides: Critical Review and Future Research Needs. Environ. Health Perspect. 2005, 113, 123–136. [Google Scholar] [CrossRef]
- Bradbury, S.P.; Coats, J.R. Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environ. Toxicol. Chem. 1989, 8, 373–380. [Google Scholar] [CrossRef]
- Brander, S.M.; Gabler, M.K.; Fowler, N.L.; Connon, R.E.; Schlenk, D. Pyrethroid Pesticides as Endocrine Disruptors: Molecular Mechanisms in Vertebrates with a Focus on Fishes. Environ. Sci. Technol. 2016, 50, 8977–8992. [Google Scholar] [CrossRef]
- Bradberry, S.M.; Cage, S.A.; Proudfoot, A.T.; Vale, J.A. Poisoning due to pyrethroids. Toxicol Rev. 2005, 24, 93–106. [Google Scholar] [CrossRef]
- Leng, G.; Kühn, K.H.; Idel, H. Biological monitoring of pyrethroids in blood and pyrethroid metabolites in urine: Applications and limitations. Sci. Total Environ. 1997, 199, 173–181. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Zhao, Q.; Wang, C.; Cui, Y.; Li, J.; Chen, A.; Liang, G.; Jiao, B. Occurrence, temporal variation, quality and safety assessment of pesticide residues on citrus fruits in China. Chemosphere 2020, 258, 127381. [Google Scholar] [CrossRef]
- U.S. Geological Survey. National Water-Quality Assessment (NAWQA) Project, Estimated Annual Agricultural Pesticide Use. 2021. Available online: https://water.usgs.gov/nawqa/pnsp/usage/maps/ (accessed on 7 November 2023).
- Tang, W.; Wang, D.; Wang, J.; Wu, Z.; Li, L.; Huang, M.; Xu, S.; Yan, D. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere 2018, 191, 990–1007. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.N.; Rafique, N.; Akhtar, S.; Taj, T.; Mehboob, F. Analysis of multiple pesticide residues in market samples of okra and associated dietary risk assessment for consumers. Environ. Sci. Pollut. Res. 2022, 29, 47561–47570. [Google Scholar] [CrossRef] [PubMed]
- Wielgomas, B.; Nahorski, W.; Czarnowski, W. Urinary concentrations of pyrethroid metabolites in the convenience sample of an urban population of Northern Poland. Int. J. Hyg. Environ. Health 2013, 216, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Corcellas, C.; Feo, M.L.; Torres, J.P.; Malm, O.; Ocampo-Duque, W.; Eljarrat, E.; Barceló, D. Pyrethroids in human breast milk: Occurrence and nursing daily intake estimation. Environ. Int. 2012, 47, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Brander, S.M.; Jeffries, K.M.; Cole, B.J.; DeCourten, B.M.; White, J.W.; Hasenbein, S.; Fangue, N.A.; Connon, R.E. Transcriptomic changes underlie altered egg protein production and reduced fecundity in an estuarine model fish exposed to bifenthrin. Aquat. Toxicol. 2016, 174, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Mauduit, F.; Segarra, A.; Sherman, J.R.; Hladik, M.L.; Wong, L.; Young, T.M.; Lewis, L.S.; Hung, T.-C.; Fangue, N.A.; Connon, R.E. Bifenthrin, a Ubiquitous Contaminant, Impairs the Development and Behavior of the Threatened Longfin Smelt during Early Life Stages. Environ. Sci. Technol. 2023, 57, 9580–9591. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Park, S.; Lim, W.; Song, G. Bifenthrin reduces pregnancy potential via induction of oxidative stress in porcine trophectoderm and uterine luminal epithelial cells. Sci. Total Environ. 2021, 784, 147143. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, Y.; Yang, Y.; Zhang, Y.; Liu, W. Disrupting effects of bifenthrin on ovulatory gene expression and prostaglandin synthesis in rat ovarian granulosa cells. Toxicology 2011, 282, 47–55. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, W.; Zheng, Y.; Yang, J.; Zhu, X. The antiandrogenic activity of pyrethroid pesticides cyfluthrin and beta-cyfluthrin. Reprod. Toxicol. 2008, 25, 491–496. [Google Scholar] [CrossRef]
- Barkallah, M.; Ben Slima, A.; Elleuch, F.; Fendri, I.; Pichon, C.; Abdelkafi, S.; Baril, P. Protective Role of Spirulina platensis against Bifenthrin-Induced Reprotoxicity in Adult Male Mice by Reversing Expression of Altered Histological, Biochemical, and Molecular Markers Including MicroRNAs. Biomolecules 2020, 10, 753. [Google Scholar] [CrossRef]
- Bae, J.-W.; Kwon, W.-S. The deleterious toxic effects of bifenthrin on male fertility. Reprod. Toxicol. 2021, 101, 74–80. [Google Scholar] [CrossRef]
- Tayama, K.; Fujita, H.; Takahashi, H.; Nagasawa, A.; Yano, N.; Yuzawa, K.; Ogata, A. Measuring mouse sperm parameters using a particle counter and sperm quality analyzer: A simple and inexpensive method. Reprod. Toxicol. 2006, 22, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, F.; Zhang, Q.; Fang, Z. Chronic toxicity and cytotoxicity of synthetic pyrethroid insecticide cis-bifenthrin. J. Environ. Sci. 2009, 21, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2019, 36, 2628–2629. [Google Scholar] [CrossRef]
- Xiang, D.; Zhong, L.; Shen, S.; Song, Z.; Zhu, G.; Wang, M.; Wang, Q.; Zhou, B. Chronic exposure to environmental levels of cis-bifenthrin: Enantioselectivity and reproductive effects on zebrafish (Danio rerio). Environ. Pollut. 2019, 251, 175–184. [Google Scholar] [CrossRef]
- Gibbons, I.R.; Rowe, A.J. Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia. Science 1965, 149, 424–426. [Google Scholar] [CrossRef]
- Bera, T.K.; Hahn, Y.; Lee, B.; Pastan, I.H. TEPP, a new gene specifically expressed in testis, prostate, and placenta and well conserved in chordates. Biochem. Biophys. Res. Commun. 2003, 312, 1209–1215. [Google Scholar] [CrossRef]
- Zhou, K.; Arslanturk, S.; Craig, D.B.; Heath, E.; Draghici, S. Discovery of primary prostate cancer biomarkers using cross cancer learning. Sci. Rep. 2021, 11, 10433. [Google Scholar] [CrossRef]
- Garin-Muga, A.; Odriozola, L.; Martínez-Val, A.; del Toro, N.; Martínez, R.; Molina, M.; Cantero, L.; Rivera, R.; Garrido, N.; Dominguez, F.; et al. Detection of Missing Proteins Using the PRIDE Database as a Source of Mass Spectrometry Evidence. J. Proteome Res. 2016, 15, 4101–4115. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh Ali, H.; Dini, P.; Scoggin, K.; Loux, S.; Fedorka, C.; Boakari, Y.; Norris, J.; Esteller-Vico, A.; Kalbfleisch, T.; Ball, B. Transcriptomic analysis of equine placenta reveals key regulators and pathways involved in ascending placentitis†. Biol. Reprod. 2020, 104, 638–656. [Google Scholar] [CrossRef]
- Satir, P. Studies on Cilia: II. Examination of the Distal Region of the Ciliary Shaft and the Role of the Filaments in Motility. J. Cell Biol. 1965, 26, 805–834. [Google Scholar] [CrossRef] [PubMed]
- Fénichel, P.; Donzeau, M.; Farahifar, D.; Basteris, B.; Ayraud, N.; Hsi, B.-L. Dynamics of human sperm acrosome reaction: Relation with in vitro fertilization. Fertil. Steril. 1991, 55, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, H.; Chen, Y.; Yan, X.; Zhu, X. Rsph9 is critical for ciliary radial spoke assembly and central pair microtubule stability. Biol. Cell 2019, 111, 29–38. [Google Scholar] [CrossRef]
- Castleman, V.H.; Romio, L.; Chodhari, R.; Hirst, R.A.; de Castro, S.C.P.; Parker, K.A.; Ybot-Gonzalez, P.; Emes, R.D.; Wilson, S.W.; Wallis, C.; et al. Mutations in Radial Spoke Head Protein Genes RSPH9 and RSPH4A Cause Primary Ciliary Dyskinesia with Central-Microtubular-Pair Abnormalities. Am. J. Hum. Genet. 2009, 84, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Chiriva-Internati, M.; Gagliano, N.; Donetti, E.; Costa, F.; Grizzi, F.; Franceschini, B.; Albani, E.; Levi-Setti, P.E.; Gioia, M.; Jenkins, M.; et al. Sperm protein 17 is expressed in the sperm fibrous sheath. J. Transl. Med. 2009, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- McLeskey, S.B.; Dowds, C.; Carballada, R.; White, R.R.; Saling, P.M. Molecules Involved in Mammalian Sperm-Egg Interaction. In International Review of Cytology; Jeon, K.W., Ed.; Academic Press: Cambridge, MA, USA, 1997; Volume 177, pp. 57–113. [Google Scholar]
- Wen, Y.; Richardson, R.T.; O’Rand, M.G. Processing of the Sperm Protein Sp17 during the Acrosome Reaction and Characterization as a Calmodulin Binding Protein. Dev. Biol. 1999, 206, 113–122. [Google Scholar] [CrossRef]
- Karanwal, S.; Pal, A.; Chera, J.S.; Batra, V.; Kumaresan, A.; Datta, T.K.; Kumar, R. Identification of protein candidates in spermatozoa of water buffalo (Bubalus bubalis) bulls helps in predicting their fertility status. Front. Cell Dev. Biol. 2023, 11, 1119220. [Google Scholar] [CrossRef]
- Silva, J.V.; Yoon, S.; De Bock, P.J.; Goltsev, A.V.; Gevaert, K.; Mendes, J.F.; Fardilha, M. Construction and analysis of a human testis/sperm-enriched interaction network: Unraveling the PPP1CC2 interactome. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 375–385. [Google Scholar] [CrossRef]
- Miki, K.; Willis, W.D.; Brown, P.R.; Goulding, E.H.; Fulcher, K.D.; Eddy, E.M. Targeted Disruption of the Akap4 Gene Causes Defects in Sperm Flagellum and Motility. Dev. Biol. 2002, 248, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, R.; Kline, D.; Lu, J.; Orth, J.; Pilder, S.; Vijayaraghavan, S. Analysis of Ppp1cc-Null Mice Suggests a Role for PP1gamma2 in Sperm Morphogenesis1. Biol. Reprod. 2007, 76, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Dudiki, T.; Joudeh, N.; Sinha, N.; Goswami, S.; Eisa, A.; Kline, D.; Vijayaraghavan, S. The protein phosphatase isoform PP1γ1 substitutes for PP1γ2 to support spermatogenesis but not normal sperm function and fertility. Biol. Reprod. 2019, 100, 721–736. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Pilder, S.; Vijayaraghavan, S. Significant Expression Levels of Transgenic PPP1CC2 in Testis and Sperm Are Required to Overcome the Male Infertility Phenotype of Ppp1cc Null Mice. PLoS ONE 2012, 7, e47623. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Haig-Ladewig, L.; Gerton, G.L.; Moss, S.B. Adenylate Kinases 1 and 2 Are Part of the Accessory Structures in the Mouse Sperm Flagellum1. Biol. Reprod. 2006, 75, 492–500. [Google Scholar] [CrossRef]
- Ito, C.; Makino, T.; Mutoh, T.; Kikkawa, M.; Toshimori, K. The association of ODF4 with AK1 and AK2 in mice is essential for fertility through its contribution to flagellar shape. Sci. Rep. 2023, 13, 2969. [Google Scholar] [CrossRef]
- Ijiri, T.W.; Merdiushev, T.; Cao, W.; Gerton, G.L. Identification and validation of mouse sperm proteins correlated with epididymal maturation. Proteomics 2011, 11, 4047–4062. [Google Scholar] [CrossRef]
- Rahman, M.S.; Kwon, W.-S.; Karmakar, P.C.; Yoon, S.-J.; Ryu, B.-Y.; Pang, M.-G. Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice. Environ. Health Perspect. 2017, 125, 238–245. [Google Scholar] [CrossRef]
- Curry, E.; Safranski, T.J.; Pratt, S.L. Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology 2011, 76, 1532–1539. [Google Scholar] [CrossRef]
- Zhao, C.; Huo, R.; Wang, F.Q.; Lin, M.; Zhou, Z.M.; Sha, J.H. Identification of several proteins involved in regulation of sperm motility by proteomic analysis. Fertil. Steril. 2007, 87, 436–438. [Google Scholar] [CrossRef]
- Selvaraj, V.; Asano, A.; Page, J.L.; Nelson, J.L.; Kothapalli, K.S.; Foster, J.A.; Brenna, J.T.; Weiss, R.S.; Travis, A.J. Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile. Dev. Biol. 2010, 348, 177–189. [Google Scholar] [CrossRef] [PubMed]
Parameter | Concentration (µM) | ||||
---|---|---|---|---|---|
0 | 0.1 | 1 | 10 | 100 | |
Motility | |||||
MOT | 71.86 ± 0.70 a | 66.06 ± 3.24 a,b | 59.84 ± 2.78 b,c | 57.87 ± 3.48 b,c | 52.92 ± 2.50 c |
PRG | 71.21 ± 0.81 a | 65.45 ± 3.25 a,b | 59.56 ± 2.87 b,c | 57.73 ± 3.49 b,c | 52.70 ± 2.48 c |
HYP | 18.23 ± 2.83 a | 13.40 ± 2.33 a,b | 13.78 ± 1.66 a,b | 10.92 ± 1.72 a,b | 6.90 ± 1.41 b |
Kinematics | |||||
VCL | 74.93 ± 3.06 a | 65.04 ± 5.10 a,b | 61.99 ± 5.81 a,b | 56.57 ± 7.43 a,b | 49.76 ± 4.61 b |
VSL | 29.44 ± 2.43 a | 24.09 ± 2.29 a,b | 23.37 ± 1.66 a,b | 20.55 ± 2.01 a,b | 15.36 ± 1.94 b |
VAP | 42.05 ± 2.40 a | 35.43 ± 2.82 a,b | 33.55 ± 2.56 a,b | 30.18 ± 3.34 a,b | 24.91 ± 2.63 b |
LIN | 30.09 ± 1.02 a | 25.88 ± 1.80 a,b | 23.94 ± 0.72 b | 22.77 ± 0.64 b,c | 18.17 ± 1.02 c |
STR | 69.52 ± 2.15 a | 67.27 ± 1.91 a,b | 69.34 ± 1.17 a | 67.84 ± 0.85 a,b | 60.62 ± 3.04 b |
BCF | 5.51 ± 0.23 a | 4.77 ± 0.35 a,b | 4.68 ± 0.47 a,b | 4.15 ± 0.58 a,b | 3.61 ± 0.38 b |
ALH | 2.99 ± 0.07 a | 2.67 ± 0.19 a,b | 2.50 ± 0.22 a,b | 2.29 ± 0.28 a,b | 2.11 ± 0.18 b |
Symbol | Accession | Description | Score * | MW |
---|---|---|---|---|
FABP9 | O08716 | Fatty acid-binding protein 9 | 2857 | 15,236 |
ATP5O | Q9DB20 | ATP synthase subunit O, mitochondrial | 1812 | 23,406 |
AKAP4 | Q60662 | A-kinase anchor protein 4 | 785 | 95,559 |
PPP1CC2 | P63087-2 | Isoform 2 of Serine/threonine-protein phosphatase PP1-gamma catalytic subunit | 770 | 39,221 |
SP17 | Q62252 | Sperm surface protein Sp17 | 277 | 17,342 |
RSPH9 | Q9D9V4 | Radial spoke head protein 9 homolog | 123 | 31,368 |
AK2 | Q9WTP6 | Adenylate kinase 2, mitochondrial isoform b | 92 | 25,817 |
TEPP | Q6IMH0 | Testis, prostate, and placenta-expressed protein isoform 2 | 85 | 12,510 |
IDH3A | Q9D6R2 | Isocitrate dehydrogenase (NAD) subunit alpha, mitochondrial | 62 | 40,069 |
MOT | PRG | HYP | VCL | VSL | VAP | BCF | ALH | AR | B | F | ATP | Viability | FABP9 | ATP5O | AKAP4 | PPP1CC2 | SP17 | RSPH9 | AK2 | TEPP | IDH3A | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MOT | 1 | 0.999 ** | 0.776 ** | 0.929 ** | 0.895 ** | 0.939 ** | 0.911 ** | 0.920 ** | −0.644 ** | 0.878 ** | −0.306 | 0.607 ** | −0.248 | 0.727 ** | 0.566 * | 0.519 * | 0.691 ** | 0.394 | 0.723 ** | 0.760 ** | 0.769 ** | 0.806 ** |
PRG | 1 | 0.782 ** | 0.936 ** | 0.899 ** | 0.944 ** | 0.920 ** | 0.927 ** | −0.642 ** | 0.876 ** | −0.306 | 0.595 ** | −0.240 | 0.719 ** | 0.557 * | 0.514 | 0.679 ** | 0.385 | 0.720 ** | 0.750 ** | 0.760 ** | 0.793 ** | |
HYP | 1 | 0.850 ** | 0.936 ** | 0.908 ** | 0.834 ** | 0.805 ** | −0.723 ** | 0.867 ** | −0.194 | 0.549 * | 0.217 | 0.669 ** | 0.488 | 0.377 | 0.616 * | 0.357 | 0.755 ** | 0.691 ** | 0.783 ** | 0.685 ** | ||
VCL | 1 | 0.909 ** | 0.965 ** | 0.989 ** | 0.984 ** | −0.607 * | 0.820 ** | −0.279 | 0.464 * | −0.163 | 0.616 * | 0.439 | 0.380 | 0.561 * | 0.226 | 0.624 * | 0.650 ** | 0.679 ** | 0.594 * | |||
VSL | 1 | 0.981 ** | 0.912 ** | 0.844 ** | −0.731 ** | 0.927 ** | −0.260 | 0.582 ** | 0.047 | 0.768 ** | 0.596 * | 0.544 * | 0.729 ** | 0.454 | 0.719 ** | 0.826 ** | 0.852 ** | 0.794 ** | ||||
VAP | 1 | 0.964 ** | 0.922 ** | −0.703 ** | 0.891 ** | −0.248 | 0.568 ** | −0.046 | 0.730 ** | 0.568 * | 0.480 | 0.687 ** | 0.358 | 0.708 ** | 0.800 ** | 0.805 ** | 0.751 ** | |||||
BCF | 1 | 0.963 ** | −0.548 * | 0.791 ** | −0.315 | 0.443 | −0.206 | 0.595 * | 0.372 | 0.383 | 0.528 * | 0.184 | 0.527 * | 0.672 ** | 0.670 ** | 0.548 * | ||||||
ALH | 1 | −0.575 * | 0.768 ** | −0.253 | 0.479 * | −0.225 | 0.566 * | 0.362 | 0.298 | 0.506 | 0.157 | 0.624 * | 0.583 * | 0.623 * | 0.548 * | |||||||
AR | 1 | −0.682 ** | −0.385 | −0.872 ** | −0.425 | −0.704 ** | −0.490 | −0.307 | −0.572 * | −0.508 | −0.795 ** | −0.662 ** | −0.841 ** | −0.732 ** | ||||||||
B | 1 | −0.412 | 0.651 ** | −0.032 | 0.853 ** | 0.633 * | 0.692 ** | 0.725 ** | 0.571 * | 0.676 ** | 0.707 ** | 0.829 ** | 0.834 ** | |||||||||
F | 1 | 0.265 | 0.522 | −0.199 | −0.188 | −0.491 | −0.203 | −0.088 | 0.138 | −0.068 | 0.002 | −0.141 | ||||||||||
ATP | 1 | 0.350 | 0.819 ** | 0.491 | 0.404 | 0.693 ** | 0.570 * | 0.786 ** | 0.735 ** | 0.868 ** | 0.853 ** | |||||||||||
Viability | 1 | 0.050 | 0.102 | 0.048 | 0.054 | 0.487 | 0.343 | 0.136 | 0.035 | −0.028 | ||||||||||||
FABP9 | 1 | 0.672 ** | 0.680 ** | 0.736 ** | 0.667 ** | 0.672 ** | 0.619 * | 0.868 ** | 0.868 ** | |||||||||||||
ATP5O | 1 | 0.619 * | 0.535 * | 0.585 * | 0.514 | 0.418 | 0.488 | 0.677 ** | ||||||||||||||
AKAP4 | 1 | 0.462 | 0.853 ** | 0.231 | 0.382 | 0.442 | 0.567 * | |||||||||||||||
PPP1CC2 | 1 | 0.362 | 0.748 ** | 0.824 ** | 0.681 ** | 0.862 ** | ||||||||||||||||
SP17 | 1 | 0.385 | 0.279 | 0.503 | 0.532 * | |||||||||||||||||
RSPH9 | 1 | 0.669 ** | 0.692 ** | 0.810 ** | ||||||||||||||||||
AK2 | 1 | 0.737 ** | 0.791 ** | |||||||||||||||||||
TEPP | 1 | 0.825 ** | ||||||||||||||||||||
IDH3A | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.-W.; Hwang, J.-M.; Yoon, M.; Kwon, W.-S. Bifenthrin Diminishes Male Fertility Potential by Inducing Protein Defects in Mouse Sperm. Toxics 2024, 12, 53. https://doi.org/10.3390/toxics12010053
Bae J-W, Hwang J-M, Yoon M, Kwon W-S. Bifenthrin Diminishes Male Fertility Potential by Inducing Protein Defects in Mouse Sperm. Toxics. 2024; 12(1):53. https://doi.org/10.3390/toxics12010053
Chicago/Turabian StyleBae, Jeong-Won, Ju-Mi Hwang, Minjung Yoon, and Woo-Sung Kwon. 2024. "Bifenthrin Diminishes Male Fertility Potential by Inducing Protein Defects in Mouse Sperm" Toxics 12, no. 1: 53. https://doi.org/10.3390/toxics12010053
APA StyleBae, J. -W., Hwang, J. -M., Yoon, M., & Kwon, W. -S. (2024). Bifenthrin Diminishes Male Fertility Potential by Inducing Protein Defects in Mouse Sperm. Toxics, 12(1), 53. https://doi.org/10.3390/toxics12010053