TLR4 as a Potential Target of Me-PFOSA-AcOH Leading to Cardiovascular Diseases: Evidence from NHANES 2013–2018 and Molecular Docking
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Serum Levels of PFASs
2.3. Association between PFASs and CVD
2.4. Subgroup Analysis
2.5. Identification of Core Targets and PPI Network Analysis
2.6. GO and KEGG Enrichment Analyses of Intersection Targets
2.7. Molecular Docking Validation of Me-PFOSA-AcOH and Core Target
3. Discussion
4. Conclusions
5. Methods
5.1. Study Population
5.2. Ascertainment of CVD
5.3. PFASs Measurements
5.4. Covariates
5.5. Me-PFOSA-AcOH and CVD Targets Prediction
5.6. Construction of Me-PFOSA-AcOH and CVD Intersection Targets Network
5.7. GO and KEGG Enrichment Analyses
5.8. Molecular Docking
5.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pasecnaja, E.; Bartkevics, V.; Zacs, D. Occurrence of selected per- and polyfluorinated alkyl substances (PFASs) in food available on the European market—A review on levels and human exposure assessment. Chemosphere 2022, 287, 132378. [Google Scholar] [CrossRef]
- Herzke, D.; Olsson, E.; Posner, S. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway—A pilot study. Chemosphere 2012, 88, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Kurwadkar, S.; Dane, J.; Kanel, S.R.; Nadagouda, M.N.; Cawdrey, R.W.; Ambade, B.; Struckhoff, G.C.; Wilkin, R. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci. Total Environ. 2022, 809, 151003. [Google Scholar] [CrossRef]
- Ahrens, L.; Bundschuh, M. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review. Environ. Toxicol. Chem. 2014, 33, 1921–1929. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Li, S.; Wang, W.; Sun, P.; Yin, C.; Li, X.; Yu, L.; Ren, G.; Peng, L.; Wang, F. Distribution and potential health risks of perfluoroalkyl substances (PFASs) in water, sediment, and fish in Dongjiang River Basin, Southern China. Environ. Sci. Pollut. Res. Int. 2023, 30, 99501–99510. [Google Scholar] [CrossRef] [PubMed]
- Poothong, S.; Papadopoulou, E.; Padilla-Sánchez, J.A.; Thomsen, C.; Haug, L.S. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood. Environ. Int. 2020, 134, 105244. [Google Scholar] [CrossRef]
- Itoh, H.; Harada, K.H.; Kasuga, Y.; Yokoyama, S.; Onuma, H.; Nishimura, H.; Kusama, R.; Yokoyama, K.; Zhu, J.; Harada Sassa, M.; et al. Serum perfluoroalkyl substances and breast cancer risk in Japanese women: A case-control study. Sci. Total Environ. 2021, 800, 149316. [Google Scholar] [CrossRef]
- Geiger, S.D.; Yao, P.; Vaughn, M.G.; Qian, Z. PFAS exposure and overweight/obesity among children in a nationally representative sample. Chemosphere 2021, 268, 128852. [Google Scholar] [CrossRef]
- Deji, Z.; Liu, P.; Wang, X.; Zhang, X.; Luo, Y.; Huang, Z. Association between maternal exposure to perfluoroalkyl and polyfluoroalkyl substances and risks of adverse pregnancy outcomes: A systematic review and meta-analysis. Sci. Total Environ. 2021, 783, 146984. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, T.; Walker, D.I.; Thomas, D.C.; Qiu, C.; Chatzi, L.; Alderete, T.L.; Kim, J.S.; Conti, D.V.; Breton, C.V.; et al. Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults. Environ. Int. 2020, 145, 106091. [Google Scholar] [CrossRef]
- Schlezinger, J.J.; Gokce, N. Perfluoroalkyl/Polyfluoroalkyl Substances: Links to Cardiovascular Disease Risk. Circ. Res. 2024, 134, 1136–1159. [Google Scholar] [CrossRef]
- Matsushita, K.; Ballew, S.H.; Wang, A.Y.; Kalyesubula, R.; Schaeffner, E.; Agarwal, R. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat. Rev. Nephrol. 2022, 18, 696–707. [Google Scholar] [CrossRef]
- Smith, J.R.; Thomas, R.J.; Bonikowske, A.R.; Hammer, S.M.; Olson, T.P. Sex Differences in Cardiac Rehabilitation Outcomes. Circ. Res. 2022, 130, 552–565. [Google Scholar] [CrossRef]
- Mohebi, R.; Chen, C.; Ibrahim, N.E.; McCarthy, C.P.; Gaggin, H.K.; Singer, D.E.; Hyle, E.P.; Wasfy, J.H.; Januzzi, J.L., Jr. Cardiovascular Disease Projections in the United States Based on the 2020 Census Estimates. J. Am. Coll. Cardiol. 2022, 80, 565–578. [Google Scholar] [CrossRef] [PubMed]
- Teo, K.K.; Rafiq, T. Cardiovascular Risk Factors and Prevention: A Perspective From Developing Countries. Can. J. Cardiol. 2021, 37, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Ramond, A.; O'Keeffe, L.M.; Shahzad, S.; Kunutsor, S.K.; Muka, T.; Gregson, J.; Willeit, P.; Warnakula, S.; Khan, H.; et al. Environmental toxic metal contaminants and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2018, 362, k3310. [Google Scholar] [CrossRef]
- Chen, Z.; He, J.; Shi, W. Association between urinary environmental phenols and the prevalence of cardiovascular diseases in US adults. Environ. Sci. Pollut. Res. Int. 2022, 29, 42947–42954. [Google Scholar] [CrossRef]
- Chai, X.; Wen, L.; Song, Y.; He, X.; Yue, J.; Wu, J.; Chen, X.; Cai, Z.; Qi, Z. DEHP exposure elevated cardiovascular risk in obese mice by disturbing the arachidonic acid metabolism of gut microbiota. Sci. Total Environ. 2023, 875, 162615. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, N.; Wang, H.; Su, W.; Song, Q.; Liang, Q.; Liang, M.; Sun, C.; Li, Y.; Lowe, S.; et al. Combined exposure to multiple metals on cardiovascular disease in NHANES under five statistical models. Environ. Res. 2022, 215, 114435. [Google Scholar] [CrossRef]
- Huang, M.; Jiao, J.; Zhuang, P.; Chen, X.; Wang, J.; Zhang, Y. Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population. Environ. Int. 2018, 119, 37–46. [Google Scholar] [CrossRef]
- Meneguzzi, A.; Fava, C.; Castelli, M.; Minuz, P. Exposure to Perfluoroalkyl Chemicals and Cardiovascular Disease: Experimental and Epidemiological Evidence. Front. Endocrinol. 2021, 12, 706352. [Google Scholar] [CrossRef] [PubMed]
- Dunder, L.; Salihovic, S.; Varotsis, G.; Lind, P.M.; Elmståhl, S.; Lind, L. Plasma levels of per- and polyfluoroalkyl substances (PFAS) and cardiovascular disease—Results from two independent population-based cohorts and a meta-analysis. Environ. Int. 2023, 181, 108250. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, J.; Jingchao, L.; Yang, J.; Tan, Z.; Li, L.; Xiao, F.; An, Z.; Ma, C.; Liu, Y.; et al. Association of exposure to perfluoroalkyl substances and risk of the acute coronary syndrome: A case-control study in Shijiazhuang Hebei Province. Chemosphere 2023, 313, 137464. [Google Scholar] [CrossRef] [PubMed]
- Honda-Kohmo, K.; Hutcheson, R.; Innes, K.E.; Conway, B.N. Perfluoroalkyl substances are inversely associated with coronary heart disease in adults with diabetes. J. Diabetes Complicat. 2019, 33, 407–412. [Google Scholar] [CrossRef]
- Chang, M.C.; Chung, S.M.; Kwak, S.G. Exposure to perfluoroalkyl and polyfluoroalkyl substances and risk of stroke in adults: A meta-analysis. Rev. Environ. Health 2023. [Google Scholar] [CrossRef]
- Schillemans, T.; Donat-Vargas, C.; Lindh, C.H.; de Faire, U.; Wolk, A.; Leander, K.; Åkesson, A. Per- and Polyfluoroalkyl Substances and Risk of Myocardial Infarction and Stroke: A Nested Case-Control Study in Sweden. Environ. Health Perspect. 2022, 130, 37007. [Google Scholar] [CrossRef]
- Ospina, M.; Schütze, A.; Morales-Agudelo, P.; Vidal, M.; Wong, L.Y.; Calafat, A.M. Exposure to glyphosate in the United States: Data from the 2013–2014 National Health and Nutrition Examination Survey. Environ. Int. 2022, 170, 107620. [Google Scholar] [CrossRef]
- Chaney, C.; Wiley, K.S. The variable associations between PFASs and biological aging by sex and reproductive stage in NHANES 1999–2018. Environ. Res. 2023, 227, 115714. [Google Scholar] [CrossRef]
- Webster, G.M.; Rauch, S.A.; Marie, N.S.; Mattman, A.; Lanphear, B.P.; Venners, S.A. Cross-Sectional Associations of Serum Perfluoroalkyl Acids and Thyroid Hormones in U.S. Adults: Variation According to TPOAb and Iodine Status (NHANES 2007–2008). Environ. Health Perspect. 2016, 124, 935–942. [Google Scholar] [CrossRef]
- Chen, Y.; Li, K.; Zhao, H.; Hao, Z.; Yang, Y.; Gao, M.; Zhao, D. Integrated lipidomics and network pharmacology analysis to reveal the mechanisms of berberine in the treatment of hyperlipidemia. J. Transl. Med. 2022, 20, 412. [Google Scholar] [CrossRef]
- Olsson, M.; Hellman, U.; Wixner, J.; Anan, I. Metabolomics analysis for diagnosis and biomarker discovery of transthyretin amyloidosis. Amyloid 2021, 28, 234–242. [Google Scholar] [CrossRef]
- Panieri, E.; Baralic, K.; Djukic-Cosic, D.; Buha Djordjevic, A.; Saso, L. PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics 2022, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Long, G.; Zeng, G.; Zhang, Q.; Song, B.; Wu, K.H. Association of increased risk of cardiovascular diseases with higher levels of perfluoroalkylated substances in the serum of adults. Environ. Sci. Pollut. Res. Int. 2022, 29, 89081–89092. [Google Scholar] [CrossRef] [PubMed]
- Shankar, A.; Xiao, J.; Ducatman, A. Perfluorooctanoic acid and cardiovascular disease in US adults. Arch. Intern. Med. 2012, 172, 1397–1403. [Google Scholar] [CrossRef]
- Dunder, L.; Salihovic, S.; Lind, P.M.; Elmståhl, S.; Lind, L. Plasma levels of per- and polyfluoroalkyl substances (PFAS) are associated with altered levels of proteins previously linked to inflammation, metabolism and cardiovascular disease. Environ. Int. 2023, 177, 107979. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Wang, C.; Wahlang, B.; Sexton, T.; Morris, A.J.; Hennig, B. Co-exposure to PCB126 and PFOS increases biomarkers associated with cardiovascular disease risk and liver injury in mice. Toxicol. Appl. Pharmacol. 2020, 409, 115301. [Google Scholar] [CrossRef]
- Chen, H.; Qiu, W.; Yang, X.; Chen, F.; Chen, J.; Tang, L.; Zhong, H.; Magnuson, J.T.; Zheng, C.; Xu, E.G. Perfluorooctane Sulfonamide (PFOSA) Induces Cardiotoxicity via Aryl Hydrocarbon Receptor Activation in Zebrafish. Environ. Sci. Technol. 2022, 56, 8438–8448. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Li, L.; Tang, L.; Guo, M.; Yang, J. Perfluorooctane sulfonate induces heart toxicity involving cardiac apoptosis and inflammation in rats. Exp. Ther. Med. 2022, 23, 14. [Google Scholar] [CrossRef]
- Abdullah Soheimi, S.S.; Abdul Rahman, A.; Abd Latip, N.; Ibrahim, E.; Sheikh Abdul Kadir, S.H. Understanding the Impact of Perfluorinated Compounds on Cardiovascular Diseases and Their Risk Factors: A Meta-Analysis Study. Int. J. Environ. Res. Public. Health 2021, 18, 8345. [Google Scholar] [CrossRef]
- Winquist, A.; Steenland, K. Modeled PFOA exposure and coronary artery disease, hypertension, and high cholesterol in community and worker cohorts. Environ. Health Perspect. 2014, 122, 1299–1305. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Z.; Xing, H.; Luo, Y.; Yang, J.; Sui, X.; Wang, Y. Risk assessment based on dose-responsive and time-responsive genes to build PLS-DA models for exogenously induced lung injury. Ecotoxicol. Environ. Saf. 2023, 256, 114891. [Google Scholar] [CrossRef] [PubMed]
- Worley, R.R.; Moore, S.M.; Tierney, B.C.; Ye, X.; Calafat, A.M.; Campbell, S.; Woudneh, M.B.; Fisher, J. Per- and polyfluoroalkyl substances in human serum and urine samples from a residentially exposed community. Environ. Int. 2017, 106, 135–143. [Google Scholar] [CrossRef]
- Susmann, H.P.; Schaider, L.A.; Rodgers, K.M.; Rudel, R.A. Dietary Habits Related to Food Packaging and Population Exposure to PFASs. Environ. Health Perspect. 2019, 127, 107003. [Google Scholar] [CrossRef] [PubMed]
- Yeung, L.W.; Robinson, S.J.; Koschorreck, J.; Mabury, S.A. Part II. A temporal study of PFOS and its precursors in human plasma from two German cities in 1982–2009. Environ. Sci. Technol. 2013, 47, 3875–3882. [Google Scholar] [CrossRef]
- Dalahmeh, S.; Tirgani, S.; Komakech, A.J.; Niwagaba, C.B.; Ahrens, L. Per- and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. Sci. Total Environ. 2018, 631–632, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Tang, B.; Nie, S.; Zhao, N.; He, L.; Cui, J.; Mao, W.; Jin, H. Distribution of per- and poly-fluoroalkyl substances and their precursors in human blood. J. Hazard. Mater. 2023, 441, 129908. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Bai, R.; Zheng, Q.; Yang, X.; Shi, Y.; Yang, R.; Jiang, C.; Wang, X.; Li, X. Concentrations and association between exposure to mixed perfluoroalkyl and polyfluoroalkyl substances and glycometabolism among adolescents. Ann. Med. 2023, 55, 2227844. [Google Scholar] [CrossRef]
- Pinney, S.M.; Fassler, C.S.; Windham, G.C.; Herrick, R.L.; Xie, C.; Kushi, L.H.; Biro, F.M. Exposure to Perfluoroalkyl Substances and Associations with Pubertal Onset and Serum Reproductive Hormones in a Longitudinal Study of Young Girls in Greater Cincinnati and the San Francisco Bay Area. Environ. Health Perspect. 2023, 131, 97009. [Google Scholar] [CrossRef]
- Xie, L.; Huang, B.; Zhao, X.; Zhu, N. Exploring the mechanisms underlying effects of bisphenol a on cardiovascular disease by network toxicology and molecular docking. Heliyon 2024, 10, e31473. [Google Scholar] [CrossRef]
- Pei, X.; Tang, S.; Jiang, H.; Zhang, W.; Xu, G.; Zuo, Z.; Ren, Z.; Chen, C.; Shen, Y.; Li, C.; et al. Paeoniflorin recued hepatotoxicity under zinc oxide nanoparticles exposure via regulation on gut-liver axis and reversal of pyroptosis. Sci. Total Environ. 2023, 904, 166885. [Google Scholar] [CrossRef]
- Lee, K.M.; Seong, S.Y. Partial role of TLR4 as a receptor responding to damage-associated molecular pattern. Immunol. Lett. 2009, 125, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Roshan, M.H.; Tambo, A.; Pace, N.P. The Role of TLR2, TLR4, and TLR9 in the Pathogenesis of Atherosclerosis. Int. J. Inflam. 2016, 2016, 1532832. [Google Scholar] [CrossRef]
- Theobald, D.; Nair, A.R.; Sriramula, S.; Francis, J. Cardiomyocyte-specific deletion of TLR4 attenuates angiotensin II-induced hypertension and cardiac remodeling. Front. Cardiovasc. Med. 2023, 10, 1074700. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Feng, Z. The Role of Toll-Like Receptor Signaling in the Progression of Heart Failure. Mediators Inflamm. 2018, 2018, 9874109. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Zhang, P.; Zhang, Y.; Lu, Q.; Ma, A. TLR3 and TLR4 as potential clinically biomarkers of cardiovascular risk in coronary artery disease (CAD) patients. Heart Vessels 2014, 29, 690–698. [Google Scholar] [CrossRef]
- Yang, Y.; Lv, J.; Jiang, S.; Ma, Z.; Wang, D.; Hu, W.; Deng, C.; Fan, C.; Di, S.; Sun, Y.; et al. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis. 2016, 7, e2234. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, N.D.; Jung, J.K.; Lee, C.K.; Han, S.B.; Kim, Y. Myeloid differentiation 2 as a therapeutic target of inflammatory disorders. Pharmacol. Ther. 2012, 133, 291–298. [Google Scholar] [CrossRef]
- Park, B.S.; Song, D.H.; Kim, H.M.; Choi, B.S.; Lee, H.; Lee, J.O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009, 458, 1191–1195. [Google Scholar] [CrossRef]
- de Oliveira, A.A.; Faustino, J.; Webb, R.C.; Nunes, K.P. Blockade of the TLR4-MD2 complex lowers blood pressure and improves vascular function in a murine model of type 1 diabetes. Sci. Rep. 2020, 10, 12032. [Google Scholar] [CrossRef]
- Tang, L.; Qiu, W.; Zhang, S.; Wang, J.; Yang, X.; Xu, B.; Magnuson, J.T.; Xu, E.G.; Wu, M.; Zheng, C. Poly- and Perfluoroalkyl Substances Induce Immunotoxicity via the TLR Pathway in Zebrafish: Links to Carbon Chain Length. Environ. Sci. Technol. 2023, 57, 6139–6149. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, Z.; Chen, M. Immunotoxicity and Transcriptome Analyses of Zebrafish (Danio rerio) Embryos Exposed to 6:2 FTSA. Toxics 2023, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Lei, J.; Wang, L.; Zhang, S.; Liu, H.; Wang, H.; Liu, T.; Lai, X. Efficient analysis of adverse drug events and toxicological mechanisms of newly marketed drugs by integrating pharmacovigilance and network toxicology: Selumetinib as an example. Front. Pharmacol. 2024, 15, 1432759. [Google Scholar] [CrossRef]
- Girard, D.; Vandiedonck, C. How dysregulation of the immune system promotes diabetes mellitus and cardiovascular risk complications. Front. Cardiovasc. Med. 2022, 9, 991716. [Google Scholar] [CrossRef]
- Gopal, R.; Marinelli, M.A.; Alcorn, J.F. Immune Mechanisms in Cardiovascular Diseases Associated with Viral Infection. Front. Immunol. 2020, 11, 570681. [Google Scholar] [CrossRef] [PubMed]
- Fukata, M.; Hernandez, Y.; Conduah, D.; Cohen, J.; Chen, A.; Breglio, K.; Goo, T.; Hsu, D.; Xu, R.; Abreu, M.T. Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm. Bowel Dis. 2009, 15, 997–1006. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Xiao, T.; Pan, C.; Liu, X.; Zhao, Y. Prognostic role of Toll-like receptors in cancer: A meta-analysis. Ther. Clin. Risk Manag. 2018, 14, 1323–1330. [Google Scholar] [CrossRef]
- Garcia, M.M.; Goicoechea, C.; Molina-Álvarez, M.; Pascual, D. Toll-like receptor 4: A promising crossroads in the diagnosis and treatment of several pathologies. Eur. J. Pharmacol. 2020, 874, 172975. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.U.; Khan, A.; Shal, B.; Rehman, S.U.; Rehman, S.U.; Htar, T.T.; Khan, S.; Anwar, S.; Alafnan, A.; et al. Anti-Inflammatory and Anti-Rheumatic Potential of Selective Plant Compounds by Targeting TLR-4/AP-1 Signaling: A Comprehensive Molecular Docking and Simulation Approaches. Molecules 2022, 27, 4319. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.Y.; Liu, F.; Zhang, T.; Tian, T.; Luo, F.; Li, X.M.; Yang, Y.N. Association of NFKB1 gene rs28362491 mutation with the occurrence of major adverse cardiovascular events. BMC Cardiovasc. Disord. 2022, 22, 313. [Google Scholar] [CrossRef]
- Qin, W.; Cao, L.; Massey, I.Y. Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol. Cell Biochem. 2021, 476, 4045–4059. [Google Scholar] [CrossRef]
- Cerychova, R.; Pavlinkova, G. HIF-1, Metabolism, and Diabetes in the Embryonic and Adult Heart. Front. Endocrinol. 2018, 9, 460. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, N.M.; Sachs, D.; Shewale, B.; Gonzalez, D.M.; Dhanan-Krishnan, P.; Torre, D.; LaMarca, E.; Raimo, S.; Dariolli, R.; Serasinghe, M.N.; et al. PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2022, 29, 559–576.e7. [Google Scholar] [CrossRef] [PubMed]
- Guérit, E.; Arts, F.; Dachy, G.; Boulouadnine, B.; Demoulin, J.B. PDGF receptor mutations in human diseases. Cell Mol. Life Sci. 2021, 78, 3867–3881. [Google Scholar] [CrossRef] [PubMed]
- Ghigo, A.; Laffargue, M.; Li, M.; Hirsch, E. PI3K and Calcium Signaling in Cardiovascular Disease. Circ. Res. 2017, 121, 282–292. [Google Scholar] [CrossRef]
- Paulose-Ram, R.; Graber, J.E.; Woodwell, D.; Ahluwalia, N. The National Health and Nutrition Examination Survey (NHANES), 2021-2022: Adapting Data Collection in a COVID-19 Environment. Am. J. Public. Health 2021, 111, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Xuan, L.; Zakaly, H.M.H.; Markovic, V.; Miszczyk, J.; Guan, H.; Zhou, P.K.; Huang, R. Association between per- and polyfluoroalkyl substances (PFAS) and depression in U.S. adults: A cross-sectional study of NHANES from 2005 to 2018. Environ. Res. 2023, 238, 117188. [Google Scholar] [CrossRef]
- He, X.; Liu, Y.; Xu, B.; Gu, L.; Tang, W. PFOA is associated with diabetes and metabolic alteration in US men: National Health and Nutrition Examination Survey 2003–2012. Sci. Total Environ. 2018, 625, 566–574. [Google Scholar] [CrossRef]
- Li, J.; Ye, S.; Zhao, Z.; Xue, Z.; Ren, S.; Guan, Y.; Sun, C.; Yao, Q.; Chen, L. Association of PFDeA exposure with hypertension (NHANES, 2013–2018). Sci. Rep. 2024, 14, 918. [Google Scholar] [CrossRef]
- Li, T.; Yu, L.; Yang, Z.; Shen, P.; Lin, H.; Shui, L.; Tang, M.; Jin, M.; Chen, K.; Wang, J. Associations of Diet Quality and Heavy Metals with Obesity in Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES). Nutrients 2022, 14, 4038. [Google Scholar] [CrossRef]
- Schaeffer, M.R.; Kumar, D.S.; Assayag, D.; Fisher, J.H.; Johannson, K.A.; Khalil, N.; Kolb, M.; Manganas, H.; Marcoux, V.S.; Guenette, J.A.; et al. Association of BMI with pulmonary function, functional capacity, symptoms, and quality of life in ILD. Respir. Med. 2022, 195, 106792. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, e13–e115. [Google Scholar] [CrossRef] [PubMed]
Characteristic (%) | Non-CVD | CVD | p Value |
---|---|---|---|
(n = 3020) | (n = 371) | ||
Sex | 0.257 | ||
Male | 50.3 | 54.8 | |
Female | 49.7 | 45.2 | |
Age | <0.001 * | ||
<60 years old | 76.5 | 30.4 | |
≥60 years old | 23.5 | 69.6 | |
Ethnicity | 0.001 * | ||
Non-Hispanic | 85.4 | 92.0 | |
Hispanic | 14.6 | 8.0 | |
Education level | 0.006 * | ||
Less than high school | 11.0 | 16.8 | |
High school graduate | 22.9 | 30.4 | |
Some college or AA degree | 32.9 | 30.1 | |
College graduate or above | 33.2 | 22.7 | |
PIR | 0.020 * | ||
≤1 | 12.0 | 17.2 | |
1–3 | 34.0 | 38.1 | |
>3 | 54.0 | 44.7 | |
BMI | 0.005 * | ||
Underweight | 1.4 | 0.8 | |
Normal weight | 26.9 | 19.1 | |
Overweight | 31.7 | 32.6 | |
Obesity | 40.1 | 47.4 | |
Smoking status | <0.001 * | ||
No | 56.2 | 31.6 | |
Yes | 43.8 | 68.4 | |
Drinking status | <0.001 * | ||
Never drinkers | 14.0 | 29.9 | |
Light drinkers | 36.7 | 40.1 | |
Moderate drinkers | 33.0 | 24.3 | |
Heavy drinkers | 16.3 | 5.7 | |
Physical activity | <0.001 * | ||
Never | 42.1 | 60.0 | |
Moderate | 28.6 | 30.5 | |
Vigorous | 29.3 | 9.5 | |
Family history of CVD | <0.001 * | ||
No | 87.0 | 73.4 | |
Yes | 13.0 | 26.6 | |
Hypertension | <0.001 * | ||
No | 65.2 | 50.5 | |
Yes | 34.8 | 49.5 |
PFAS Median (Q1, Q3) | Non-CVD (n = 3020) | CVD (n = 371) | p Value |
---|---|---|---|
PFDeA (ng/mL) | 0.20 (0.10, 0.30) | 0.20 (0.10, 0.30) | 0.038 * |
PFHxS (ng/mL) | 1.30 (0.70, 2.20) | 1.60 (0.90, 2.80) | 0.010 * |
PFNA (ng/mL) | 0.60 (0.40, 0.90) | 0.70 (0.40, 1.10) | 0.025 * |
PFUA (ng/mL) | 0.10 (0.07, 0.20) | 0.10 (0.07, 0.20) | 0.028 * |
n-PFOA (ng/mL) | 1.50 (1.00, 2.20) | 1.60 (1.00, 2.20) | 0.878 |
n-PFOS (ng/mL) | 3.30 (2.00, 5.80) | 4.80 (2.80, 8.50) | 0.003 * |
Sm-PFOS (ng/mL) | 1.50 (0.80, 2.60) | 2.10 (1.10, 3.70) | 0.030 * |
Me-PFOSA-AcOH (ng/mL) | 0.07 (0.07, 0.20) | 0.10 (0.07, 0.30) | <0.001 * |
PFAS | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
PFDeA | 1.16 (1.00, 1.35) | 0.061 | 0.92 (0.78, 1.08) | 0.300 | 1.12 (0.92, 1.36) | 0.272 |
PFHxS | 1.23 (0.99, 1.53) | 0.074 | 0.88 (0.68, 1.14) | 0.349 | 0.93 (0.73, 1.19) | 0.587 |
PFNA | 1.19 (0.98, 1.44) | 0.089 | 0.86 (0.70, 1.04) | 0.126 | 0.95 (0.76, 1.19) | 0.674 |
PFUA | 1.30 (1.09, 1.55) | 0.006 * | 1.04 (0.87, 1.26) | 0.658 | 1.32 (1.08, 1.61) | 0.012 * |
n-PFOA | 0.87 (0.65, 1.16) | 0.360 | 0.65 (0.49, 0.85) | 0.005 * | 0.73 (0.56, 0.96) | 0.035 * |
n-PFOS | 1.47 (1.04, 2.09) | 0.039 * | 0.97 (0.68, 1.39) | 0.875 | 1.06 (0.74, 1.53) | 0.751 |
Sm-PFOS | 1.31 (0.95, 1.79) | 0.109 | 0.81 (0.59, 1.11) | 0.206 | 0.89 (0.64, 1.22) | 0.468 |
Me-PFOSA-AcOH | 1.58 (1.35, 1.85) | <0.001 * | 1.34 (1.10, 1.64) | 0.006 * | 1.28 (1.05, 1.56) | 0.022 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Z.; Chen, Y.; Li, H.; Lu, Q.; Zhou, K. TLR4 as a Potential Target of Me-PFOSA-AcOH Leading to Cardiovascular Diseases: Evidence from NHANES 2013–2018 and Molecular Docking. Toxics 2024, 12, 693. https://doi.org/10.3390/toxics12100693
Mao Z, Chen Y, Li H, Lu Q, Zhou K. TLR4 as a Potential Target of Me-PFOSA-AcOH Leading to Cardiovascular Diseases: Evidence from NHANES 2013–2018 and Molecular Docking. Toxics. 2024; 12(10):693. https://doi.org/10.3390/toxics12100693
Chicago/Turabian StyleMao, Zhilei, Yanling Chen, Haixin Li, Qun Lu, and Kun Zhou. 2024. "TLR4 as a Potential Target of Me-PFOSA-AcOH Leading to Cardiovascular Diseases: Evidence from NHANES 2013–2018 and Molecular Docking" Toxics 12, no. 10: 693. https://doi.org/10.3390/toxics12100693
APA StyleMao, Z., Chen, Y., Li, H., Lu, Q., & Zhou, K. (2024). TLR4 as a Potential Target of Me-PFOSA-AcOH Leading to Cardiovascular Diseases: Evidence from NHANES 2013–2018 and Molecular Docking. Toxics, 12(10), 693. https://doi.org/10.3390/toxics12100693