The Emission Characteristics and Health Risks of Firefighter-Accessed Fire: A Review
Abstract
:1. Introduction
2. Emission Characteristics of Fire
2.1. Gaseous Pollutants
2.2. Particulate Pollutants
2.3. Toxic and Hazardous Pollutants from Urban Fires
2.4. Impact of Combustion Condition on Pollutant Emissions
3. Health Risks of Firefighters’ Occupational Exposure
3.1. Healthy Risks of Lung Diseases
3.2. Health Risks of Cardiovascular Diseases
3.3. Other Health Risks
4. Studies on the Pathogenic Mechanisms of Fire Emissions
4.1. In Vitro Experiments
4.2. In Vivo Experiment (Mouse Exposure)
5. Knowledge Gaps and Research Opportunities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Fire and Rescue Bureau. More Than 3000 Daily Fires Nationwide in the First Half of 2023. 2023. Available online: https://www.119.gov.cn/qmxfgk/sjtj/2023/38420.shtml (accessed on 30 September 2024).
- Prestemon, J.P.; Shankar, U.; Xiu, A.; Talgo, K.; Yang, D.; Dixon, E.; McKenzie, D.; Abt, K.L. Projecting wildfire area burned in the south-eastern United States, 2011–2060. Int. J. Wildland Fire 2016, 25, 715–729. [Google Scholar] [CrossRef]
- Su, J.-Z.; Wen, M.; Ding, Y.-H.; Gao, Y.-Q.; Song, Y.-F. Progress in research on the slowdown of global warming. Atmos. Sci. 2016, 40, 11. [Google Scholar]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Kim, P.S.; Jacob, D.J.; Mickley, L.J.; Koplitz, S.N.; Marlier, M.E.; DeFries, R.S.; Myers, S.S.; Chew, B.N.; Mao, Y.H. Sensitivity of population smoke exposure to fire locations in Equatorial Asia. Atmos. Environ. 2015, 102, 11–17. [Google Scholar] [CrossRef]
- Reddington, C.; Yoshioka, M.; Balasubramanian, R.; Ridley, D.; Toh, Y.; Arnold, S.; Spracklen, D. Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia. Environ. Res. Lett. 2014, 9, 094006. [Google Scholar] [CrossRef]
- Griffiths, S.D.; Chappell, P.; Entwistle, J.A.; Kelly, F.J.; Deary, M.E. A study of particulate emissions during 23 major industrial fires: Implications for human health. Environ. Int. 2018, 112, 310–323. [Google Scholar] [CrossRef]
- Deng, J.; Ge, S.; Qi, H.; Zhou, F.; Shi, B. Underground Coal Fire Emission of Spontaneous Combustion, Sandaoba Coalfield in Xinjiang, China: Investigation and Analysis. Sci. Total Environ. 2021, 777, 146080. [Google Scholar] [CrossRef]
- Kolker, A.; Engle, M.; Stracher, G.; Hower, J.; Prakash, A.; Lawrence, L.; Schure, A.T.; Heffern, E. Emissions from Coal Fires and Their Impact on the Environment; U.S. Geological Survey: Reston, VA, USA, 2009.
- Wang, H.; Zhang, J.; Zhang, L.; Wang, J.; Xu, Z. Gas Emission and Soil Chemical Properties Associated with Underground Coal Fires, Wuda Coalfield, Inner Mongolia, China. Nat. Resour. Res. 2020, 29, 3973–3985. [Google Scholar] [CrossRef]
- Demers, P.A.; DeMarini, D.M.; Fent, K.W.; Glass, D.C.; Hansen, J.; Adetona, O.; Andersen, M.H.; Freeman, L.E.B.; Caban-Martinez, A.J.; Daniels, R.D.; et al. Carcinogenicity of occupational exposure as a firefighter. Lancet Oncol. 2022, 23, 985–986. [Google Scholar] [CrossRef]
- Shah, S.K.; Kim, S.; Khan, A.A.; Krishnan, V.; Lally, A.M.; Shah, P.N.; Alex, G.C.; Seder, C.W.; Liptay, M.J.; Geissen, N.M. Examination of Firefighting as an Occupational Exposure Criteria for Lung Cancer Screening. Lung 2024, 202, 649–655. [Google Scholar] [CrossRef]
- Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ. Res. 2015, 136, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Du, L.-P.; Ma, Y.-T.; Ma, Y.-D.; Liu, S.-C. Experimental study on the spread characteristics of fires in home appliance stores. Combust. Sci. Technol. 2007, 13, 5. [Google Scholar]
- Zhu, G.-Q.; Ji, J.-W.; Cheng, Y.-P.; Gu, Z.-H.; Zhang, H.-K. Experimental and simulation study on the combustion characteristics of combustible materials in cigarette manufacturing workshops. J. China Univ. Min. Technol. 2007, 36, 351–355. [Google Scholar]
- Zammarano, M.; Matko, S.; Pitts, W.M.; Fox, D.M.; Davis, R.D. Towards a reference polyurethane foam and bench scale test for assessing smoldering in upholstered furniture. Polym. Degrad. Stab. 2014, 106, 97–107. [Google Scholar] [CrossRef]
- Deary, M.E.; Griffiths, S.D. The Impact of Air Pollution from Industrial Fires in Urban Settings: Monitoring, Modelling, Health, and Environmental Justice Perspectives. Environments 2024, 11, 157. [Google Scholar] [CrossRef]
- Courty, L.; Chetehouna, K.; Lemée, L.; Fernandez-Pello, C.; Garo, J.-P. Biogenic volatile organic compounds emissions at high temperatures of common plants from Mediterranean regions affected by forest fires. J. Fire Sci. 2014, 32, 459–479. [Google Scholar] [CrossRef]
- Chiriaco, M.V.; Perugini, L.; Cimini, D.; D’Amato, E.; Valentini, R.; Bovio, G.; Corona, P.; Barbati, A. Comparison of approaches for reporting forest fire-related biomass loss and greenhouse gas emissions in southern Europe. Int. J. Wildland Fire 2013, 22, 730–738. [Google Scholar] [CrossRef]
- Devine, C.; Flores, N.; Walls, R. Literature review and hazard identification relating to fire safety in commercial plastic recycling facilities. J. Fire Sci. 2023, 41, 269–287. [Google Scholar] [CrossRef]
- Miranda, A.I.; Martins, V.; Cascão, P.; Amorim, J.H.; Valente, J.; Tavares, R.; Borrego, C.; Tchepel, O.; Ferreira, A.J.; Cordeiro, C.R.; et al. Monitoring of firefighters exposure to smoke during fire experiments in Portugal. Environ. Int. 2010, 36, 736–745. [Google Scholar] [CrossRef]
- Barbosa, J.V.; Alvim-Ferraz, M.C.; Martins, F.G.; Sousa, S.I. Occupational exposure of firefighters to hazardous pollutants during prescribed fires in Portugal. Chemosphere 2024, 352, 141355. [Google Scholar] [CrossRef]
- Guangdong Provincial Institute of Occupational Disease Control. Classification of Occupational Exposure to Toxic Hazards; Ministry of Health of the People’s Republic of China: Beijing, China, 2010; GBZ (Health) 230-2010; p. 12.
- Yi, J.-E.; Yuan, H.; Yuan, L.-Y. Progress in research on the immunotoxicity of dioxins. Prog. Vet. Med. 2008, 29, 4. [Google Scholar]
- Reisen, F.; Hansen, D.; Meyer, C.M. Exposure to bushfire smoke during prescribed burns and wildfires: Firefighters’ exposure risks and options. Environ. Int. 2011, 37, 314–321. [Google Scholar] [CrossRef]
- HSE Books. EH40/2005 Workplace Exposure Limits; Health and Safety Executive: London, UK, 2020.
- Reisen, F.; Duran, S.M.; Flannigan, M.; Elliott, C.; Rideout, K. Wildfire smoke and public health risk. Int. J. Wildland Fire 2015, 24, 1029–1044. [Google Scholar] [CrossRef]
- Zhao, J.-Z.; Jin, S.-T. Sources and health effects of indoor volatile organic compounds. Health Res. 2004, 33, 229–232. [Google Scholar]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Liu, Z.-H.; He, H.-S.; Xu, W.-R.; Liang, Y.; Zhu, J.-J.; Wang, G.-F.; Wei, W.; Wang, Z.-F.; Han, Y.-M. Impacts of forest fire carbon emissions and mitigation strategies. Bull. Chin. Acad. Sci. 2023, 38, 1552–1560. [Google Scholar]
- Zhang, Y.; Qin, D.; Yuan, W.; Jia, B. Historical trends of forest fires and carbon emissions in China from 1988 to 2012. J. Geophys. Res. Biogeosci. 2016, 121, 2506–2517. [Google Scholar] [CrossRef]
- Zhou, Y.-F.; Wang, Z.-S.; Wu, Z.-P.; Li, X.-C.; Gao, H.; Liao, J.-W.; Guo, T.-F. Carbon emissions from forest fires in Guangdong and strategies for responding to climate change. For. Environ. Sci. 2014, 30, 67–71. [Google Scholar]
- Surawski, N.; Sullivan, A.; Meyer, C.; Roxburgh, S.; Polglase, P. Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmos. Chem. Phys. 2015, 15, 5259–5273. [Google Scholar] [CrossRef]
- Raub, J.A.; Mathieu-Nolf, M.; Hampson, N.B.; Thom, S.R. Carbon monoxide poisoning—A public health perspective. Toxicology 2000, 145, 1–14. [Google Scholar] [CrossRef]
- Alvarado, M.J. Formation of Ozone and Growth of Aerosols in Young Smoke Plumes from Biomass Burning: 1. Lagrangian Parcel Studies. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2008. [Google Scholar]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Burling, I.R.; Gilman, J.B.; Warneke, C.; Stockwell, C.E.; de Gouw, J.; Akagi, S.K.; Urbanski, S.P.; Veres, P.; Roberts, J.M.; et al. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmos. Chem. Phys. 2013, 13, 89–116. [Google Scholar] [CrossRef]
- Liao, G.-X.; Wang, X.-S.; Qin, J. Experimental Diagnostic Methods for Thermal Disasters; China Science and Technology Press: Beijing, China, 2003. [Google Scholar]
- O’Dell, K.; Hornbrook, R.S.; Permar, W.; Levin, E.J.; Garofalo, L.A.; Apel, E.C.; Blake, N.J.; Jarnot, A.; Pothier, M.A.; Farmer, D.K.; et al. Hazardous air pollutants in fresh and aged western US wildfire smoke and implications for long-term exposure. Environ. Sci. Technol. 2020, 54, 11838–11847. [Google Scholar] [CrossRef]
- Bessac, B.F.; Jordt, S.-E. Sensory detection and responses to toxic gases: Mechanisms, health effects, and countermeasures. Proc. Am. Thorac. Soc. 2010, 7, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Freitas, S.; Longo, K.; Silva Dias, M.; Chatfield, R.; Silva Dias, P.; Artaxo, P.; Andreae, M.O.; Grell, G.; Rodrigues, L.; Fazenda, A.; et al. The coupled aerosol and tracer transport model to the Brazilian developments on the regional atmospheric modeling system (CATT-BRAMS)–Part 1: Model description and evaluation. Atmos. Chem. Phys. 2009, 9, 2843–2861. [Google Scholar] [CrossRef]
- Bossioli, E.; Tombrou, M.; Kalogiros, J.; Allan, J.; Bacak, A.; Bezantakos, S.; Biskos, G.; Coe, H.; Jones, B.; Kouvarakis, G.; et al. Atmospheric composition in the Eastern Mediterranean: Influence of biomass burning during summertime using the WRF-Chem model. Atmos. Environ. 2016, 132, 317–331. [Google Scholar] [CrossRef]
- Deng, C. Identification of Biomass Burning Source in Aerosols and the Formation Mechanism of Haze. Ph.D. Thesis, University of Fudan, Shanghai, China, 2011. [Google Scholar]
- Anenberg, S.C.; Henze, D.K.; Tinney, V.; Kinney, P.L.; Raich, W.; Fann, N.; Malley, C.S.; Roman, H.; Lamsal, L.; Duncan, B.; et al. Estimates of the Global Burden of Ambient PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency Room Visits. Environ. Health Perspect. 2018, 126, 107004. [Google Scholar] [CrossRef]
- Ma, Y.; Tigabu, M.; Guo, X.; Zheng, W.; Guo, L.; Guo, F. Water-soluble inorganic ions in fine particulate emission during forest fires in chinese boreal and subtropical forests: An indoor experiment. Forests 2019, 10, 994. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Yu, W. The effects of PM2.5 concentrations and relative humidity on atmospheric visibility in Beijing. J. Geophys. Res. Atmos. 2019, 124, 2235–2259. [Google Scholar] [CrossRef]
- Sumaryati, S.; Cholianawati, N.; Indrawati, A. The impact of forest fire on air-quality and visibility in Palangka Raya. J. Phys. Theor. Appl. 2019, 3, 16–26. [Google Scholar] [CrossRef]
- Shen, G.; Wang, W.; Yang, Y.; Zhu, C.; Min, Y.; Xue, M.; Ding, J.; Li, W.; Wang, B.; Shen, H.; et al. Emission factors and particulate matter size distribution of polycyclic aromatic hydrocarbons from residential coal combustions in rural Northern China. Atmos. Environ. 2010, 44, 5237–5243. [Google Scholar] [CrossRef]
- Lin, N.-H.; Tsay, S.-C.; Maring, H.B.; Yen, M.-C.; Sheu, G.-R.; Wang, S.-H.; Chi, K.H.; Chuang, M.-T.; Ou-Yang, C.-F.; Fu, J.S.; et al. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmos. Environ. 2013, 78, 1–19. [Google Scholar] [CrossRef]
- Alves, C.; Gonçalves, C.; Fernandes, A.P.; Tarelho, L.; Pio, C. Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types. Atmos. Res. 2011, 101, 692–700. [Google Scholar] [CrossRef]
- Zhou, J.; Xing, Z.; Deng, J.; Du, K. Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions. Atmos. Environ. 2016, 135, 20–30. [Google Scholar] [CrossRef]
- Edelman, P.; Osterloh, J.; Pirkle, J.; Caudill, S.P.; Grainger, J.; Jones, R.; Blount, B.; Calafat, A.; Turner, W.; Feldman, D.; et al. Biomonitoring of chemical exposure among New York City firefighters responding to the World Trade Center fire and collapse. Environ. Health Perspect. 2003, 111, 1906–1911. [Google Scholar] [CrossRef] [PubMed]
- Lönnermark, A.; Blomqvist, P. Emissions from an automobile fire. Chemosphere 2006, 62, 1043–1056. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Z.; Wu, Z.; Niu, X.; Zhang, Y.; Wang, Q.; Ho, S.S.H.; Li, Z.; Shen, Z. Toxicity source apportionment of fugitive dust PM2.5-bound polycyclic aromatic hydrocarbons using multilayer perceptron neural network analysis in Guanzhong Plain urban agglomeration, China. J. Hazard. Mater. 2024, 468, 133773. [Google Scholar] [CrossRef]
- Blomqvist, P.; McNamee, M.S.; Andersson, P.; Lönnermark, A. Polycyclic aromatic hydrocarbons (PAHs) quantified in large-scale fire experiments. Fire Technol. 2012, 48, 513–528. [Google Scholar] [CrossRef]
- Latif, I.; Karim, A.; Zuki, A.; Zamri-Saad, M.; Niu, J.; Noordin, M. Pulmonary modulation of benzo[a]pyrene-induced hemato- and hepatotoxicity in broilers. Poult. Sci. 2010, 89, 1379–1388. [Google Scholar] [CrossRef]
- Unwin, J.; Cocker, J.; Scobbie, E.; Chambers, H. An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Ann. Occup. Hyg. 2006, 50, 395–403. [Google Scholar]
- Mallah, M.A.; Changxing, L.; Mallah, M.A.; Noreen, S.; Liu, Y.; Saeed, M.; Xi, H.; Ahmed, B.; Feng, F.; Mirjat, A.A.; et al. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. Chemosphere 2022, 296, 133948. [Google Scholar] [CrossRef]
- De Jong, W.H.; Kroese, E.D.; Vos, J.G.; Van Loveren, H. Detection of immunotoxicity of benzo [a] pyrene in a subacute toxicity study after oral exposure in rats. Toxicol. Sci. Off. J. Soc. Toxicol. 1999, 50, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, P.; Eilertsen, E.; Einarsdóttir, E.; Haugen, A.; Skaug, V.; Ovrebø, S. Fertility in mice after prenatal exposure to benzo [a] pyrene and inorganic lead. Environ. Health Perspect. 1995, 103, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.C.; Jedrychowski, W.; Butscher, M.; Camann, D.; Kieltyka, A.; Mroz, E.; Flak, E.; Li, Z.; Wang, S.; Rauh, V.; et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environ. Health Perspect. 2010, 118, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Xu, C.; Agnew, R.J.; Clifton, S.; Malone, T.R. Health risks of structural firefighters from exposure to polycyclic aromatic hydrocarbons: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 4209. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Griffith, D.W.; Ward, D.E. Open-path Fourier transform infrared studies of large-scale laboratory biomass fires. J. Geophys. Res. Atmos. 1996, 101, 21067–21080. [Google Scholar] [CrossRef]
- Jolleys, M.D.; Coe, H.; McFiggans, G.; McMeeking, G.R.; Lee, T.; Kreidenweis, S.M.; Collett, J.L., Jr.; Sullivan, A.P. Organic aerosol emission ratios from the laboratory combustion of biomass fuels. J. Geophys. Res. Atmos. 2014, 119, 12,850–12,871. [Google Scholar] [CrossRef]
- Wang, X.; Firouzkouhi, H.; Chow, J.C.; Watson, J.G.; Carter, W.; De Vos, A.S. Characterization of gas and particle emissions from open burning of household solid waste from South Africa. Atmos. Chem. Phys. 2023, 23, 8921–8937. [Google Scholar] [CrossRef]
- Pokhrel, R.P.; Gordon, J.; Fiddler, M.N.; Bililign, S. Impact of combustion conditions on physical and morphological properties of biomass burning aerosol. Aerosol Sci. Technol. 2021, 55, 80–91. [Google Scholar] [CrossRef]
- Sumlin, B.J.; Oxford, C.R.; Seo, B.; Pattison, R.R.; Williams, B.J.; Chakrabarty, R.K. Density and homogeneous internal composition of primary brown carbon aerosol. Environ. Sci. Technol. 2018, 52, 3982–3989. [Google Scholar] [CrossRef]
- Urbanski, S.P.; O’Neill, S.M.; Holder, A.L.; Green, S.A.; Graw, R.L. Emissions. In Wildland Fire Smoke in the United States: A Scientific Assessment; Springer: Cham, Switzerland, 2022; pp. 121–165. [Google Scholar]
- Burling, I.; Yokelson, R.J.; Griffith, D.W.; Johnson, T.J.; Veres, P.; Roberts, J.; Warneke, C.; Urbanski, S.; Reardon, J.; Weise, D.; et al. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States. Atmos. Chem. Phys. 2010, 10, 11115–11130. [Google Scholar] [CrossRef]
- Mcmeeking, G.R.; Kreidenweis, S.M.; Baker, S.; Carrico, C.M.; Chow, J.C.; Collett, J.L.; Hao, W.M.; Holden, A.S.; Kirchstetter, T.W.; Malm, W.C.; et al. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. J. Geophys. Res. Atmos. 2009, 114, D19210. [Google Scholar] [CrossRef]
- Carrico, C.M.; Prenni, A.J.; Kreidenweis, S.M.; Levin, E.J.T.; Mccluskey, C.S.; Demott, P.J.; Mcmeeking, G.R.; Nakao, S.; Stockwell, C.; Yokelson, R.J. Rapidly evolving ultrafine and fine mode biomass smoke physical properties: Comparing laboratory and field results. J. Geophys. Res. Atmos. 2016, 121, 5750–5768. [Google Scholar] [CrossRef]
- Reisen, F.; Meyer, C.P.; Weston, C.J.; Volkova, L. Ground-Based Field Measurements of PM2.5 Emission Factors from Flaming and Smoldering Combustion in Eucalypt Forests. J. Geophys. Res. Atmos. 2018, 123, 8301–8314. [Google Scholar] [CrossRef]
- Bai, L.; He, Z.; Li, C.; Chen, Z. Investigation of yearly indoor/outdoor PM2.5 levels in the perspectives of health impacts and air pollution control: Case study in Changchun, in the northeast of China. Sustain. Cities Soc. 2020, 53, 101871. [Google Scholar] [CrossRef]
- Guo, M.; Du, C.; Li, B.; Yao, R.; Tang, Y.; Jiang, Y.; Liu, H.; Su, H.; Zhou, Y.; Wang, L.; et al. Reducing particulates in indoor air can improve the circulation and cardiorespiratory health of old people: A randomized, double-blind crossover trial of air filtration. Sci. Total Environ. 2021, 798, 149248. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.S.; Gupta, G.; Mishra, R.; Patel, N.; Gupta, S.; Alzarea, S.I.; Kazmi, I.; Kumbhar, P.; Disouza, J.; Dureja, H.; et al. Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer. Pathol.-Res. Pract. 2024, 255, 155157. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Mokammel, A.; Rostami, R.; Niazi, S.; Asgari, A.; Fazlzadeh, M. BTEX levels in rural households: Heating system, building characteristic impacts and lifetime excess cancer risk assessment. Environ. Pollut. 2022, 298, 118845. [Google Scholar] [CrossRef]
- Mayer, A.C.; Fent, K.W.; Wilkinson, A.; Chen, I.-C.; Kerber, S.; Smith, D.L.; Kesler, R.M.; Horn, G.P. Characterizing exposure to benzene, toluene, and naphthalene in firefighters wearing different types of new or laundered PPE. Int. J. Hyg. Environ. Health 2022, 240, 113900. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.C.; Horn, G.P.; Fent, K.W.; Bertke, S.J.; Kerber, S.; Kesler, R.M.; Newman, H.; Smith, D.L. Impact of select PPE design elements and repeated laundering in firefighter protection from smoke exposure. J. Occup. Environ. Hyg. 2020, 17, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.W.; Toennis, C.; Sammons, D.; Robertson, S.; Bertke, S.; Calafat, A.M.; Pleil, J.D.; Wallace, M.A.G.; Kerber, S.; Smith, D.; et al. Firefighters’ absorption of PAHs and VOCs during controlled residential fires by job assignment and fire attack tactic. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Horn, G.P.; Kerber, S.; Andrews, J.; Kesler, R.M.; Newman, H.; Stewart, J.W.; Fent, K.W.; Smith, D.L. Impact of repeated exposure and cleaning on protective properties of structural firefighting turnout gear. Fire Technol. 2021, 57, 791–813. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.; Cocker, J.; Dodd, L.; Fraser, I. Factors affecting the extent of dermal absorption of solvent vapours: A human volunteer study. Ann. Occup. Hyg. 2003, 47, 145–150. [Google Scholar] [PubMed]
- Navarro, K.M.; Kleinman, M.T.; Mackay, C.E.; Reinhardt, T.E.; Balmes, J.R.; Broyles, G.A.; Ottmar, R.D.; Naher, L.P.; Domitrovich, J.W. Wildland firefighter smoke exposure and risk of lung cancer and cardiovascular disease mortality. Environ. Res. 2019, 173, 462–468. [Google Scholar] [CrossRef]
- Betchley, C.; Koenig, J.Q.; Belle, G.V.; Checkoway, H.; Reinhardt, T. Pulmonary function and respiratory symptoms in forest firefighters. Am. J. Ind. Med. 1997, 31, 503–509. [Google Scholar] [CrossRef]
- Adetona, O.; Hall, D.B.; Naeher, L.P. Lung function changes in wildland firefighters working at prescribed burns. Inhal. Toxicol. 2011, 23, 835–841. [Google Scholar] [CrossRef]
- Gaughan, D.M.; Siegel, P.D.; Hughes, M.D.; Chang, C.Y.; Law, B.F.; Campbell, C.R.; Richards, J.C.; Kales, S.F.; Chertok, M.; Kobzik, L.; et al. Arterial stiffness, oxidative stress, and smoke exposure in wildland firefighters. Am. J. Ind. Med. 2014, 57, 748–756. [Google Scholar] [CrossRef]
- Brook, R.D.; Franklin, B.; Cascio, W.; Hong, Y.; Howard, G.; Lipsett, M.; Luepker, R.; Mittleman, M.; Samet, J.; Smith, S.C., Jr.; et al. Air pollution and cardiovascular disease: A statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 2004, 109, 2655–2671. [Google Scholar] [CrossRef] [PubMed]
- Mittleman, M.A. Air pollution, exercise, and cardiovascular risk. N. Engl. J. Med. 2007, 357, 1147–1149. [Google Scholar] [CrossRef]
- Peters, A.; Dockery, D.W.; Muller, J.E.; Mittleman, M.A. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001, 103, 2810–2815. [Google Scholar] [CrossRef]
- Kales, S.N.; Christiani, D.C. Acute chemical emergencies. N. Engl. J. Med. 2004, 350, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Tager, I.B.; Balmes, J.R.; Harrison, R.J. The effect of smoke inhalation on lung function and airway responsiveness in wildland fire fighters. Am. Rev. Respir. Dis. 1992, 146, 1469. [Google Scholar] [CrossRef]
- Hejl, A.M.; Adetona, O.; Diaz-Sanchez, D.; Carter, J.D.; Commodore, A.A.; Rathbun, S.L.; Naeher, L.P. Inflammatory effects of woodsmoke exposure among wildland firefighters working at prescribed burns at the Savannah River Site, SC. J. Occup. Environ. Hyg. 2013, 10, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Swiston, J.R.; Davidson, W.; Attridge, S.; Li, G.T.; Brauer, M.; van Eeden, S.F. Wood smoke exposure induces a pulmonary and systemic inflammatory response in firefighters. Eur. Respir. J. 2008, 32, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Dost, F.N. Acute Toxicology of Components of Vegetation Smoke; Springer: New York, NY, USA, 1991. [Google Scholar]
- Jacquin, L.; Michelet, P.; Brocq, F.X.; Houel, J.G.; Truchet, X.; Auffray, J.P.; Carpentier, J.P.; Jammes, Y. Short-term spirometric changes in wildland firefighters. Am. J. Ind. Med. 2011, 54, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Burnett, R.T.; Turner, M.C.; Cohen, A.; Krewski, D.; Jerrett, M.; Gapstur, S.M.; Thun, M.J. Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: Shape of the exposure–response relationships. Environ. Health Perspect. 2011, 119, 1616–1621. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Burnett, R.T.; Krewski, D.; Jerrett, M.; Shi, Y.; Calle, E.E.; Thun, M.J. Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: Shape of the exposure-response relationship. Circulation 2009, 120, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Booze, T.F.; Reinhardt, T.E.; Quiring, S.J.; Ottmar, R.D. A screening-level assessment of the health risks of chronic smoke exposure for wildland firefighters. J. Occup. Environ. Hyg. 2004, 1, 296–305. [Google Scholar] [CrossRef]
- Daniels, R.D.; Bertke, S.; Dahm, M.M.; Yiin, J.H.; Kubale, T.L.; Hales, T.R.; Baris, D.; Zahm, S.H.; Beaumont, J.J.; Waters, K.M. Exposure–response relationships for select cancer and non-cancer health outcomes in a cohort of US firefighters from San Francisco, Chicago and Philadelphia (1950–2009). Occup. Environ. Med. 2015, 72, 699–706. [Google Scholar] [CrossRef]
- Daniels, R.D.; Kubale, T.L.; Yiin, J.H.; Dahm, M.M.; Hales, T.R.; Baris, D.; Zahm, S.H.; Beaumont, J.J.; Waters, K.M.; Pinkerton, L.E. Mortality and cancer incidence in a pooled cohort of US firefighters from San Francisco, Chicago and Philadelphia (1950–2009). Occup. Environ. Med. 2013, 71, 388–397. [Google Scholar] [CrossRef]
- Fahy, R.F. US Firefighter Fatalities Due to Sudden Cardiac Death, 1995–2004; National Fire Protection Association: Quincy, MA, USA, 2005. [Google Scholar]
- Dockery, D.W. Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ. Health Perspect. 2001, 109 (Suppl. S4), 483–486. [Google Scholar] [PubMed]
- Banes, C.J. Firefighters’ cardiovascular risk behaviors: Effective interventions and cultural congruence. Workplace Health Saf. 2014, 62, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Kales, S.N.; Soteriades, E.S.; Christoudias, S.G.; Christiani, D.C. Firefighters and on-duty deaths from coronary heart disease: A case control study. Environ. Health 2003, 2, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Durand, G.; Tsismenakis, A.J.; Jahnke, S.A.; Baur, D.M.; Christophi, C.A.; Kales, S.N. Firefighters’ physical activity: Relation to fitness and cardiovascular disease risk. Med. Sci. Sports Exerc. 2011, 43, 1752–1759. [Google Scholar] [CrossRef] [PubMed]
- Soteriades, E.S.; Smith, D.L.; Tsismenakis, A.J.; Baur, D.M.; Kales, S.N. Cardiovascular disease in US firefighters: A systematic review. Cardiol. Rev. 2011, 19, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.L.; Franke, W.D. Prevalence of cardiovascular disease risk factors in volunteer firefighters. J. Occup. Environ. Med. 2009, 51, 958–962. [Google Scholar] [CrossRef]
- Smith, D.L.; Fehling, P.C.; Frisch, A.; Haller, J.M.; Winke, M.; Dailey, M.W. The prevalence of cardiovascular disease risk factors and obesity in firefighters. J. Obes. 2012, 2012, 908267. [Google Scholar] [CrossRef] [PubMed]
- Clare, C.; Au, C.T.; Lee, F.Y.; So, R.C.; Wong, J.P.; Mak, G.Y.; Chien, E.P.; McManus, A.M. Association between leisure time physical activity, cardiopulmonary fitness, cardiovascular risk factors, and cardiovascular workload at work in firefighters. Saf. Health Work 2015, 6, 192–199. [Google Scholar]
- Emily, B.; Catherine, H.; Chris, H.; Tracy, M.C.; Claire, P.; Maxine, B. Influences on Dietary Choices during Day versus Night Shift in Shift Workers: A Mixed Methods Study. Nutrients 2017, 9, 193. [Google Scholar] [CrossRef]
- Casjens, S.; Brüning, T.; Taeger, D. Cancer risks of firefighters: A systematic review and meta-analysis of secular trends and region-specific differences. Int. Arch. Occup. Environ. Health 2020, 93, 839–852. [Google Scholar] [CrossRef]
- Jalilian, H.; Ziaei, M.; Weiderpass, E.; Rueegg, C.S.; Khosravi, Y.; Kjaerheim, K. Cancer incidence and mortality among firefighters. Int. J. Cancer 2019, 145, 2639–2646. [Google Scholar] [CrossRef] [PubMed]
- Sritharan, J.; Pahwa, M.; Demers, P.A.; Harris, S.A.; Cole, D.C.; Parent, M.-E. Prostate cancer in firefighting and police work: A systematic review and meta-analysis of epidemiologic studies. Environ. Health 2017, 16, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Glass, D.C.; Pircher, S.; Del Monaco, A.; Vander Hoorn, S.; Sim, M. Mortality and cancer incidence in a cohort of male paid Australian firefighters. Occup. Environ. Med. 2016, 73, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Marjerrison, N.; Jakobsen, J.; Demers, P.A.; Grimsrud, T.K.; Hansen, J.; Martinsen, J.I.; Nordby, K.-C.; Veierød, M.B.; Kjærheim, K. Comparison of cancer incidence and mortality in the Norwegian Fire Departments Cohort, 1960–2018. Occup. Environ. Med. 2022, 79, 736–743. [Google Scholar] [CrossRef]
- Bates, M.N.; Fawcett, J.; Garrett, N.; Arnold, R.; Pearce, N.; Woodward, A. Is testicular cancer an occupational disease of fire fighters? Am. J. Ind. Med. 2001, 40, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-L.; Hong, X.-R.; Huang, H.-J.; Sun, Q.-H. Adverse effects of PM2.5 on the cardiovascular system of adults and fetuses. Chin. Public Health 2017, 33, 5. [Google Scholar]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Zhai, X.-D.; Chen, X.-Y.; Sun, J.-J.; Tong, X.; Wang, J.-S.; Zhang, C.; Xin, L.-L. Study on oxidative damage and inflammatory response in human bronchial epithelial cells caused by PM2.5 and its mechanisms. J. Environ. Health 2021, 10–14. [Google Scholar] [CrossRef]
- Dong, C.; Song, W.-M.; Shi, Y.-W. Study on oxidative damage in vascular endothelial cells caused by PM2.5 particles. Health Res. 2005, 34, 169–171. [Google Scholar]
- Niu, B.-Y.; Li, W.-K.; Miao, X.-Y.; Li, J.-S.; Hong, Q.-H.; Khodahemmati, S.; Gao, J.-F.; Zhou, Z.-X. Activation of the aryl hydrocarbon receptor (AhR) pathway in human lung epithelial cell line A549 induced by PM2.5 in urban Beijing during winter. Acta Sci. Circumstantiae 2020, 40, 2652–2658. [Google Scholar]
- Attafi, I.M.; Albakheet, S.A.; Korashy, H.M. The Role of NF-κB and AHR Transcription Factors in Lead-Induced Lung Toxicity in Human Lung Cancer A549 Cells. Toxicol. Mech. Methods 2019, 30, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Bonetta, S.; Gianotti, V.; Gosetti, F.; Oddone, M.; Gennaro, M. DNA damage in A549 cells exposed to different extracts of PM2.5 from industrial, urban and highway sites. Chemosphere 2009, 77, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Dergham, M.; Lepers, C.; Verdin, A.; Billet, S.; Cazier, F.; Courcot, D.; Shirali, P.; Garçon, G. Prooxidant and proinflammatory potency of air pollution particulate matter (PM2.5–0.3) produced in rural, urban, or industrial surroundings in human bronchial epithelial cells (BEAS-2B). Chem. Res. Toxicol. 2012, 25, 904–919. [Google Scholar] [CrossRef] [PubMed]
- Schulz, C.; Farkas, L.; Wolf, K.; Krätzel, K.; Eissner, G.; Pfeifer, M. Differences in LPS-induced activation of bronchial epithelial cells (BEAS-2B) and type II-like pneumocytes (A-549). Scand. J. Immunol. 2002, 56, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Agne, F.; Maria, P.; Paul, E.; Resink, T.J. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell. Signal. 2018, 52, 48–64. [Google Scholar]
- Sun, J.; Niu, X.; Zhang, B.; Zhang, L.; Yu, J.; He, K.; Zhang, T.; Wang, Q.; Xu, H.; Cao, J.; et al. Clarifying winter clean heating importance: Insight chemical compositions and cytotoxicity exposure to primary and aged pollution emissions in China rural areas. J. Environ. Manag. 2022, 320, 115822. [Google Scholar] [CrossRef]
- Ahmed, C.S.; Yang, J.; Chen, J.Y.; Jiang, H.; Cullen, C.; Karavalakis, G.; Lin, Y.-H. Toxicological responses in human airway epithelial cells (BEAS-2B) exposed to particulate matter emissions from gasoline fuels with varying aromatic and ethanol levels. Sci. Total Environ. 2020, 706, 135732. [Google Scholar] [CrossRef]
- Jiang, H.; Ahmed, C.S.; Canchola, A.; Chen, J.Y.; Lin, Y.-H. Use of dithiothreitol assay to evaluate the oxidative potential of atmospheric aerosols. Atmosphere 2019, 10, 571. [Google Scholar] [CrossRef]
- Ho, C.C.; Chen, Y.C.; Tsai, M.H.; Tsai, H.T.; Weng, C.Y.; Yet, S.F.; Lin, P. Ambient Particulate Matter Induces Vascular Smooth Muscle Cell Phenotypic Changes via NOX1/ROS/NF-κB Dependent and Independent Pathways: Protective Effects of Polyphenols. Antioxidants 2021, 10, 782. [Google Scholar] [CrossRef]
- Sun, J.; Yu, J.; Shen, Z.; Niu, X.; Wang, D.; Wang, X.; Xu, H.; Chuang, H.-C.; Cao, J.; Ho, K.-F. Oxidative stress–inducing effects of various urban PM2.5 road dust on human lung epithelial cells among 10 Chinese megacities. Ecotoxicol. Environ. Saf. 2021, 224, 112680. [Google Scholar] [CrossRef]
- Sun, J.; Yu, J.; Niu, X.; Zhang, X.; Zhou, L.; Liu, X.; Zhang, B.; He, K.; Niu, X.; Ho, K.-F.; et al. Solid fuel derived PM2.5 induced oxidative stress and according cytotoxicity in A549 cells: The evidence and potential neutralization by green tea. Environ. Int. 2023, 171, 107674. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Q.; Zhao, S.-Z.; Zhang, Q.-Y.; Liang, Y.-H.; Ma, H.-M.; Li, J.; Zhang, G. Chemical composition, source apportionment, and cytotoxicity of total suspended particulates in urban Bangkok on human lung epithelial cells A549. Geochemistry 2023, 52, 135–146. [Google Scholar]
- Wang, X.-L.; Yang, M.-M.; Li, H.-Y.; Wang, G.-R.; Wang, Y. Toxicity and source analysis of PAHs in atmospheric PM2.5 in Jinan. J. Shandong Univ. (Nat. Sci.) 2022, 57, 1–9. [Google Scholar]
- Meng, N.; Liu, S.-Y. Effects of PM2.5 on the acute inflammatory response of the cardiovascular system in diabetic rats. J. Clin. Cardiovasc. Dis. 2014, 30, 484–488. [Google Scholar]
- Xu, J.-L.; Wang, Y.; Chen, P. High-dose PM2.5-induced lung injury and its mechanisms in ovalbumin-induced asthmatic mice. J. Cell. Mol. Immunol. 2017, 33, 1297–1302. [Google Scholar]
- Jiang, Z.-H.; Song, W.-M.; Zhou, X.-Y.; Zhang, Y.-F. Experimental study on the acute lung injury in mice induced by PM2.5. Health Res. 2004, 33, 3. [Google Scholar]
- He, M.; Ichinose, T.; Yoshida, S.; Ito, T.; He, C.; Yoshida, Y.; Arashidani, K.; Takano, H.; Sun, G.; Shibamoto, T. PM2.5-induced lung inflammation in mice: Differences of inflammatory response in macrophages and type II alveolar cells. J. Appl. Toxicol. 2017, 37, 1203–1218. [Google Scholar] [CrossRef]
- He, J.; Zhao, Y.; Huang, J.-W.; Zhang, P.; Pan, W.; You, A.-Q.; Huang, X.; Yang, X.; Li, R. Study on lung injury and its molecular mechanisms in mice exposed to combined PM2.5 and formaldehyde. J. Ecotoxicol. 2018, 13, 7. [Google Scholar]
- Zhao, J.-Z.; Cao, Q.; Qian, X.-L.; Xie, Y.-Q.; Song, W.-M. Acute toxic effects of atmospheric PM2.5 on the cardiovascular system of rats. Health Res. 2007, 04, 417–420. [Google Scholar]
- Zhang, Y.; Ji, X.; Ku, T.; Sang, N. Inflammatory response and endothelial dysfunction in the hearts of mice co-exposed to SO2, NO2, and PM2.5. Environ. Toxicol. 2016, 31, 1996–2005. [Google Scholar] [CrossRef]
- Hu, J.-Y.; Lei, L.; Bai, X.-L.; Yu, Y.; Wang, L.; Wu, X.; Li, D.-X. Study on a rat model of cardiovascular injury induced by synthetic fine particulate matter (PM2.5). Pharmacol. Clin. Chin. Mater. Medica 2019, 35, 4. [Google Scholar]
- Yang, J.; Chen, Y.; Yu, Z.; Ding, H.; Ma, Z. The influence of PM2.5 on lung injury and cytokines in mice. Exp. Ther. Med. 2019, 18, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Xu, X.; Bai, Y.; Zhong, J.; Chen, M.; Liang, Y.; Zhao, J.; Liu, D.; Morishita, M.; Sun, Q. Long-term exposure to concentrated ambient PM2.5 increases mouse blood pressure through abnormal activation of the sympathetic nervous system: A role for hypothalamic inflammation. Environ. Health Perspect. 2014, 122, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Rappold, A.G.; Stone, S.L.; Cascio, W.E.; Neas, L.M.; Kilaru, V.J.; Carraway, M.S.; Szykman, J.J.; Ising, A.; Cleve, W.E.; Meredith, J.T.; et al. Peat bog wildfire smoke exposure in rural North Carolina is associated with cardiopulmonary emergency department visits assessed through syndromic surveillance. Environ. Health Perspect. 2011, 119, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Johnston, F.H.; Purdie, S.; Jalaludin, B.; Martin, K.L.; Henderson, S.B.; Morgan, G.G. Air pollution events from forest fires and emergency department attendances in Sydney, Australia 1996–2007: A case-crossover analysis. Environ. Health 2014, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rappold, A.G.; Reyes, J.; Pouliot, G.; Cascio, W.E.; Diaz-Sanchez, D. Community vulnerability to health impacts of wildland fire smoke exposure. Environ. Sci. Technol. 2017, 51, 6674–6682. [Google Scholar] [CrossRef] [PubMed]
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef] [PubMed]
Standard Level | Standard | Health Effects | Ref. | ||
---|---|---|---|---|---|
Pollutant | Long-Term Exposure | Short-Term Exposure | |||
Formaldehyde | 2 ppm/2.5 mg m−3 | 2 ppm/2.5 mg m−3 | EH40/2005 Workplace exposure limits | Causes cancer and/or heritable genetic damage. | [25,26] |
CO | 20 ppm/23 mg m−3 | 100 ppm/117 mg m−3 | EH40/2005 Workplace exposure limits | Leads to heart disease and damage to the nervous system and causes headaches, dizziness, and fatigue. | [26,27] |
NO2 | 0.5 ppm/0.96 mg m−3 | 1 ppm/1.91 mg m−3 | EH40/2005 Workplace exposure limits | Damage to liver, lungs, spleen, and blood. Can aggravate lung diseases, leading to respiratory symptoms and increased susceptibility to respiratory infection. | [26,27] |
SO2 | 0.5 ppm/1300 µg m−3 | 1 ppm/2700 µg m−3 | EH40/2005 Workplace exposure limits | Aggravates asthma, reduces lung function, and inflames the respiratory tract. Causes headaches, general discomfort, and anxiety. | [26,27] |
Benzene | 1 ppm/3.25 mg m−3 | n.a | EH40/2005 Workplace exposure limits | A human carcinogen which can cause leukemia and birth defects. Can affect the central nervous system and normal blood production, and can harm the immune system. | [26,27] |
Cyanide a | 5 mg m−3 | n.a | EH40/2005 Workplace exposure limits | Human carcinogen. | [23,26] |
HF | 1.8 ppm/1.5 mg m−3 | 3 ppm/2.5 mg m−3 | EH40/2005 Workplace exposure limits | Suspected human causative agent. | [23,26] |
VOCs b | n.a | n.a | International Agency for Research on Cancer c | Respiratory toxicity, neurovascular toxicity, carcinogenicity, and liver and kidney toxicity | [23,28] |
PM2.5 | 5 µg m−3 | 15 µg m−3 | WHO | Causes or aggravates cardiovascular and lung diseases, heart attacks, and arrhythmias, affects the central nervous system and the reproductive system, and causes cancer. The outcome can be premature death. | [27,29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Cheng, Y.; Chen, S.; Liu, S.; Wang, Y.; Niu, X.; Sun, J. The Emission Characteristics and Health Risks of Firefighter-Accessed Fire: A Review. Toxics 2024, 12, 739. https://doi.org/10.3390/toxics12100739
Tian X, Cheng Y, Chen S, Liu S, Wang Y, Niu X, Sun J. The Emission Characteristics and Health Risks of Firefighter-Accessed Fire: A Review. Toxics. 2024; 12(10):739. https://doi.org/10.3390/toxics12100739
Chicago/Turabian StyleTian, Xuan, Yan Cheng, Shiting Chen, Song Liu, Yanli Wang, Xinyi Niu, and Jian Sun. 2024. "The Emission Characteristics and Health Risks of Firefighter-Accessed Fire: A Review" Toxics 12, no. 10: 739. https://doi.org/10.3390/toxics12100739
APA StyleTian, X., Cheng, Y., Chen, S., Liu, S., Wang, Y., Niu, X., & Sun, J. (2024). The Emission Characteristics and Health Risks of Firefighter-Accessed Fire: A Review. Toxics, 12(10), 739. https://doi.org/10.3390/toxics12100739