Current Developments in Soil Ecotoxicology
- The toxicokinetics of chromium and other potentially toxic elements in soil organisms. Assessing toxicity over time is a crucial method for evaluating the risks posed by metals (Contribution 2).
- Metal bioaccumulation in monometallic systems, further studying the metal accumulation capabilities of Nostoc linckia biomass (Contribution 3).
- The interactions and toxicity mechanisms of nanoplastics, particularly when they are part of complex contaminant mixtures. A key area of study should be the molecular interactions between nanoplastics and other components, such as natural organic matter or other pollutant matrices like wastewater sludge (Contribution 5).
- These studies have highlighted the need for additional toxicity data for soil invertebrates, obtained through single chemical tests in soil media. The existing data are largely limited to earthworms, while other taxa remain underexplored (Contribution 7).
- Beyond using the standard test organism Eisenia fetida as a bioindicator of soil contamination, it is necessary to conduct further research on other earthworm species commonly found in agricultural fields or native species, such as Glossoscolex rione. Additionally, it is important to assess the toxicity of commercial products, not just the active ingredients in pesticides (Contribution 4).
- A detailed study of soil microbial composition across a degradation gradient is needed, and should examine how microbial communities change in response to soil degradation due to different land uses. Such research would inform the selection of land use management practices to improve soil quality (Contribution 8).
- Regarding the review on potentially toxic substances in soils affected by wildfires (Contribution 9), several research gaps have been identified:
- -
- The vertical and lateral distribution of toxic substances generated by fires.
- -
- There is a need for more studies that integrate ecotoxicological research on burnt soils with the identification and quantification of the substances that cause the toxicity, rather than focusing on just one of these aspects.
- -
- PAHs analysis should be adapted to reflect emerging criteria for selecting individual PAHs indicative of environmental or health hazards. Additionally, there is a need for further analysis of other organic pollutants, such as PCBs and dioxins, as very little research has been conducted in this area thus far
Acknowledgments
Conflicts of Interest
List of Contributions
- Enamorado-Montes, G.; Reino-Causil, B.; Urango-Cardenas, I.; Marrugo-Madrid, S.; Marrugo-Negrete, J. Mercury Accumulation in Commercial Varieties of Oryza sativa L. Cultivated in Soils of La Mojana Region, Colombia. Toxics 2021, 9, 304.
- Santos, F.C.F.; Verweij, R.A.; van Gestel, C.A.M.; Amorim, M.J.B. Toxicokinetics of Chromium in Enchytraeus crypticus (Oligochaeta). Toxics 2022, 10, 82.
- Cepoi, L.; Zinicovscaia, I.; Valuta, A.; Codreanu, L.; Rudi, L.; Chiriac, T.; Yushin, N.; Grozdov, D.; Peshkova, A. Peculiarities of the Edaphic Cyanobacterium Nostoc linckia Culture Response and Heavy Metal Accumulation from Copper-Containing Multimetal Systems. Toxics 2022, 10, 113.
- Jorge-Escudero, G.; Pérez Polanco, M.; Lagerlöf, J.E.; Pérez, C.A.; Míguez, D. Commercial Fungicide Toxic Effects on Terrestrial Non-Target Species Might Be Underestimated When Based Solely on Active Ingredient Toxicity and Standard Earthworm Tests. Toxics 2022, 10, 488.
- Mendes, L.A.; Barreto, A.; Santos, J.; Amorim, M.J.B.; Maria, V.L. Co-Exposure of Nanopolystyrene and Other Environmental Contaminants—Their Toxic Effects on the Survival and Reproduction of Enchytraeus crypticus. Toxics 2022, 10, 193.
- Landi, C.; Liberatori, G.; Cotugno, P.; Sturba, L.; Vannuccini, M.L.; Massari, F.; Miniero, D.V.; Tursi, A.; Shaba, E.; Behnisch, P.A.; et al. First Attempt to Couple Proteomics with the AhR Reporter Gene Bioassay in Soil Pollution Monitoring and Assessment. Toxics 2022, 10, 9.
- Barron, M.G.; Lambert, F.N. Potential for Interspecies Toxicity Estimation in Soil Invertebrates. Toxics 2021, 9, 265.
- Camacho, A.; Mora, C.; Picazo, A.; Rochera, C.; Camacho-Santamans, A.; Morant, D.; Roca-Pérez, L.; Ramos-Miras, J.J.; Rodríguez-Martín, J.A.; Boluda, R. Effects of Soil Quality on the Microbial Community Structure of Poorly Evolved Mediterranean Soils. Toxics 2022, 10, 14.
- Fernandez-Marcos, M.L. Potentially Toxic Substances and Associated Risks in Soils Affected by Wildfires: A Review. Toxics 2022, 10, 31.
References
- van Gestel, C.A. Soil ecotoxicology: State of the art and future directions. Zookeys 2012, 176, 275–296. [Google Scholar] [CrossRef] [PubMed]
- Cortet, J.; Gomot-De Vauflery, A.; Poinsot-Balaguer, N.; Gomot, L.; Texier, C.; Cluzeau, D. The use of invertebrate soil fauna in monitoring pollutant effects. Eur. J. Soil Biol. 1999, 35, 115–134. [Google Scholar] [CrossRef]
- Gunstone, T.; Cornelisse, T.; Klein, K.; Dubey, A.; Donley, N. Pesticides and Soil Invertebrates: A Hazard Assessment. Front. Environ. Sci. 2021, 9, 643847. [Google Scholar] [CrossRef]
- Mullineaux, S.T.; McKinley, J.M.; Marks, N.J.; Scantlebury, D.M.; Doherty, R. Heavy metal (PTE) ecotoxicology, data review: Traditional vs. a compositional approach. Sci. Total Environ. 2021, 769, 145246. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M. Effect of soil amendments on trace element-mediated oxidative stress in plants: Meta-analysis and mechanistic interpretations. J. Hazard. Mater. 2021, 407, 124881. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. Sn Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Carles, L.; Martin-Laurent, F.; Devers, M.; Spor, A.; Rouard, N.; Beguet, J.; Besse-Hoggan, P.; Batisson, I. Potential of preventive bioremediation to reduce environmental contamination by pesticides in an agricultural context: A case study with the herbicide 2,4-D. J. Hazard. Mater. 2021, 416, 125740. [Google Scholar] [CrossRef]
- Jeyaseelan, A.; Murugesan, K.; Thayanithi, S.; Palanisamy, S.B. A review of the impact of herbicides and insecticides on the microbial communities. Environ. Res. 2024, 245, 118020. [Google Scholar] [CrossRef]
- Eom, I.C.; Rast, C.; Veber, A.M.; Vasseur, P. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotoxicol. Environ. Saf. 2007, 67, 190–205. [Google Scholar] [CrossRef]
- Hou, S.Y.; Wang, J.; Dai, J.; Boussafir, M.; Zhang, C. Combined effects of earthworms and biochar on PAHs-contaminated soil remediation: A review. Soil Ecol. Lett. 2023, 5, 220158. [Google Scholar] [CrossRef]
- Aabbar, I.; Biache, C.; Cossu-Leguille, C.; Bojic, C.; Lorgeoux, C.; Masfaraud, J.F.; Faure, P. Effect of polycyclic aromatic compounds (PAH & Polar-PAC) availability on their ecotoxicity towards terrestrial organisms. J. Hazard. Mater. 2024, 467, 133646. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.K.; Amézquita, A.; Backhaus, T.; Boxall, A.; Coors, A.; Heberer, T.; Lawrence, J.R.; Lazorchak, J.; Schönfeld, J.; Snape, J.R.; et al. Ecotoxicological assessment of antibiotics: A call for improved consideration of microorganisms. Environ. Int. 2015, 85, 189–205. [Google Scholar] [CrossRef] [PubMed]
- Roose-Amsaleg, C.; Laverman, A.M. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ. Sci. Pollut. Res. 2016, 23, 4000–4012. [Google Scholar] [CrossRef] [PubMed]
- Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 2018, 636, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.L.; Lwanga, E.H.; Eldridge, S.M.; Johnston, P.; Hu, H.W.; Geissen, V.; Chen, D.L. An overview of microplastic and nanoplastic pollution in agroecosystems. Sci. Total Environ. 2018, 627, 1377–1388. [Google Scholar] [CrossRef]
- Rose, P.K.; Yadav, S.; Kataria, N.; Khoo, K.S. Microplastics and nanoplastics in the terrestrial food chain: Uptake, translocation, trophic transfer, ecotoxicology, and human health risk. Trac-Trends Anal. Chem. 2023, 167, 117249. [Google Scholar] [CrossRef]
- Kokalj, A.J.; Kalcíková, G.; Selonen, S.; Bosker, T.; Drobne, D.; Dvoráková, D.; Hofman, J.; Hurley, R.; Kernchen, S.; Laforsch, C.; et al. Strategy towards producing relevant and reliable data for the hazard assessment of micro- and nanoplastics in agricultural soils. Trac-Trends Anal. Chem. 2024, 172, 117567. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, K.; Yu, H.; Tan, W.B.; Gao, Y.M.; Lv, B.W. Effects and mechanism of microplastics on organic carbon and nitrogen cycling in agricultural soil: A review. Soil Use Manag. 2024, 40, e12971. [Google Scholar] [CrossRef]
- Cornelis, G.; Hund-Rinke, K.; Kuhlbusch, T.; Van den Brink, N.; Nickel, C. Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2720–2764. [Google Scholar] [CrossRef]
- Courtois, P.; Rorat, A.; Lemiere, S.; Guyoneaud, R.; Attard, E.; Levard, C.; Vandenbulcke, F. Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals. Environ. Pollut. 2019, 253, 578–598. [Google Scholar] [CrossRef]
- McGee, C.F. The effects of silver nanoparticles on the microbial nitrogen cycle: A review of the known risks. Environ. Sci. Pollut. Res. 2020, 27, 31061–31073. [Google Scholar] [CrossRef] [PubMed]
- Santás-Miguel, V.; Arias-Estévez, M.; Rodríguez-Seijo, A.; Arenas-Lago, D. Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Environ. Pollut. 2023, 334, 122222. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, S. Effects of metals on earthworm life cycles: A review. Environ. Monit. Assess. 2015, 187, 530. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.M.; Tang, Z.W.; Wang, C.Y. A brief review and evaluation of earthworm biomarkers in soil pollution assessment. Environ. Sci. Pollut. Res. 2017, 24, 13284–13294. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.D.E.; Pelosi, C. Effects of glyphosate on earthworms: From fears to facts. Integr. Environ. Assess. Manag. 2024, 20, 1330–1336. [Google Scholar] [CrossRef]
- van Gestel, C.A.M.; Loureiro, S.; Zidar, P. Terrestrial isopods as model organisms in soil ecotoxicology: A review. Zookeys 2018, 801, 127–162. [Google Scholar] [CrossRef]
- Fajana, H.O.; Gainer, A.; Jegede, O.O.; Awuah, K.F.; Princz, J.I.; Owojori, O.J.; Siciliano, S.D. Oppia nitens CL Koch, 1836 (Acari: Oribatida): Current Status of Its Bionomics and Relevance as a Model Invertebrate in Soil Ecotoxicology. Environ. Toxicol. Chem. 2019, 38, 2593–2613. [Google Scholar] [CrossRef]
- Joimel, S.; Chassain, J.; Artru, M.; Faburé, J. Collembola are among the Most Pesticide-Sensitive Soil Fauna Groups: A Meta-Analysis. Environ. Toxicol. Chem. 2022, 41, 2333–2341. [Google Scholar] [CrossRef]
- Changey, F.; Blaud, A.; Pando, A.; Herrmann, A.M.; Lerch, T.Z. Monitoring soil microbial communities using molecular tools:DNAextraction methods may offset long-term management effects. Eur. J. Soil Sci. 2021, 72, 1026–1041. [Google Scholar] [CrossRef]
- Djemiel, C.; Dequiedt, S.; Karimi, B.; Cottin, A.; Horrigue, W.; Bailly, A.; Boutaleb, A.; Sadet-Bourgeteau, S.; Maron, P.A.; Prevost-Boure, N.C.; et al. Potential of Meta-Omics to Provide Modern Microbial Indicators for Monitoring Soil Quality and Securing Food Production. Front. Microbiol. 2022, 13, 889788. [Google Scholar] [CrossRef]
- Wydro, U. Soil Microbiome Study Based on DNA Extraction: A Review. Water 2022, 14, 3999. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Marcos, M.L. Current Developments in Soil Ecotoxicology. Toxics 2024, 12, 734. https://doi.org/10.3390/toxics12100734
Fernández-Marcos ML. Current Developments in Soil Ecotoxicology. Toxics. 2024; 12(10):734. https://doi.org/10.3390/toxics12100734
Chicago/Turabian StyleFernández-Marcos, Maria Luisa. 2024. "Current Developments in Soil Ecotoxicology" Toxics 12, no. 10: 734. https://doi.org/10.3390/toxics12100734
APA StyleFernández-Marcos, M. L. (2024). Current Developments in Soil Ecotoxicology. Toxics, 12(10), 734. https://doi.org/10.3390/toxics12100734