Accumulation and Release of Cadmium Ions in the Lichen Evernia prunastri (L.) Ach. and Wood-Derived Biochar: Implication for the Use of Biochar for Environmental Biomonitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. BC Samples Description and Pretreatment
2.2. Lichen Sample Collection and Preparation
2.3. Surface Area of Lichen and Biochar Samples
2.4. Cation Exchange Capacity Measurement
2.5. Treatments with Cd2+ and Depuration Phase
2.6. Sample Analysis
2.7. Statistics
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- WHO, World Health Organization, 2000. Air Quality Guidelines—Second Edition. Available online: https://www.who.int/publications/i/item/9789289013581 (accessed on 23 December 2023).
- Pan, J.; Plant, J.A.; Voulvoulis, N.; Oates, C.J.; Ihlenfeld, C. Cadmium levels in Europe: Implications for human health. Environ. Geochem. Health 2010, 32, 1–12. [Google Scholar] [CrossRef] [PubMed]
- IARC International Agency for Research on Cancer. Available online: https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono100C-8.pdf (accessed on 7 May 2023).
- Cho, Y.A.; Kim, J.; Woo, H.D.; Kang, M. Dietary Cadmium Intake and the Risk of Cancer: A Meta-Analysis. PLoS ONE 2013, 8, e75087. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Thornton, I. Geochemistry of cadmium. Cadmium in the Environment. In Experientia Supplementum; Mislin, H., Ravera, O., Eds.; Birkhäuser: Basel, Switzerland, 1986; Volume 50. [Google Scholar] [CrossRef]
- WHO, World Health Organization, 2011. Cadmium in Drinking-Water. Available online: https://www.who.int/publications/m/item/background-documents-for-development-of-who-guidelines-for-drinking-water-quality-and-guidelines-for-safe-recreational-water-environments (accessed on 23 December 2023).
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- European Regulation, 1881/2006. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 20 September 2023).
- Aarhus Protocol on Heavy Metals. 1998. Available online: https://unece.org/environment-policy/air/protocol-heavy-metals#:~:text=The%201998%20Aarhus%20Protocol%20on%20Heavy%20Metals&text=The%20Protocol%20aims%20to%20cut,road%20transport)%20and%20waste%20incineration (accessed on 3 June 2023).
- EEA European Environmental Agency. 2023. Available online: https://www.eea.europa.eu/ims/heavy-metal-emissions-in-europe (accessed on 23 June 2023).
- ICP Vegetation, 2023. Heavy Metals, Nitrogen and Pops in European Mosses: 2020 Survey. Available online: https://icpvegetation.ceh.ac.uk/get-involved/manuals/moss-survey (accessed on 27 November 2023).
- Pacyna, J.M.; Pacyna, E.G.; Aas, W. Changes of Emissions and Atmospheric Deposition of Mercury, Lead, and Cadmium. Atmos. Environ. 2009, 43, 117–127. [Google Scholar] [CrossRef]
- Ballabio, C.; Jones, A.; Panagos, P. Cadmium in Topsoils of the European Union—An Analysis Based on LUCAS Topsoil Database. Sci. Total Environ. 2024, 912, 168710. [Google Scholar] [CrossRef]
- Bargagli, R. Moss and lichen biomonitoring of atmospheric mercury: A review. Sci. Total Environ. 2016, 572, 216–231. [Google Scholar] [CrossRef]
- Vannini, A.; Paoli, L.; Nicolardi, V.; Di Lella, L.A.; Loppi, S. Seasonal variations in intracellular trace element content and physiological parameters in the lichen Evernia prunastri transplanted to an urban environment. Acta Bot. Croat. 2017, 76, 171–176. [Google Scholar] [CrossRef]
- Vannini, A.; Paoli, L.; Russo, A.; Loppi, S. Contribution of submicronic (PM1) and coarse (PM > 1) particulate matter deposition to the heavy metal load of lichens transplanted along a busy road. Chemosphere 2019, 231, 121–125. [Google Scholar] [CrossRef]
- Contardo, T.; Vannini, A.; Sharma, K.; Giordani, P.; Loppi, S. Disentangling sources of trace element air pollution in complex urban areas by lichen biomonitoring. A case study in Milan (Italy). Chemosphere 2020, 256, 127155. [Google Scholar] [CrossRef] [PubMed]
- Bačkor, M.; Kováčik, J.; Piovár, J.; Pisani, T.; Loppi, S. Physiological Aspects of Cadmium and Nickel Toxicity in the Lichens Peltigera rufescens and Cladina arbuscula Subsp. mitis. Water Air Soil Pollut. 2010, 207, 253–262. [Google Scholar] [CrossRef]
- Pisani, T.; Munzi, S.; Paoli, L.; Bačkor, M.; Kováčik, J.; Piovár, J.; Loppi, S. Physiological effects of mercury in the lichens Cladonia arbuscula subsp. mitis (Sandst.) Ruoss and Peltigera rufescens (Weiss) Humb. Chemosphere 2011, 82, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Vannini, A.; Tedesco, R.; Loppi, S.; Di Cecco, V.; Di Martino, L.; Nascimbene, J.; Dallo, F.; Barbante, C. Lichens as monitors of the atmospheric deposition of potentially toxic elements in high elevation Mediterranean ecosystems. Sci. Total Environ. 2021, 798, 149369. [Google Scholar] [CrossRef]
- Godinho, R.M.; Verburg, T.G.; Freitas, M.D.C.; Wolterbeek, H.T. Dynamics of element accumulation and release of Flavoparmelia caperata during a long-term field transplant experiment. Int. J. Environ. Health 2011, 5, 49. [Google Scholar] [CrossRef]
- Walther, D.A.; Ramelow, G.J.; Beck, J.N.; Young, J.C.; Callahan, J.D.; Maroon, M.F. Temporal changes in metal levels of the lichens Parmotrema praesorediosum and Ramalina stenospora, southwest Louisiana. Water Air Soil Pollut. 1990, 53, 189–200. [Google Scholar] [CrossRef]
- Vannini, A.; Nicolardi, V.; Bargagli, R.; Loppi, S. Estimating atmospheric mercury concentrations with lichens. Environmental 2014, 48, 8754–8759. [Google Scholar] [CrossRef]
- Paoli, L.; Vannini, A.; Monaci, F.; Loppi, S. Competition between heavy metal ions for binding sites in lichens: Implications for biomonitoring studies. Chemosphere 2018, 199, 655–660. [Google Scholar] [CrossRef]
- Servin, A.D.; De la Torre-Roche, R.; Castillo-Michel, H.; Pagano, L.; Hawthorne, J.; Musante, C.; White, J.C. Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiol. Biochem. 2017, 110, 147–157. [Google Scholar] [CrossRef]
- He, L.; Zhong, H.; Liu, G.; Dai, Z.; Brookes, P.C.; Xu, J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019, 252, 846–855. [Google Scholar] [CrossRef]
- Vannini, A.; Jamal, M.B.; Gramigni, M.; Fedeli, R.; Ancora, S.; Monaci, F.; Loppi, S. Accumulation and release of mercury in the lichen Evernia prunastri (L.) Ach. Biology 2021, 10, 1198. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Zhan, W.; Zheng, K.; Wang, J.; Zhang, C.; Chen, R. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. Sci. Total Environ. 2020, 729, 139060. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, E.; Mishra, R.; Kumar, S. Biochar as environmental armour and its diverse role towards protecting soil, water and air. Sci. Total Environ. 2022, 806, 150444. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, B.; Theng, B.K.G.; Lee, X.; Zhang, X.; Chen, M.; Xu, P. Removal performance, mechanisms, and influencing factors of biochar for air pollutants: A critical review. Biochar 2022, 4, 30. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Wenga, T.; Mtisi, M. Biochars as media for air pollution control systems: Contaminant removal, applications and future research directions. Sci. Total Environ. 2021, 753, 142249. [Google Scholar] [CrossRef]
- Mukherjee, A.; Majumdar, S.; Servin, A.D.; Pagano, L.; Dhankher, O.P.; White, J.C. Carbon Nanomaterials in Agriculture: A Critical Review. Front. Plant Sci. 2016, 7, 172. [Google Scholar] [CrossRef] [PubMed]
- Marmiroli, M.; Caldara, M.; Pantalone, S.; Malcevschi, A.; Maestri, E.; Keller, A.A.; Marmiroli, N. Building a risk matrix for the safety assessment of wood derived biochars. Sci. Total Environ. 2022, 839, 156265. [Google Scholar] [CrossRef] [PubMed]
- Rahim, H.U.; Akbar, W.A.; Alatalo, J.M. A Comprehensive Literature Review on Cadmium (Cd) Status in the Soil Environment and Its Immobilization by Biochar-Based Materials. Agronomy 2022, 12, 877. [Google Scholar] [CrossRef]
- Beesley, L.; Marmiroli, M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 2011, 159, 474–480. [Google Scholar] [CrossRef]
- Hegyesi, N.; Vad, R.T.; Pukánszky, B. Determination of the specific surface area of layered silicates by methylene blue adsorption: The role of structure, pH and layer charge. Appl. Clay Sci. 2017, 146, 50–55. [Google Scholar] [CrossRef]
- Nunes, C.A.; Guerreiro, M.C. Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers. Quím. Nova 2011, 34, 472–476. [Google Scholar] [CrossRef]
- Fornasini, L.; Scaravonati, S.; Magnani, G.; Morenghi, A.; Sidoli, M.; Bersani, D.; Pontiroli, D. In Situ decoration of laser-scribed graphene with TiO2 nanoparticles for scalable high-performance micro-supercapacitors. Carbon 2021, 176, 296–306. [Google Scholar] [CrossRef]
- Gazzetta Ufficiale Della Repubblica Italiana. Available online: https://www.gazzettaufficiale.it/eli/gu/1999/10/21/248/so/185/sg/pdf (accessed on 4 February 2023).
- Beckett, R.P.; Brown, D.H. The Control of Cadmium Uptake in the Lichen Genus Peltigera. J. Exp. Bot. 1984, 35, 1071–1082. [Google Scholar] [CrossRef]
- Xiang, A.; Gao, Z.; Zhang, K.; Jiang, E.; Ren, Y.; Wang, M. Study on the Cd (II) adsorption of biochar based carbon fertilizer. Ind. Crops Prod. 2021, 174, 114213. [Google Scholar] [CrossRef]
- Marmiroli, M.; Bonas, U.; Imperiale, D.; Lencioni, G.; Mussi, F.; Marmiroli, N.; Maestri, E. Structural and functional features of chars from different biomasses as potential plant amendments. Front. Plant Sci. 2018, 9, 1119. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. Available online: https://www.R-project.org/ (accessed on 9 March 2022).
- Cecconi, E.; Fortuna, L.; Benesperi, R.; Bianchi, E.; Brunialti, G.; Contardo, T.; Di Nuzzo, L.; Frati, L.; Monaci, F.; Munzi, S.; et al. New Interpretative Scales for Lichen Bioaccumulation Data: The Italian Proposal. Atmosphere 2019, 10, 136. [Google Scholar] [CrossRef]
- Vannini, A.; Bianchi, E.; Avi, D.; Damaggio, N.; Di Lella, L.; Nannoni, F.; Protano, G.; Loppi, S. Biochar Amendment Reduces the Availability of Pb in the Soil and Its Uptake in Lettuce. Toxics 2021, 9, 268. [Google Scholar] [CrossRef]
- Riga-Karandinos, A.N.; Karandinos, M.G. Assessment of Air Pollution from a Lignite Power Plant in the Plain of Megalopolis Ž Greece. Using as Biomonitors Three Species of Lichens; Impacts on Some Biochemical Parameters of Lichens. Sci. Total Environ. 1998, 215, 167–183. [Google Scholar] [CrossRef]
- Boamponsem, L.K.; Adam, J.I.; Dampare, S.B.; Nyarko, B.J.B.; Essumang, D.K. Assessment of Atmospheric Heavy Metal Deposition in the Tarkwa Gold Mining Area of Ghana Using Epiphytic Lichens. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1492–1501. [Google Scholar] [CrossRef]
- Sujetovienė, G.; Šliumpaitė, I. Effects of Cadmium on Physiological Parameters of the Lichen Evernia Prunastri and Ramalina Fastigiata. E3S Web Conf. 2013, 1, 29007. [Google Scholar] [CrossRef]
- Bargagli, R.; Mikhailova, I. Accumulation of Inorganic Contaminants. In Monitoring with Lichens—Monitoring Lichens; Nimis, P.L., Scheidegger, C., Wolseley, P.A., Eds.; NATO Science Series (Series IV: Earth and Environmental Sciences); Springer: Dordrecht, The Netherlands, 2002; Volume 7, pp. 65–84. [Google Scholar]
- Galun, M.; Keller, P.; Malki, D.; Feldstein, H.; Galun, E.; Siegel, S.M.; Siegel, B.Z. Removal of Uranium(VI) from Solution by Fungal Biomass and Fungal Wall-Related Biopolymers. Science 1983, 219, 285–286. [Google Scholar] [CrossRef]
- Bačkor, M.; Loppi, S. Interactions of Lichens with Heavy Metals. Biol. Plant. 2009, 53, 214–222. [Google Scholar] [CrossRef]
- Rola, K. Insight into the Pattern of Heavy-Metal Accumulation in Lichen Thalli. J. Trace Elem. Med. Biol. 2020, 61, 126512. [Google Scholar] [CrossRef] [PubMed]
- Nieboer, E.; Richardson, D.H.S.; Tomassini, F.D. Mineral Uptake and Release by Lichens: An Overview. Bryologist 1978, 81, 226. [Google Scholar] [CrossRef]
- Loppi, S.; Di Lucia, A.; Vannini, A.; Ancora, S.; Monaci, F.; Paoli, L. Uptake and release of copper ions in epiphytic lichens. Biologia 2020, 75, 1547–1552. [Google Scholar] [CrossRef]
- Sanità di Toppi, L.; Pawlik-Skowrońska, B.; Vurro, E.; Vattuone, Z.; Kalinowska, R.; Restivo, F.M.; Musetti, R.; Skowroński, T. First and second line mechanisms of cadmium detoxification in the lichen photobiont Trebouxia impressa (Chlorophyta). Environ. Pollut. 2008, 151, 280–286. [Google Scholar] [CrossRef]
- Kováčik, J.; Dresler, S.; Babula, P.; Hladký, J.; Sowa, I. Calcium has protective impact on cadmium-induced toxicity in lichens. Plant Physiol. Biochem. 2020, 156, 591–599. [Google Scholar] [CrossRef] [PubMed]
- EBC European Biochar Certificate. 2023. Available online: https://www.european-biochar.org/en (accessed on 23 June 2023).
- Zhang, K.; Yi, Y.; Fang, Z. Remediation of cadmium or arsenic contaminated water and soil by modified biochar: A review. Chemosphere 2023, 311, 136914. [Google Scholar] [CrossRef]
- Meng, Z.; Xu, T.; Huang, S.; Ge, H.; Mu, W.; Lin, Z. Effects of Competitive Adsorption with Ni(II) and Cu(II) on the Adsorption of Cd(II) by Modified Biochar Co-Aged with Acidic Soil. Chemosphere 2022, 293, 133621. [Google Scholar] [CrossRef]
- Xing, D.; Cheng, H.; Ning, Z.; Liu, Y.; Lin, S.; Li, Y.; Wang, X.; Hill, P.; Chadwick, D.; Jones, D.L. Field aging declines the regulatory effects of biochar on cadmium uptake by pepper in the soil. J. Environ. Manag. 2022, 321, 115832. [Google Scholar] [CrossRef]
- Li, K.; Yin, G.; Xu, Q.; Yan, J.; Hseu, Z.Y.; Zhu, L.; Lin, Q. Influence of Aged Biochar Modified by Cd2+ on Soil Properties and Microbial Community. Sustainability 2020, 12, 4868. [Google Scholar] [CrossRef]
- Goñi-Urtiaga, A.; Courtier-Murias, D.; Picca, G.; Valentín, J.L.; Plaza, C.; Panettieri, M. Response of water-biochar interactions to physical and biochemical aging. Chemosphere 2022, 307, 136071. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Bian, Z.; Zhang, J.; Ding, A.; Liu, S.; Zheng, L.; Wang, H. Adsorption of cadmium ions from aqueous solutions by activated carbon with oxygen-containing functional groups. Chin. J. Chem. Eng. 2015, 23, 1705–1711. [Google Scholar] [CrossRef]
- Navas-Cárdenas, C.; Caetano, M.; Endara, D.; Jiménez, R.; Lozada, A.B.; Manangón, L.E.; Navarrete, A.; Reinoso, C.; Sommer-Márquez, A.E.; Villasana, Y. The Role of Oxygenated Functional Groups on Cadmium Removal using Pyrochar and Hydrochar Derived from Guadua angustifolia Residues. Water 2023, 15, 525. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, S.; Ding, X.; Khan, A.; Alam, M. The effects of biochar and rice husk on adsorption and desorption of cadmium on to soils with different water conditions (upland and saturated). Chemosphere 2018, 193, 1120–1126. [Google Scholar] [CrossRef]
- Carnier, R.; Coscione, A.R.; Abreu, C.A.D.; Melo, L.C.A.; Silva, A.F.D. Cadmium and lead adsorption and desorption by coffee waste-derived biochars. Bragantia 2022, 81, e0622. [Google Scholar] [CrossRef]
- Yuan, S.; Hong, M.; Li, H.; Ye, Z.; Gong, H.; Zhang, J.; Huang, Q.; Tan, Z. Contributions and Mechanisms of Components in Modified Biochar to Adsorb Cadmium in Aqueous Solution. Sci. Total Environ. 2020, 733, 139320. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- Kharel, G.; Sacko, O.; Feng, X.; Morris, J.R.; Phillips, C.L.; Trippe, K.; Lee, J.W. Biochar surface oxygenation by ozonization for super high cation exchange capacity. ACS Sustain. Chem. Eng. 2019, 7, 16410–16418. [Google Scholar] [CrossRef]
- Loppi, S.; Vannini, A.; Monaci, F.; Dagodzo, D.; Blind, F.; Erler, M.; Fränzle, S. Can Chitin and Chitosan Replace the Lichen Evernia prunastri for Environmental Biomonitoring of Cu and Zn Air Contamination? Biology 2020, 9, 301. [Google Scholar] [CrossRef]
Samples | Surface Area (m2/g) ± Std. Dev. | Cation Exchange Capacity (CEC; meq/100 g) | Density (g/cm3) |
---|---|---|---|
Lichen (E. prunastri) | 356 ± 26 | 37.7 | - |
Biochar 1 (BC1) | 78 ± 10 | 28.0 | 0.21 |
Biochar 2 (BC2) | 28 ± 2 | 14.8 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vannini, A.; Pagano, L.; Bartoli, M.; Fedeli, R.; Malcevschi, A.; Sidoli, M.; Magnani, G.; Pontiroli, D.; Riccò, M.; Marmiroli, M.; et al. Accumulation and Release of Cadmium Ions in the Lichen Evernia prunastri (L.) Ach. and Wood-Derived Biochar: Implication for the Use of Biochar for Environmental Biomonitoring. Toxics 2024, 12, 66. https://doi.org/10.3390/toxics12010066
Vannini A, Pagano L, Bartoli M, Fedeli R, Malcevschi A, Sidoli M, Magnani G, Pontiroli D, Riccò M, Marmiroli M, et al. Accumulation and Release of Cadmium Ions in the Lichen Evernia prunastri (L.) Ach. and Wood-Derived Biochar: Implication for the Use of Biochar for Environmental Biomonitoring. Toxics. 2024; 12(1):66. https://doi.org/10.3390/toxics12010066
Chicago/Turabian StyleVannini, Andrea, Luca Pagano, Marco Bartoli, Riccardo Fedeli, Alessio Malcevschi, Michele Sidoli, Giacomo Magnani, Daniele Pontiroli, Mauro Riccò, Marta Marmiroli, and et al. 2024. "Accumulation and Release of Cadmium Ions in the Lichen Evernia prunastri (L.) Ach. and Wood-Derived Biochar: Implication for the Use of Biochar for Environmental Biomonitoring" Toxics 12, no. 1: 66. https://doi.org/10.3390/toxics12010066
APA StyleVannini, A., Pagano, L., Bartoli, M., Fedeli, R., Malcevschi, A., Sidoli, M., Magnani, G., Pontiroli, D., Riccò, M., Marmiroli, M., Petraglia, A., & Loppi, S. (2024). Accumulation and Release of Cadmium Ions in the Lichen Evernia prunastri (L.) Ach. and Wood-Derived Biochar: Implication for the Use of Biochar for Environmental Biomonitoring. Toxics, 12(1), 66. https://doi.org/10.3390/toxics12010066