Machine Learning Models for Predicting Bioavailability of Traditional and Emerging Aromatic Contaminants in Plant Roots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Collection
2.2. Selection of Molecular Descriptors
2.3. Machine Learning Models
2.4. Model Validation
2.5. Model Interpretability
3. Results and Discussion
3.1. t-Distributed Stochastic Neighbor Embedding (t-SNE) Plot of the RCF Dataset
3.2. logRCF Prediction with Machine Learning Models
3.3. Identification of Key Features and Their Influence on logRCF
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanwijnsberghe, S.; Peeters, C.; De Ridder, E.; Dumolin, C.; Wieme, A.D.; Boon, N.; Vandamme, P. Genomic Aromatic Compound Degradation Potential of Novel Paraburkholderia Species: Paraburkholderia domus sp. nov., Paraburkholderia haematera sp. nov. and Paraburkholderia nemoris sp. nov. Int. J. Mol. Sci. 2021, 22, 7003. [Google Scholar] [CrossRef] [PubMed]
- Sakshi; Singh, S.K.; Haritash, A.K. Polycyclic aromatic hydrocarbons: Soil pollution and remediation. Int. J. Environ. Sci. Technol. 2019, 16, 6489–6512. [Google Scholar] [CrossRef]
- Przybysz, A.; Nersisyan, G.; Gawronski, S.W. Removal of particulate matter and trace elements from ambient air by urban greenery in the winter season. Environ. Sci. Pollut. Res. 2019, 26, 473–482. [Google Scholar] [CrossRef]
- Primbs, T.; Piekarz, A.; Wilson, G.; Schmedding, D.; Higginbotham, C.; Field, J.; Simonich, S.M. Influence of Asian and Western United States urban areas and fires on the atmospheric transport of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and fluorotelomer alcohols in the Western United States. Environ. Sci. Technol. 2008, 42, 6385–6391. [Google Scholar] [CrossRef]
- Shaul, N.J.; Dodder, N.G.; Aluwihare, L.I.; Mackintosh, S.A.; Maruya, K.A.; Chivers, S.J.; Danil, K.; Weller, D.W.; Hoh, E. Nontargeted biomonitoring of halogenated organic compounds in two ecotypes of bottlenose dolphins (Tursiops truncatus) from the Southern California Bight. Environ. Sci. Technol. 2015, 49, 1328–1338. [Google Scholar] [CrossRef]
- Wang, H.; Adamcakova-Dodd, A.; Flor, S.; Gosse, L.; Klenov, V.E.; Stolwijk, J.M.; Lehmler, H.-J.; Hornbuckle, K.C.; Ludewig, G.; Robertson, L.W.; et al. Comprehensive subchronic inhalation toxicity assessment of an indoor school air mixture of PCBs. Environ. Sci. Technol. 2020, 54, 15976–15985. [Google Scholar] [CrossRef]
- Lin, Y. Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective. Coord. Chem. Rev. 2021, 434, 213774. [Google Scholar] [CrossRef]
- You, Q.; Yan, K.; Yuan, Z.; Feng, D.; Wang, H.; Wu, L.; Xu, J. Polycyclic aromatic hydrocarbons (PAHs) pollution and risk assessment of soils at contaminated sites in China over the past two decades. J. Clean. Prod. 2024, 450, 141876. [Google Scholar] [CrossRef]
- Li, Y.; Hou, F.; Shi, R.; Li, X.; Lan, J.; Zhao, Z. Contamination status, environmental factor and risk assessment of polychlorinated biphenyls and hexachlorobutadiene in greenhouse and open-field agricultural soils across China. Toxics 2023, 11, 941. [Google Scholar] [CrossRef]
- Duran, R.; Cravo-Laureau, C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol. Rev. 2016, 40, 814–830. [Google Scholar] [CrossRef]
- Keswani, C.; Dilnashin, H.; Birla, H.; Roy, P.; Tyagi, R.K.; Singh, D.; Rajput, V.D.; Minkina, T.; Singh, S.P. Global footprints of organochlorine pesticides: A pan-global survey. Environ. Geochem. Health 2022, 44, 149–177. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Panton, S.; Marshall, L.; Fernandes, A.; Rose, M.; Smith, F.; Holmes, M. Spatial analysis of polybrominated diphenylethers (PBDEs) and polybrominated biphenyls (PBBs) in fish collected from UK and proximate marine waters. Chemosphere 2018, 195, 727–734. [Google Scholar]
- Preston, E.V.; McClean, M.D.; Henn, B.C.; Stapleton, H.M.; Braverman, L.E.; Pearce, E.N.; Makey, C.M.; Webster, T.F. Associations between urinary diphenyl phosphate and thyroid function. Environ. Int. 2017, 101, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Gao, X.; Xu, H.; Li, M. 20 years of polybrominated diphenyl ethers on toxicity assessments. Water Res. 2024, 249, 121007. [Google Scholar] [CrossRef]
- Ohoro, C.R.; Adeniji, A.O.; Okoh, A.I.; Okoh, O.O. Polybrominated diphenyl ethers in the environmental systems: A review. J. Environ. Health Sci. Eng. 2021, 19, 1229–1247. [Google Scholar] [CrossRef]
- Fasano, E.; Cirillo, T. Plasticizers and bisphenol as food contaminants: Sources and human risk. Curr. Anal. Chem. 2018, 14, 296–305. [Google Scholar] [CrossRef]
- Net, S.; Sempéré, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental Matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. [Google Scholar] [CrossRef]
- Chen, W.; Chi, C.; Zhou, C.; Xia, M.; Ronda, C.; Shen, X. Analysis of the influencing factors of PAEs volatilization from typical plastic products. J. Environ. Sci. 2018, 66, 61–70. [Google Scholar] [CrossRef]
- He, L.; Gielen, G.; Bolan, N.S.; Zhang, X.; Qin, H.; Huang, H.; Wang, H. Contamination and remediation of phthalic acid esters in agricultural soils in China: A review. Agron. Sustain. Dev. 2015, 35, 519–534. [Google Scholar] [CrossRef]
- Lao, J.-Y.; Huang, G.; Wu, R.; Liang, W.; Xu, S.; Luo, Q.; Zhang, K.; Jing, L.; Jin, L.; Ruan, Y.; et al. Aggravating Pollution of Emerging Aryl Organophosphate Esters in Urban Estuarine Sediments of South China. Environ. Sci. Technol. 2024, 58, 13415–13425. [Google Scholar] [CrossRef]
- Liu, X.; Dong, Z.; Baccolo, G.; Gao, W.; Li, Q.; Wei, T.; Qin, X. Distribution, composition and risk assessment of PAHs and PCBs in cryospheric watersheds of the eastern Tibetan Plateau. Sci. Total Environ. 2023, 890, 164234. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Li, J.; Zhang, Q.; Gao, S.; Quan, X.; Liu, P.; Xu, C. Effects of endocrine disrupting chemicals in host health: Three-way interactions between environmental exposure, host phenotypic responses, and gut microbiota. Environ. Pollut. 2021, 271, 116387. [Google Scholar] [CrossRef] [PubMed]
- Ansari, I.; El-Kady, M.M.; El Din Mahmoud, A.; Arora, C.; Verma, A.; Rajarathinam, R.; Singh, P.; Verma, D.K.; Mittal, J. Persistent pesticides: Accumulation, health risk assessment, management and remediation: An overview. Desalination Water Treat. 2024, 317, 100274. [Google Scholar] [CrossRef]
- Wu, Z.; He, C.; Han, W.; Song, J.; Li, H.; Zhang, Y.; Jing, X.; Wu, W. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: A review. Environ. Res. 2020, 187, 109531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Y.; Tao, Y.; Guo, X.; Cui, Y.; Li, Z. Phthalates (PAEs) and reproductive toxicity: Hypothalamic-pituitary-gonadal (HPG) axis aspects. J. Hazard. Mater. 2023, 459, 132182. [Google Scholar] [CrossRef]
- Behl, M.; Hsieh, J.-H.; Shafer, T.J.; Mundy, W.R.; Rice, J.R.; Boyd, W.A.; Freedman, J.H.; Hunter, E.S.; Jarema, K.A.; Padilla, S.; et al. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity. Neurotoxicol. Teratol. 2015, 52, 181–193. [Google Scholar] [CrossRef]
- He, W.; Ding, J.; Gao, N.; Zhu, L.; Zhu, L.; Feng, J. Elucidating the toxicity mechanisms of organophosphate esters by adverse outcome pathway network. Arch. Toxicol. 2024, 98, 233–250. [Google Scholar] [CrossRef]
- Subramanian, S.; Schnoor, J.L.; Van Aken, B. Effects of Polychlorinated Biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) on Arabidopsis thaliana. Environ. Sci. Technol. 2017, 51, 7263–7270. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, J.; Shen, G.; Zhong, J.; Wang, C.; Wei, S.; Chen, C.; Chen, Y.; Lu, Y.; Shen, H.; et al. Dietary and inhalation exposure to polycyclic aromatic hydrocarbons and urinary excretion of monohydroxy metabolites—A controlled case study in Beijing, China. Environ. Pollut. 2014, 184, 515–522. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Chang, M.-l.; Wu, S.C.; Shih, Y.-H. Partition uptake of a brominated diphenyl ether by the edible plant root of white radish (Raphanus sativus L.). Environ. Pollut. 2017, 223, 178–184. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Yang, R.; Yang, L.; Sun, B.; Zhu, L. Uptake kinetics, accumulation, and long-distance transport of organophosphate esters in plants: Impacts of chemical and plant properties. Environ. Sci. Technol. 2019, 53, 4940–4947. [Google Scholar] [CrossRef] [PubMed]
- Sverdrup, L.E.; Nielsen, T.; Krogh, P.H. Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environ. Sci. Technol. 2002, 36, 2429–2435. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.-Y.; Du, G.-D.; Zhao, Y.-X.; Mu, Y.-S.; Zhang, A.-Q.; Qin, Z.-F.; Zhang, X.-Y.; Yan, S.-S.; Li, Y.; Wei, R.-G.; et al. Bioaccumulation, maternal transfer and elimination of polybrominated diphenyl ethers in wild frogs. Chemosphere 2011, 84, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Z.; Xu, Y.; Rodgers, T.F.M.; Ablimit, M.; Li, J.; Tan, F. Identifying the contributions of root and foliage gaseous/particle uptakes to indoor plants for phthalates, OPFRs and PAHs. Sci. Total Environ. 2023, 883, 163644. [Google Scholar] [CrossRef]
- Namiki, S.; Otani, T.; Motoki, Y.; Seike, N.; Iwafune, T. Differential uptake and translocation of organic chemicals by several plant species from soil. J. Pestic. Sci. 2018, 43, 96–107. [Google Scholar] [CrossRef]
- McLaughlin, M.; Smolders, E.; Merckx, R. Soil-root interface: Physicochemical processes. Soil Chem. Ecosyst. Health 1998, 52, 233–277. [Google Scholar]
- Li, Y.; Chiou, C.T.; Li, H.; Schnoor, J.L. Improved prediction of the bioconcentration factors of organic contaminants from soils into plant/crop roots by related physicochemical parameters. Environ. Int. 2019, 126, 46–53. [Google Scholar] [CrossRef]
- Dobslaw, D.; Woiski, C.; Kiel, M.; Kuch, B.; Breuer, J. Plant uptake, translocation and metabolism of PBDEs in plants of food and feed industry: A review. Rev. Environ. Sci. Bio/Technol. 2021, 20, 75–142. [Google Scholar] [CrossRef]
- Terzaghi, E.; Raspa, G.; Zanardini, E.; Morosini, C.; Anelli, S.; Armiraglio, S.; Di Guardo, A. Life cycle exposure of plants considerably affects root uptake of PCBs: Role of growth strategies and dissolved/particulate organic carbon variability. J. Hazard. Mater. 2022, 421, 126826. [Google Scholar] [CrossRef]
- Strawn, D.G. Sorption Mechanisms of Chemicals in Soils. Soil Syst. 2021, 5, 13. [Google Scholar] [CrossRef]
- Sun, J.; Wu, X.; Gan, J. Uptake and Metabolism of Phthalate Esters by Edible Plants. Environ. Sci. Technol. 2015, 49, 8471–8478. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Huang, H.; Lv, J.; Han, R.; Zhang, S. Uptake, Translocation, and Biotransformation of Organophosphorus Esters in Wheat (Triticum aestivum L.). Environ. Sci. Technol. 2017, 51, 13649–13658. [Google Scholar] [CrossRef] [PubMed]
- Balliu, A.; Zheng, Y.; Sallaku, G.; Fernández, J.A.; Gruda, N.S.; Tuzel, Y. Environmental and Cultivation Factors Affect the Morphology, Architecture and Performance of Root Systems in Soilless Grown Plants. Horticulturae 2021, 7, 243. [Google Scholar] [CrossRef]
- Gao, F.; Shen, Y.; Brett Sallach, J.; Li, H.; Zhang, W.; Li, Y.; Liu, C. Predicting crop root concentration factors of organic contaminants with machine learning models. J. Hazard. Mater. 2022, 424, 127437. [Google Scholar] [CrossRef]
- Martin, I.; Collins, C.; Fryer, M. Evaluation of models for predicting plant uptake of chemicals from soil. Sci. Rep. 2006, SC050021/SR. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Wu, S.C.; Lee, C.-C.; Shih, Y.-h. Translocation of polybrominated diphenyl ethers from field-contaminated soils to an edible plant. J. Hazard. Mater. 2018, 351, 215–223. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Park, S.; Chu, L.C.; Fishman, E.K.; Yuille, A.L.; Vogelstein, B.; Kinzler, K.W.; Horton, K.M.; Hruban, R.H.; Zinreich, E.S.; Fouladi, D.F.; et al. Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation. Diagn. Interv. Imaging 2020, 101, 35–44. [Google Scholar] [CrossRef]
- Liu, X.; Lu, D.; Zhang, A.; Liu, Q.; Jiang, G. Data-driven machine learning in environmental pollution: Gains and problems. Environ. Sci. Technol. 2022, 56, 2124–2133. [Google Scholar] [CrossRef]
- Feng, X.; Pan, L.; Xu, T.; Jing, J.; Zhang, H. Dynamic modeling of famoxadone and oxathiapiprolin residue on cucumber and Chinese cabbage based on tomato and lettuce archetypes. J. Hazard. Mater. 2019, 375, 70–77. [Google Scholar] [CrossRef]
- Trapp, S.; Matthies, M. Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environ. Sci. Technol. 1995, 29, 2333–2338. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Qiu, J.; Chen, Q.-Q.; Yu, P.-F.; Liu, B.-L.; Zhao, H.-M.; Li, Y.-W.; Feng, N.-X.; Cai, Q.-Y.; Mo, C.-H.; et al. Development, evaluation, and application of machine learning models for accurate prediction of root uptake of per- and polyfluoroalkyl substances. Environ. Sci. Technol. 2023, 57, 18317–18328. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Xu, Y.; Rodgers, T.F.M.; Bao, M.; Tan, F. Uptake, translocation, bioaccumulation, and bioavailability of organophosphate esters in rice paddy and maize fields. J. Hazard. Mater. 2023, 446, 130640. [Google Scholar] [CrossRef]
- Long, S.; Hamilton, P.B.; Fu, B.; Xu, J.; Han, L.; Suo, X.; Lai, Y.; Shen, G.; Xu, F.; Li, B. Bioaccumulation and emission of organophosphate esters in plants affecting the atmosphere’s phosphorus cycle. Environ. Pollut. 2023, 318, 120803. [Google Scholar] [CrossRef]
- Zissimos, A.M.; Abraham, M.H.; Klamt, A.; Eckert, F.; Wood, J. A comparison between the two general sets of linear free energy descriptors of abraham and klamt. J. Chem. Inf. Comput. Sci. 2002, 42, 1320–1331. [Google Scholar] [CrossRef]
- von Hellfeld, R.; Gade, C.; Vargesson, N.; Hastings, A. Considerations for future quantitative structure-activity relationship (QSAR) modelling for heavy metals—A case study of mercury. Toxicology 2023, 499, 153661. [Google Scholar] [CrossRef]
- Dong, J.; Cao, D.-S.; Miao, H.-Y.; Liu, S.; Deng, B.-C.; Yun, Y.-H.; Wang, N.-N.; Lu, A.-P.; Zeng, W.-B.; Chen, A.F. ChemDes: An integrated web-based platform for molecular descriptor and fingerprint computation. J. Cheminform. 2015, 7, 60. [Google Scholar] [CrossRef]
- Hu, Y.; Dou, X.; Li, J.; Li, F. Impervious surfaces alter soil bacterial communities in urban areas: A case study in Beijing, China. Front. Microbiol. 2018, 9, 226. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Pham, H. Optimizing ensemble weights and hyperparameters of machine learning models for regression problems. Mach. Learn. Appl. 2022, 7, 100251. [Google Scholar] [CrossRef]
- Wang, S.; Li, D.; Petrick, N.; Sahiner, B.; Linguraru, M.G.; Summers, R.M. Optimizing area under the ROC curve using semi-supervised learning. Pattern Recognit. 2015, 48, 276–287. [Google Scholar] [CrossRef]
- Alhakeem, Z.M.; Jebur, Y.M.; Henedy, S.N.; Imran, H.; Bernardo, L.F.A.; Hussein, H.M. Prediction of ecofriendly concrete compressive strength using gradient boosting regression tree combined with GridSearchCV hyperparameter-optimization techniques. Materials 2022, 15, 7432. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, V.; Sinha, P. Random forest classifiers: A survey and future research directions. Int. J. Adv. Comput. 2013, 36, 1144–1153. [Google Scholar]
- Zhang, F.; O’Donnell, L.J. Support vector regression. In Machine Learning; Academic Press: Cambridge, MA, USA, 2020; pp. 123–140. [Google Scholar]
- Wang, S.; Chen, Y.; Cui, Z.; Lin, L.; Zong, Y. Diabetes risk analysis based on machine learning LASSO regression model. J. Theory Pract. Eng. Sci. 2024, 4, 58–64. [Google Scholar]
- Zheng, H.L.; An, S.Y.; Qiao, B.J.; Guan, P.; Huang, D.S.; Wu, W. A data-driven interpretable ensemble framework based on tree models for forecasting the occurrence of COVID-19 in the USA. Environ. Sci. Pollut. Res. 2023, 30, 13648–13659. [Google Scholar] [CrossRef]
- Otoom, M.; Otoum, N.; Alzubaidi, M.A.; Etoom, Y.; Banihani, R. An IoT-based framework for early identification and monitoring of COVID-19 cases. Biomed. Signal Process. 2020, 62, 102149. [Google Scholar] [CrossRef]
- Allen, A.E.A.; Tkatchenko, A. Machine learning of material properties: Predictive and interpretable multilinear models. Sci. Adv. 2022, 8, eabm7185. [Google Scholar] [CrossRef]
- Robnik-Šikonja, M.; Bohanec, M. Perturbation-based explanations of prediction models. In Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent; Springer: Berlin/Heidelberg, Germany, 2018; pp. 159–175. [Google Scholar]
- Perez-Lebel, A.; Varoquaux, G.; Le Morvan, M.; Josse, J.; Poline, J.B. Benchmarking missing-values approaches for predictive models on health databases. Gigascience 2022, 11, giac013. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 30 (NIPS 2017); Neural Information Processing Systems Foundation, Inc. (NeurIPS): La Jolla, CA, USA, 2017; Volume 30, pp. 4768–4777. [Google Scholar]
- Orsenigo, C.; Vercellis, C. Kernel ridge regression for out-of-sample mapping in supervised manifold learning. Expert Syst. Appl. 2012, 39, 7757–7762. [Google Scholar] [CrossRef]
- Jaffari, Z.H.; Abbas, A.; Kim, C.M.; Shin, J.; Kwak, J.; Son, C.; Lee, Y.-G.; Kim, S.; Chon, K.; Cho, K.H. Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents. J. Hazard. Mater. 2024, 462, 132773. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, S.; Qiao, F.; Ukkusuri, S.V.; Tang, K. Estimation of real-driving emissions for buses fueled with liquefied natural gas based on gradient boosted regression trees. Sci. Total Environ. 2019, 660, 741–750. [Google Scholar] [CrossRef]
- Esmaeili, A.; Kiadeh, S.P.H.; Pirbazari, A.E.; Saraei, F.E.K.; Pirbazari, A.E.; Derakhshesh, A.; Tabatabai-Yazdi, F.-S. CdS nanocrystallites sensitized ZnO nanosheets for visible light induced sonophotocatalytic/photocatalytic degradation of tetracycline: From experimental results to a generalized model based on machine learning methods. Chemosphere 2023, 332, 138852. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Cai, X. Biota-sediment accumulation factor models of organic chemicals in benthic invertebrates with gradient boosting regression tree. Asian J. Ecotoxicol. 2023, 18, 22–33. [Google Scholar]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.-X.; Dai, S.-P.; Li, M.-F.; Liu, E.-P.; Zheng, Q.; Hu, Y.-Y.; Yi, X.-P. Comparison of machine learning algorithms for mapping mango plantations based on Gaofen-1 imagery. J. Integr. Agric. 2020, 19, 2815–2828. [Google Scholar] [CrossRef]
- Radzi, S.F.M.; Karim, M.K.A.; Saripan, M.I.; Rahman, M.A.A.; Isa, I.N.C.; Ibahim, M.J. Hyperparameter tuning and pipeline optimization via grid search method and tree-based AutoML in breast cancer prediction. J. Pers. Med. 2021, 11, 978. [Google Scholar] [CrossRef]
- Hassan, G.S.; Georgey, H.H.; Mohammed, E.Z.; George, R.F.; Mahmoud, W.R.; Omar, F.A. Mechanistic selectivity investigation and 2D-QSAR study of some new antiproliferative pyrazoles and pyrazolopyridines as potential CDK2 inhibitors. Eur. J. Med. Chem. 2021, 218, 113389. [Google Scholar] [CrossRef]
- Randic, M. Characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [Google Scholar] [CrossRef]
- Molina, L.; Segura, A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. Plants 2021, 10, 2305. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, Y.; Wang, Y.; Zhang, Q.; Cheng, Z.; Li, Y.; Yang, X.; Wang, L.; Sun, H. Plant accumulation and transformation of brominated and organophosphate flame retardants: A review. Environ. Pollut. 2021, 288, 117742. [Google Scholar] [CrossRef]
- Hao, H.; Li, P.; Jiao, W.; Ge, D.; Hu, C.; Li, J.; Lv, Y.; Chen, W. Ensemble learning-based applied research on heavy metals prediction in a soil-rice system. Sci. Total Environ. 2023, 898, 165456. [Google Scholar] [CrossRef]
- Bagheri, M.; Al-jabery, K.; Wunsch, D.; Burken, J.G. Examining plant uptake and translocation of emerging contaminants using machine learning: Implications to food security. Sci. Total Environ. 2020, 698, 133999. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, I.; Race, M.; Papirio, S.; Esposito, G. Phytoremediation of pyrene-contaminated soils: A critical review of the key factors affecting the fate of pyrene. J. Environ. Manag. 2021, 293, 112805. [Google Scholar] [CrossRef] [PubMed]
- Terzaghi, E.; Zanardini, E.; Morosini, C.; Raspa, G.; Borin, S.; Mapelli, F.; Vergani, L.; Di Guardo, A. Rhizoremediation half-lives of PCBs: Role of congener composition, organic carbon forms, bioavailability, microbial activity, plant species and soil conditions, on the prediction of fate and persistence in soil. Sci. Total Environ. 2018, 612, 544–560. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Ping, H.; Liu, J.; Zhao, T.; Wang, Y.; Cui, G.; Ha, X.; Ma, Z.; Li, C. Occurrence, potential sources, and ecological risks of traditional and novel organophosphate esters in facility agriculture soils: A case study in Beijing, China. Sci. Total Environ. 2024, 923, 171456. [Google Scholar] [CrossRef]
- Lipczynska-Kochany, E. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere 2018, 202, 420–437. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, L. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 2004, 55, 1169–1178. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, X.; Xie, Y.; Liu, F.; Sun, B.; Liu, W.; Wu, J.; Wu, Y. Bioaccumulation and potential endocrine disruption risk of legacy and emerging organophosphate esters in cetaceans from the northern South China Sea. Environ. Sci. Technol. 2024, 58, 4368–4380. [Google Scholar] [CrossRef]
- Matthews, H.; Dedrick, R. Pharmacokinetics of PCBS. Annu. Rev. Pharmacol. Toxicol. 1984, 24, 85–103. [Google Scholar] [CrossRef]
- Slawik, T.; Skibinski, R.; Paw, B.; Dzialo, G. Reversed-phase TLC study of the lipophilicity of some 3-hydroxy-1,2-benzisoxazoles substituted in the benzene ring. Acta Chromatogr. 2009, 21, 251–258. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, S.-J.; Li, Q.-Q.; Zeng, Y.; Yan, X.; Mai, B.-X. Uptake of halogenated organic compounds (HOCs) into peanut and corn during the whole life cycle grown in an agricultural field. Environ. Pollut. 2020, 263, 114400. [Google Scholar] [CrossRef]
- Poorter, H.; Bühler, J.; van Dusschoten, D.; Climent, J.; Postma, J.A. Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Funct. Plant Biol. 2012, 39, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhu, L.; Ling, W. Application of the partition-limited model for plant uptake of organic chemicals from soil and water. Sci. Total Environ. 2005, 336, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhang, S.; Zhu, Y.-g.; Christie, P. Uptake and acropetal translocation of polycyclic aromatic hydrocarbons by wheat (Triticum aestivum L.) grown in field-contaminated soil. Environ. Sci. Technol. 2009, 43, 3556–3560. [Google Scholar] [CrossRef]
- Kipopoulou, A.M.; Manoli, E.; Samara, C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ. Pollut. 1999, 106, 369–380. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, S.; Christie, P. Plant uptake and dissipation of PBDEs in the soils of electronic waste recycling sites. Environ. Pollut. 2011, 159, 238–243. [Google Scholar] [CrossRef]
- Harris, C.R.; Sans, W.W. Absorption of organochlorine insecticide residues from agricultural soils by root crops. J. Agric. Food Chem. 1967, 15, 861–863. [Google Scholar] [CrossRef]
- Beestman, G.B.; Keeney, D.R.; Chesters, G. Dieldrin uptake by corn as affected by soil properties. Agron. J. 1969, 61, 247–250. [Google Scholar] [CrossRef]
- Gonzalez, M.; Miglioranza, K.S.B.; de Moreno, J.E.A.; Moreno, V.J. Organochlorine pesticide residues in leek (Allium porrum) crops grown on untreated soils from an agricultural environment. J. Agric. Food Chem. 2003, 51, 5024–5029. [Google Scholar] [CrossRef]
- Mikes, O.; Cupr, P.; Trapp, S.; Klanova, J. Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus). Environ. Pollut. 2009, 157, 488–496. [Google Scholar] [CrossRef]
- Zhao, H.-M.; Du, H.; Xiang, L.; Chen, Y.-L.; Lu, L.-A.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H. Variations in phthalate ester (PAE) accumulation and their formation mechanism in Chinese flowering cabbage (Brassica parachinensis L.) cultivars grown on PAE-contaminated soils. Environ. Pollut. 2015, 206, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Y.; Zhang, F.; Jin, K.; Liu, H.; Zhai, L. Methane emissions sources and impact mechanisms altered by the shift from rice-wheat to rice-crayfish rotation. J. Clean. Prod. 2024, 434, 139968. [Google Scholar] [CrossRef]
- Sasaki, R. Characteristics and seedling establishment of rice nursling seedlings. JARQ 2004, 38, 7–13. [Google Scholar] [CrossRef]
- Pei, Z.; Fan, Y.; Wu, B. Drought Monitoring of Spring Maize in the Songnen Plain Using Multi-Source Remote Sensing Data. Atmosphere 2023, 14, 1614. [Google Scholar] [CrossRef]
- Zhang, F.; Duan, J.; Jiang, Z.; Jin, Y.; Zhang, Y. Drought characteristics of spring maize during the whole growth period in Songnen Plain. Chinese J. Ecol. 2024, 1, 13. [Google Scholar]
- Wang, D.; Xi, Y.; Shi, X.-Y.; Zhong, Y.-J.; Guo, C.-L.; Han, Y.-N.; Li, F.-M. Effect of plastic film mulching and film residues on phthalate esters concentrations in soil and plants, and its risk assessment. Environ. Pollut. 2021, 286, 117546. [Google Scholar] [CrossRef]
- Zeng, L.-J.; Huang, Y.-H.; Lu, H.; Geng, J.; Zhao, H.-M.; Xiang, L.; Li, H.; Li, Y.-W.; Mo, C.-H.; Cai, Q.-Y.; et al. Uptake pathways of phthalates (PAEs) into Chinese flowering cabbage grown in plastic greenhouses and lowering PAE accumulation by spraying PAE-degrading bacterial strain. Sci. Total Environ. 2022, 815, 152854. [Google Scholar] [CrossRef]
- Grava, J.; Raisanen, K.A. Growth and nutrient accumulation and distribution in wild Rice. Agron. J. 1978, 70, 1077–1081. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Shen, Y.; Gao, M.; Song, H.; Ge, Z.; Zhang, Q.; Xu, J.; Wang, Y.; Sun, H. Machine Learning Models for Predicting Bioavailability of Traditional and Emerging Aromatic Contaminants in Plant Roots. Toxics 2024, 12, 737. https://doi.org/10.3390/toxics12100737
Li S, Shen Y, Gao M, Song H, Ge Z, Zhang Q, Xu J, Wang Y, Sun H. Machine Learning Models for Predicting Bioavailability of Traditional and Emerging Aromatic Contaminants in Plant Roots. Toxics. 2024; 12(10):737. https://doi.org/10.3390/toxics12100737
Chicago/Turabian StyleLi, Siyuan, Yuting Shen, Meng Gao, Huatai Song, Zhanpeng Ge, Qiuyue Zhang, Jiaping Xu, Yu Wang, and Hongwen Sun. 2024. "Machine Learning Models for Predicting Bioavailability of Traditional and Emerging Aromatic Contaminants in Plant Roots" Toxics 12, no. 10: 737. https://doi.org/10.3390/toxics12100737
APA StyleLi, S., Shen, Y., Gao, M., Song, H., Ge, Z., Zhang, Q., Xu, J., Wang, Y., & Sun, H. (2024). Machine Learning Models for Predicting Bioavailability of Traditional and Emerging Aromatic Contaminants in Plant Roots. Toxics, 12(10), 737. https://doi.org/10.3390/toxics12100737