Effects of Perfluorinated Alkyl Substances (PFAS) on Amphibian Body and Liver Conditions: Is Lipid Metabolism Being Perturbed throughout Metamorphosis?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Xenopus laevis Breeding and Husbandry
2.2. Chemical Selection and Rationale
2.3. Chemicals, Stock Solution, and Exposure Solution Preparation
2.4. Experiment Initiation and Maintenance
2.5. Apical Data and Tissue Collection
2.6. PFAS Water Analyses
2.7. RT-qPCR Analysis
2.8. Multiple Reaction Monitoring (MRM) Profiling
2.9. Data Analysis and Statistics
3. Results
3.1. Effects of Sub-Chronic PFAS Exposure on Morphometric Endpoints and Time-to-Stage
3.2. Effects of Sub-Chronic PFAS Exposure on Hepatic Condition
3.3. Effects of Sub-Chronic PFAS Exposure on Gene Expression
3.4. Effects of Sub-Chronic PFAS Exposure on Relative Lipidomic Signatures
3.5. Effects of Sub-Chronic PFAS Exposure on Semi-Quantitative Lipidomic Signatures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinclair, G.M.; Long, S.M.; Jones, O.A.H. What are the effects of PFAS exposure at environmentally relevant concentrations? Chemosphere 2020, 258, 127340. [Google Scholar] [CrossRef] [PubMed]
- Beale, D.J.; Sinclair, G.M.; Shah, R.; Paten, A.M.; Kumar, A.; Long, S.M.; Vardy, S.; Jones, O.A.H. A review of omics-based PFAS exposure studies reveals common biochemical response pathways. Sci. Total Environ. 2022, 845, 157255. [Google Scholar] [CrossRef] [PubMed]
- India-Aldana, S.; Yao, M.; Midya, V.; Colicino, E.; Chatzi, L.; Chu, J.; Gennings, C.; Jones, D.P.; Loos, R.J.F.; Setiawan, V.W.; et al. PFAS exposures and the human metabolome: A systematic review of epidemiological studies. Curr. Pollut. Rep. 2023, 9, 510–568. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; Liang, Y.; Li, J.; Liu, Y.; Zhang, J.; Zhang, A.; Fu, J.; Jiang, G. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion. Sci. Rep. 2014, 4, 4582. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Fourth National Report on Human Exposure to Environmental Chemicals; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2018. Available online: https://www.cdc.gov/exposurereport/data_tables.html?NER_SectionItem=NHANES (accessed on 21 April 2024).
- Fragki, S.; Dirven, H.; Fletcher, T.; Grasl-Kraupp, B.; Bjerve Gützkow, K.; Hoogenboom, R.; Kersten, S.; Lindeman, B.; Louisse, J.; Peijnenburg, A.; et al. Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: What do we know and what not? Crit. Rev. Toxicol. 2021, 51, 141–164. [Google Scholar] [CrossRef]
- Wu, B.; Pan, Y.; Li, Z.; Wang, J.; Ji, S.; Zhao, F.; Chang, X.; Qu, Y.; Zhu, Y.; Xie, L.; et al. Serum per- and polyfluoroalkyl substances and abnormal lipid metabolism: A nationally representative cross-sectional study. Environ. Int. 2023, 172, 107779. [Google Scholar] [CrossRef]
- Starling, A.P.; Friedman, C.; Boyle, K.E.; Adgate, J.L.; Glueck, D.H.; Allshouse, W.B.; Calafat, A.M.; Bloemsma, L.D.; Dabelea, D. Prenatal exposure to per- and polyfluoroalkyl substances and early childhood adiposity and cardiometabolic health in the Healthy Start study. Int. J. Obes. 2024, 48, 276–283. [Google Scholar] [CrossRef]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Pant, R.; Firmal, P.; Shah, V.K.; Alam, A.; Chattopadhyay, S. Epigenetic regulation of adipogenesis in development of metabolic syndrome. Front. Cell Dev. Biol. 2020, 8, 619888. [Google Scholar] [CrossRef]
- Capitão, A.; Lyssimachou, A.; Castro, L.F.C.; Santos, M.M. Obesogens in the aquatic environment: An evolutionary and toxicological perspective. Environ. Int. 2017, 106, 153–169. [Google Scholar] [CrossRef]
- Khazaee, M.; Christie, E.; Cheng, W.; Michalsen, M.; Field, J.; Ng, C. Perfluoroalkyl acid binding with peroxisome proliferator-activated receptors α, γ, and δ, and fatty acid binding proteins by equilibrium dialysis with a comparison of methods. Toxics 2021, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Takacs, M.L.; Abbott, B.D. Activation of mouse and human peroxisome proliferator–activated receptors (α, β/δ, γ) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol. Sci. 2007, 95, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Ren, X.M.; Cao, L.Y.; Qin, W.P.; Guo, L.H. Investigation of binding and activity of perfluoroalkyl substances to the human peroxisome proliferator-activated receptor β/δ. Environ. Sci. Process. Impacts 2019, 21, 1908–1914. [Google Scholar] [CrossRef]
- Harrington, W.W.; Britt, C.S.; Wilson, J.G.; Milliken, N.O.; Binz, J.G.; Lobe, D.C.; Oliver, W.R.; Lewis, M.C.; Ignar, D.M. The effect of PPARα, PPARδ, PPARγ, and PPARpan agonists on body weight, body mass, and serum lipid profiles in diet-induced obese AKR/J mice. PPAR Res. 2007, 2007, 97125. [Google Scholar] [CrossRef] [PubMed]
- Das, K.P.; Wood, C.R.; Lin, M.T.; Starkov, A.A.; Lau, C.; Wallace, K.B.; Corton, J.C.; Abbott, B.D. Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis. Toxicology 2017, 378, 37–52. [Google Scholar] [CrossRef]
- Wang, P.; Liu, D.; Yan, S.; Cui, J.; Liang, Y.; Ren, S. Adverse effects of perfluorooctane sulfonate on the liver and relevant mechanisms. Toxics 2022, 10, 265. [Google Scholar] [CrossRef]
- Pandian, T.J.; Marian, M.P. Time and energy costs of metamorphosis in the Indian bullfrog Rana tigrina. Copeia 1985, 1985, 653–662. [Google Scholar] [CrossRef]
- Beck, C.W.; Congdon, J.D. Energetics of metamorphic climax in the southern toad (Bufo terrestris). Oecologia 2003, 137, 344–351. [Google Scholar] [CrossRef]
- Scott, D.E.; Casey, E.D.; Donovan, M.F.; Lynch, T.K. Amphibian lipid levels at metamorphosis correlate to post-metamorphic terrestrial survival. Oecologia 2007, 153, 521–532. [Google Scholar] [CrossRef]
- Scott, D.E.; Fore, M.R. The effect of food limitation on lipid levels, growth, and reproduction in the marbled salamander. Ambystoma opacum. Herpetologica 1995, 51, 462–471. [Google Scholar]
- Peig, J.; Green, A.J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 2009, 118, 1883–1891. [Google Scholar] [CrossRef]
- Pandelides, Z.; Conder, J.; Choi, Y.; Allmon, E.; Hoskins, T.; Lee, L.; Hoverman, J.; Sepúlveda, M. A critical review of amphibian PFAS ecotoxicity research studies: Identification of screening levels in water and other useful resources for site-specific ecological risk assessments. Environ. Toxicol. Chem. 2023, 42, 2078–2090. [Google Scholar] [CrossRef] [PubMed]
- Hoskins, T.D.; Allmon, E.B.; Flynn, R.W.; Lee, L.S.; Choi, Y.; Hoverman, J.T.; Sepúlveda, M.S. An environmentally relevant mixture of perfluorooctanesulfonic acid and perfluorohexanesulfonic acid does not conform to additivity in Northern leopard frogs exposed through metamorphosis. Environ. Toxicol. Chem. 2022, 41, 3007–3016. [Google Scholar] [CrossRef] [PubMed]
- Flynn, R.W.; Hoover, G.; Iacchetta, M.; Guffey, S.; de Perre, C.; Huerta, B.; Li, W.; Hoverman, J.T.; Lee, L.; Sepúlveda, M.S. Comparative toxicity of aquatic per-and polyfluoroalkyl substance exposure in three species of amphibians. Environ. Toxicol. Chem. 2022, 41, 1407–1415. [Google Scholar] [CrossRef]
- MacCracken, J.G.; Stebbings, J.L. Test of a body condition index with amphibians. J. Herpetol. 2012, 46, 346–350. [Google Scholar] [CrossRef]
- Lin, H.; Liu, Z.; Yang, H.; Lu, L.; Chen, R.; Zhang, X.; Zhong, Y.; Zhang, H. Per- and polyfluoroalkyl substances (PFAS) impair lipid metabolism in Rana nigromaculata: A field investigation and laboratory study. Environ. Sci. Technol. 2022, 56, 13222–13232. [Google Scholar] [CrossRef]
- Lin, H.; Wu, H.; Liu, F.; Yang, H.; Shen, L.; Chen, J.; Zhang, X.; Zhong, Y.; Zhang, H.; Liu, Z. Assessing the hepatotoxicity of PFOA, PFOS, and 6:2 Cl-PFESA in black-spotted frogs (Rana nigromaculata) and elucidating potential association with gut microbiota. Environ. Pollut. 2022, 312, 120029. [Google Scholar] [CrossRef]
- Lin, H.; Feng, Y.; Zheng, Y.; Han, Y.; Yuan, X.; Gao, P.; Zhang, H.; Zhong, Y.; Liu, Z. Transcriptomic analysis reveals the hepatotoxicity of perfluorooctanoic acid in black-spotted frogs (Rana nigromaculata). Diversity 2022, 14, 971. [Google Scholar] [CrossRef]
- Shi, C.; Yang, H.; Xu, M.; Hua, T.; He, M.; Yang, Y.; Hou, X.; Zhang, H.; Liu, Z. PFOS Induces lipometabolism change, immune defense, and endocrine disorders in black-spotted frogs: Application of transcriptome profiling. Diversity 2023, 15, 196. [Google Scholar] [CrossRef]
- Shu, Y.; Wang, Q.; Hong, P.; Ruan, Y.; Lin, H.; Xu, J.; Zhang, H.; Deng, S.; Wu, H.; Chen, L.; et al. Legacy and emerging per- and polyfluoroalkyl substances surveillance in Bufo gargarizans from inlet watersheds of Chaohu Lake, China: Tissue distribution and bioaccumulation potential. Environ. Sci. Technol. 2023, 57, 13148–13160. [Google Scholar] [CrossRef]
- Hoover, G.M.; Chislock, M.F.; Tornabene, B.J.; Guffey, S.C.; Choi, Y.J.; De Perre, C.; Hoverman, J.T.; Lee, L.S.; Sepúlveda, M.S. Uptake and depuration of four per/polyfluoroalkyl substances (PFAS) in Northern leopard frog Rana pipiens tadpoles. Environ. Sci. Technol. Lett. 2017, 4, 399–403. [Google Scholar] [CrossRef]
- Abercrombie, S.A.; de Perre, C.; Choi, Y.J.; Tornabene, B.J.; Sepúlveda, M.S.; Lee, L.S.; Hoverman, J.T. Larval amphibians rapidly bioaccumulate poly-and perfluoroalkyl substances. Ecotoxicol. Environ. Safe 2019, 178, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Denver, R.J. Stress hormones mediate developmental plasticity in vertebrates with complex life cycles. Neurobiol. Stress. 2021, 14, 100301. [Google Scholar] [CrossRef] [PubMed]
- Heindel, J.J.; Balbus, J.; Birnbaum, L.; Brune-Drisse, M.N.; Grandjean, P.; Gray, K.; Landrigan, P.J.; Sly, P.D.; Suk, W.; Slechta, D.C.; et al. Developmental origins of health and disease: Integrating environmental influences. Endocrinology 2015, 156, 3416–3421. [Google Scholar] [CrossRef] [PubMed]
- Orlofske, S.A.; Hopkins, W.A. Energetics of metamorphic climax in the pickerel frog (Lithobates palustris). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 154, 191–196. [Google Scholar] [CrossRef]
- Crump, M.L. Energy accumulation and amphibian metamorphosis. Oecologia 1981, 49, 167–169. [Google Scholar] [CrossRef]
- Rowe, C.L.; Hopkins, W.A.; Bridges, C.M. Physiological ecology of amphibians in relation to susceptibility to natural and anthropogenic factors. In Amphibian Decline: An Integrated Assessment of Multiple Stressor Effects; Linder, G., Ed.; SETAC: Pensacola, FL, USA, 2003. [Google Scholar]
- Faber, J.; Nieuwkoop, P.D. (Eds.) Normal Table of Xenopus Laevis (Daudin): A Systematical & Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis; Garland Science: New York, NY, USA, 1994. [Google Scholar]
- Bucks, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; De Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- East, A.; Anderson, R.H.; Salice, C.J. Per-and polyfluoroalkyl substances (PFAS) in surface water near US Air Force bases: Prioritizing individual chemicals and mixtures for toxicity testing and risk assessment. Environ. Toxicol. Chem. 2020, 40, 859–870. [Google Scholar] [CrossRef]
- Ankley, G.T.; Cureton, P.; Hoke, R.A.; Houde, M.; Kumar, A.; Kurias, J.; Lanno, R.; McCarthy, C.; Newsted, J.; Salice, C.J.; et al. Assessing the ecological risks of per-and polyfluoroalkyl substances: Current state-of-the-science and a proposed path forward. Environ. Toxicol. Chem. 2021, 40, 564–605. [Google Scholar] [CrossRef]
- Podder, A.; Sadmani, A.; Reinhart, D.; Chang, N.B.; Goel, R. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. J. Hazard. Mater. 2021, 419, 126361. [Google Scholar] [CrossRef]
- Jarvis, A.L.; Justice, J.R.; Elias, M.C.; Schnitker, B.; Gallagher, K. Perfluorooctane sulfonate in US ambient surface waters: A review of occurrence in aquatic environments and comparison to global concentrations. Environ. Toxicol. Chem. 2021, 40, 2425–2442. [Google Scholar] [CrossRef] [PubMed]
- Patmann, M.D.; Shewade, L.H.; Schneider, K.A.; Buchholz, D.R. Xenopus tadpole tissue harvest. Cold Spring Harb. Protoc. 2017, 2017, pdb-prot097675. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, S.; Okada, E.; Umemoto, H.; Tamura, K.; Uno, Y.; Nishida-Umehara, C.; Matsuda, Y.; Takamatsu, N.; Shiba, T.; Ito, M. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Nat. Acad. Sci. USA 2008, 105, 2469–2474. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Sündermann, A.; Eggers, L.F.; Schwudke, D. Liquid extraction: Bligh and Dyer. In Encyclopedia of Lipidomics; Wenk, M.R., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–4. [Google Scholar]
- Xie, Z.; Ferreira, C.R.; Virequ, A.A.; Cooks, R.G. Multiple reaction monitoring profiling (MRM profiling): Small molecule exploratory analysis guided by chemical functionality. Chem. Phys. Lipids 2021, 235, 105048. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2019. Available online: https://www.R-project.org/ (accessed on 23 June 2022).
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- OECD. Larval Amphibian Growth and Development Assay (LAGDA) (OECD TG 241). In Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption; OECD Publishing: Paris, France, 2018. [Google Scholar]
- Cano, R.; Pérez, J.L.; Dávila, L.A.; Ortega, Á.; Gómez, Y.; Valero-Cedeño, N.J.; Parra, H.; Manzano, A.; Véliz Castro, T.I.; Albornoz, M.P.D.; et al. Role of endocrine-disrupting chemicals in the pathogenesis of non-alcoholic fatty liver disease: A comprehensive review. Int. J. Mol. Sci. 2021, 22, 4807. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Degitz, S.J.; Olker, J.H.; Denny, J.S.; Degoey, P.P.; Hartig, P.C.; Cardon, M.C.; Eytcheson, S.A.; Haselman, J.T.; Mayasich, S.A.; Hornung, M.W. In vitro screening of per- and polyfluorinated substances (PFAS) for interference with seven thyroid hormone system targets across nine assays. Toxicol. Vitro 2024, 95, 105762. [Google Scholar] [CrossRef]
- Ledford, B.E.; Frieden, E. Albumin synthesis during induced and spontaneous metamorphosis in the bullfrog Rana catesbeiana. Dev. Biol. 1973, 30, 187–197. [Google Scholar] [CrossRef]
- Duellman, W.E.; Trueb, L. Biology of Amphibians; John Hopkins University Press: Baltimore, MD, USA, 1994. [Google Scholar]
- Forsthuber, M.; Kaiser, A.M.; Granitzer, S.; Hassl, I.; Hengstschläger, M.; Stangl, H.; Gundacker, C. Albumin is the major carrier protein for PFOS, PFOA, PFHxS, PFNA and PFDA in human plasma. Environ. Int. 2021, 137, 105324. [Google Scholar] [CrossRef] [PubMed]
- American Society for Testing and Materials (ASTM). Standard Guide for Conducting the Frog Embryo Teratogenesis Assay-Xenopus (FETAX); ASTM: West Conshohocken, PA, USA, 2004; pp. 1439–1498. [Google Scholar]
- Organization for Economic Co-Operation and Development (OECD). Test No. 231: Amphibian Metamorphosis Assay, OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2009. [Google Scholar]
- Costello, E.; Rock, S.; Stratakis, N.; Eckel, S.P.; Walker, D.I.; Valvi, D.; Cserbik, D.; Jenkins, T.; Xanthakos, S.A.; Kohli, R.; et al. Exposure to per- and poly-fluoroalkyl substances and markers of liver injury: A systematic review and meta-Analysis. Environ. Health Perspect. 2022, 130, 046001. [Google Scholar] [CrossRef] [PubMed]
- Forte, M.T.; Ryan, R.O. Apolipoprotein A5: Extracellular and intracellular roles in triglyceride metabolism. Curr. Drug Targets 2015, 16, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Kong, Y.; Peng, D.Q. New insights into apolipoprotein A5 in controlling lipoprotein metabolism in obesity and the metabolic syndrome patients. Lipids Health Dis. 2018, 17, 174. [Google Scholar] [CrossRef]
- Arukwe, A.; Mortensen, A.S. Lipid peroxidation and oxidative stress responses of salmon fed a diet containing perfluorooctane sulfonic-or perfluorooctane carboxylic acids. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 154, 288–295. [Google Scholar] [CrossRef]
- Schlezinger, J.J.; Hyötyläinen, T.; Sinioja, T.; Boston, C.; Puckett, H.; Oliver, J.; Heiger-Bernays, W.; Webster, T.F. Perfluorooctanoic acid induces liver and serum dyslipidemia in humanized pparα mice fed an american diet. Toxicol. Appl. Pharmacol. 2021, 426, 115644. [Google Scholar] [CrossRef]
- Yang, W.; Ling, X.; He, S.; Cui, H.; Yang, Z.; An, H.; Wang, L.; Zou, P.; Chen, Q.; Liu, J.; et al. PPARα/ACOX1 as a novel target for hepatic lipid metabolism disorders induced by per-and polyfluoroalkyl substances: An integrated approach. Environ. Internat 2023, 178, 108138. [Google Scholar] [CrossRef]
- Chen, X.F.; Tian, M.X.; Sun, R.Q.; Zhang, M.L.; Zhou, L.S.; Jin, L.; Chen, L.L.; Zhou, W.J.; Duan, K.L.; Chen, Y.J.; et al. SIRT 5 inhibits peroxisomal ACOX 1 to prevent oxidative damage and is downregulated in liver cancer. EMBO Rep. 2018, 19, e45124. [Google Scholar] [CrossRef]
- Scholtes, C.; Giguère, V. Transcriptional regulation of ROS homeostasis by the ERR subfamily of nuclear receptors. Antioxidants 2021, 10, 437. [Google Scholar] [CrossRef]
- Ulhaq, Z.S.; Tse, W.K.F. Perfluorohexanesulfonic acid (PFHxS) induces oxidative stress and causes developmental toxicities in zebrafish embryos. J. Hazard. Mat. 2023, 457, 131722. [Google Scholar] [CrossRef]
- Broniec, A.; Żądło, A.; Pawlak, A.; Fuchs, B.; Kłosiński, R.; Thompson, D.; Sarna, T. Interaction of plasmenylcholine with free radicals in selected model systems. Free Rad. Biol. Med. 2017, 106, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.M.; Lodhi, I.J. Structural and functional roles of ether lipids. Prot. Cell 2018, 9, 196–206. [Google Scholar] [CrossRef] [PubMed]
- He, A.; Dean, J.M.; Lodhi, I.J. Peroxisomes as cellular adaptors to metabolic and environmental stress. Trends Cell Biol. 2021, 31, 656–670. [Google Scholar] [CrossRef]
- Dale, K.; Yadetie, F.; Müller, M.B.; Pampanin, D.M.; Gilabert, A.; Zhang, X.; Tairova, Z.; Haarr, A.; Lille-Langøy, R.; Lyche, J.L.; et al. Proteomics and lipidomics analyses reveal modulation of lipid metabolism by perfluoroalkyl substances in liver of Atlantic cod (Gadus morhua). Aquat. Toxicol. 2020, 227, 105590. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Legradi, J.; Leonards, P. Using comprehensive lipid profiling to study effects of PFHxS during different stages of early zebrafish development. Sci. Total Environ. 2022, 808, 151739. [Google Scholar] [CrossRef]
- Geng, D.; Musse, A.A.; Wigh, V.; Carlsson, C.; Engwall, M.; Orešič, M.; Scherbak, N.; Hyötyläinen, T. Effect of perfluorooctanesulfonic acid (PFOS) on the liver lipid metabolism of the developing chicken embryo. Ecotoxicol. Environ. Safe 2019, 170, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Long, N.P.; Yoon, S.J.; Anh, N.H.; Kim, S.J.; Park, J.H.; Kwon, S.W. Omics approach reveals perturbation of metabolism and phenotype in Caenorhabditis elegans triggered by perfluorinated compounds. Sci. Total Environ. 2020, 703, 135500. [Google Scholar] [CrossRef] [PubMed]
- Law, S.H.; Chan, M.L.; Marathe, G.K.; Parveen, F.; Chen, C.H.; Ke, L.Y. An updated review of lysophosphatidylcholine metabolism in human diseases. Int. J. Mol. Sci. 2019, 20, 1149. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Sakurai, T.; Chen, Z.; Inoue, N.; Chiba, H.; Hui, S.P. Lysophosphatidylethanolamine affects lipid accumulation and metabolism in a human liver-derived cell line. Nutrients 2022, 14, 579. [Google Scholar] [CrossRef]
- Chakraborty, M.; Jiang, X.C. Sphingomyelin and its role in cellular signaling. In Lipid-Mediated Protein Signaling; Springer: Dordrecht, The Netherlands, 2013; pp. 1–14. [Google Scholar]
- Alves-Bezerra, M.; Cohen, D.E. Triglyceride metabolism in the liver. Compr. Physiol. 2017, 8, 1. [Google Scholar]
Water Sample | Nominal [µg/L] | PFOS [µg/L] | PFOA [µg/L] | PFHxS [µg/L] | PFHxA [µg/L] | Total PFAS [µg/L] |
---|---|---|---|---|---|---|
Control | 0 | ND | ND | ND | ND | ND |
PFOS | 0.5 | 0.666 | ND | ND | ND | 0.666 |
PFOA | 0.5 | 0.057 | 0.503 | ND | ND | 0.560 |
PFHxS | 0.5 | 0.065 | ND | 0.676 | ND | 0.741 |
PFHxA | 0.5 | ND | ND | ND | 0.347 | 0.347 |
PFOS:PFHxS MIX | 0.5:0.5 | 1.510 | ND | 0.651 | ND | 2.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bushong, A.; Sepúlveda, M.; Scherer, M.; Valachovic, A.C.; Neill, C.M.; Horn, S.; Choi, Y.; Lee, L.S.; Baloni, P.; Hoskins, T. Effects of Perfluorinated Alkyl Substances (PFAS) on Amphibian Body and Liver Conditions: Is Lipid Metabolism Being Perturbed throughout Metamorphosis? Toxics 2024, 12, 732. https://doi.org/10.3390/toxics12100732
Bushong A, Sepúlveda M, Scherer M, Valachovic AC, Neill CM, Horn S, Choi Y, Lee LS, Baloni P, Hoskins T. Effects of Perfluorinated Alkyl Substances (PFAS) on Amphibian Body and Liver Conditions: Is Lipid Metabolism Being Perturbed throughout Metamorphosis? Toxics. 2024; 12(10):732. https://doi.org/10.3390/toxics12100732
Chicago/Turabian StyleBushong, Anna, Maria Sepúlveda, Meredith Scherer, Abigail C. Valachovic, C. Melman Neill, Sophia Horn, Youn Choi, Linda S. Lee, Priyanka Baloni, and Tyler Hoskins. 2024. "Effects of Perfluorinated Alkyl Substances (PFAS) on Amphibian Body and Liver Conditions: Is Lipid Metabolism Being Perturbed throughout Metamorphosis?" Toxics 12, no. 10: 732. https://doi.org/10.3390/toxics12100732
APA StyleBushong, A., Sepúlveda, M., Scherer, M., Valachovic, A. C., Neill, C. M., Horn, S., Choi, Y., Lee, L. S., Baloni, P., & Hoskins, T. (2024). Effects of Perfluorinated Alkyl Substances (PFAS) on Amphibian Body and Liver Conditions: Is Lipid Metabolism Being Perturbed throughout Metamorphosis? Toxics, 12(10), 732. https://doi.org/10.3390/toxics12100732