Oxidative Dissolution and the Aggregation of Silver Nanoparticles in Drinking and Natural Waters: The Influence of the Medium on the Process Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solvent
2.2. Silver Hydrosol Synthesis
2.3. Determination of the Concentration of Dissolved Silver Ions
2.4. Characterization Methods
2.4.1. Optical Spectrophotometry
2.4.2. Dynamic Light Scattering (DLS)
2.4.3. Transmission Electron Microscopy
2.4.4. Scanning Transmission Electron Microscopy (STEM) and Energy-Dispersive X-Ray Spectroscopy (EDX)
2.5. Types and Compositions of Water
- Tap water taken from the tap in the apartment, Bolshaya Pirogovskaya street, Moscow.
- Mineral water Elbrus, bottled, taken from well 452 in the Neitrino settlement, Kabardino, Balkar Republic.
- Artesian water from Pestrikovo village, urban district Stupino, Moscow Region, taken at a 74 m depth.
- Sea water, bottled, Black Sea Magic, taken from 20 m depth, 5 km away from the coast, near the village settlement Su-Psekh, Krasnodar Territory.
2.6. Statistical Processing
3. Results and Discussion
3.1. Nanoparticle Characteristics
3.2. Oxidative Dissolution and Aggregation of Nanoparticles
3.2.1. Oxidative Dissolution
3.2.2. Nanoparticle Aggregation
3.2.3. Mechanism of Oxidative Dissolution
3.3. Nanoparticle Stability in Drinking and Natural Waters
3.3.1. Characteristics of Natural Waters
3.3.2. Nanoparticle Stability
3.3.3. Release of Ag+ Ions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pasparakis, G. Recent Developments in the Use of Gold and Silver Nanoparticles in Biomedicine. WIREs Nanomed. Nanobiotechnol. 2022, 14, 1817. [Google Scholar] [CrossRef] [PubMed]
- Marambio-Jones, C.; Hoek, E.M.V. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Gunawan, C.; Marquis, C.P.; Amal, R.; Sotiriou, G.A.; Rice, S.A.; Harry, E.J. Widespread and Indiscriminate Nanosilver Use: Genuine Potential for Microbial Resistance. ACS Nano 2017, 11, 3438–3445. [Google Scholar] [CrossRef] [PubMed]
- Sotiriou, G.A.; Pratsinis, S.E. Antibacterial Activity of Nanosilver Ions and Particles. Environ. Sci. Technol. 2010, 44, 5649–5654. [Google Scholar] [CrossRef]
- Blinov, A.V.; Nagdalian, A.A.; Povetkin, S.N.; Gvozdenko, A.A.; Verevkina, M.N.; Rzhepakovsky, I.V.; Lopteva, M.S.; Maglakelidze, D.G.; Kataeva, T.S.; Blinova, A.A.; et al. Surface-Oxidized Polymer-Stabilized Silver Nanoparticles as a Covering Component of Suture Materials. Micromachines 2022, 13, 1105. [Google Scholar] [CrossRef]
- Gholami, M.; Azarbani, F.; Hadi, F. Silver Nanoparticles Synthesised by Using Iranian Mentha Pulegium Leaf Extract as a Non-Cytotoxic Antibacterial Agent. Mater. Technol. 2022, 37, 934–942. [Google Scholar] [CrossRef]
- Amirthalingam, R.; Gunabalan, M. An Insight into the Insecticidal Activity of Green Synthesized Silver Nanoparticles. Colloid J. 2023, 85, 854–870. [Google Scholar] [CrossRef]
- Ganesh, M.; Aziz, A.S.; Ubaidulla, U.; Hemalatha, P.; Saravanakumar, A.; Ravikumar, R.; Peng, M.M.; Choi, E.Y.; Jang, H.T. Sulfanilamide and Silver Nanoparticles-Loaded Polyvinyl Alcohol-Chitosan Composite Electrospun Nanofibers: Synthesis and Evaluation on Synergism in Wound Healing. J. Ind. Eng. Chem. 2016, 39, 127–135. [Google Scholar] [CrossRef]
- Shenashen, M.A.; El-Safty, S.A.; Elshehy, E.A. Synthesis, Morphological Control, and Properties of Silver Nanoparticles in Potential Applications. Part. Part. Syst. Charact. 2014, 31, 293–316. [Google Scholar] [CrossRef]
- Boeva, O.; Antonov, A.; Zhavoronkova, K. Influence of the Nature of IB Group Metals on Catalytic Activity in Reactions of Homomolecular Hydrogen Exchange on Cu, Ag, Au Nanoparticles. Catal. Commun. 2021, 148, 106173. [Google Scholar] [CrossRef]
- Hamza, M.E.; Othman, M.A.; Swillam, M.A. Plasmonic Biosensors: Review. Biology 2022, 11, 621. [Google Scholar] [CrossRef] [PubMed]
- Chugh, H.; Sood, D.; Chandra, I.; Tomar, V.; Dhawan, G.; Chandra, R. Role of Gold and Silver Nanoparticles in Cancer Nano-Medicine. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Samal, D.; Khandayataray, P.; Sravani, M.; Murthy, M.K. Silver Nanoparticle Ecotoxicity and Phytoremediation: A Critical Review of Current Research and Future Prospects. Environ. Sci. Pollut. Res. 2024, 31, 8400–8428. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yin, Y.; Liu, J. Silver Nanoparticles in the Environment. Environ. Sci. Process. Impacts 2013, 15, 78–92. [Google Scholar] [CrossRef]
- McGillicuddy, E.; Murray, I.; Kavanagh, S.; Morrison, L.; Fogarty, A.; Cormican, M.; Dockery, P.; Prendergast, M.; Rowan, N.; Morris, D. Silver Nanoparticles in the Environment: Sources, Detection and Ecotoxicology. Sci. Total Environ. 2017, 575, 231–246. [Google Scholar] [CrossRef]
- Garner, K.L.; Suh, S.; Keller, A.A. Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the NanoFate Model. Environ. Sci. Technol. 2017, 51, 5541–5551. [Google Scholar] [CrossRef]
- Klaessig, F.C. Dissolution as a Paradigm in Regulating Nanomaterials. Environ. Sci. Nano 2018, 5, 1070–1077. [Google Scholar] [CrossRef]
- Dale, A.L.; Casman, E.A.; Lowry, G.V.; Lead, J.R.; Viparelli, E.; Baalousha, M. Modeling Nanomaterial Environmental Fate in Aquatic Systems. Environ. Sci. Technol. 2015, 49, 2587–2593. [Google Scholar] [CrossRef]
- Walden, C.; Zhang, W. Bioaccumulation of Silver Nanoparticles in Model Wastewater Biofilms. Environ. Sci. 2018, 4, 1163–1171. [Google Scholar] [CrossRef]
- Ribeiro, F.; Pinheiro, C.; Monteiro, M.; Van Gestel, C.A.M.; Soares, A.M.V.M.; Loureiro, S. Toxicokinetics of Silver in the Goldfish Carassius Auratus under Simultaneous Waterborne and Diet-Borne Exposures to Silver Nanoparticles. Environ. Sci. Pollut. Res. 2022, 29, 56079–56089. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, A. Human Health Risk Assessment and Uncertainty Analysis of Silver Nanoparticles in Water. Environ. Sci. Pollut. Res. 2024, 31, 13739–13752. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hu, Z.; Deng, B. Silver Nanoparticles in Aquatic Environments: Physiochemical Behavior and Antimicrobial Mechanisms. Water Res. 2016, 88, 403–427. [Google Scholar] [CrossRef] [PubMed]
- Petosa, A.R.; Jaisi, D.P.; Quevedo, I.R.; Elimelech, M.; Tufenkji, N. Aggregation and Deposition of Engineered Nanomaterials in Aquatic Environments: Role of Physicochemical Interactions. Environ. Sci. Technol. 2010, 44, 6532–6549. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yin, Y.; Zhou, X.; Dong, L.; Liu, J. Transformation Kinetics of Silver Nanoparticles and Silver Ions in Aquatic Environments Revealed by Double Stable Isotope Labeling. Environ. Sci. Nano 2016, 3, 883–893. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, G. (Eds.) Silver Nanoparticles in the Environment; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-662-46069-6. [Google Scholar]
- Capjak, I.; Zebić Avdičević, M.; Sikirić, M.D.; Domazet Jurašin, D.; Hozić, A.; Pajić, D.; Dobrović, S.; Goessler, W.; Vinković Vrček, I. Behavior of Silver Nanoparticles in Wastewater: Systematic Investigation on the Combined Effects of Surfactants and Electrolytes in Model Systems. Environ. Sci. 2018, 4, 2146–2159. [Google Scholar] [CrossRef]
- Mikelonis, A.M.; Rowles, L.S.; Lawler, D.F. The Effects of Water Chemistry on the Detachment and Dissolution of Differently Stabilized Silver Nanoparticles from Ceramic Membranes. Environ. Sci. 2020, 6, 1347–1356. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, Y.; Sullivan, N.; Chen, Y. Modeling the Primary Size Effects of Citrate-Coated Silver Nanoparticles on Their Ion Release Kinetics. Environ. Sci. Technol. 2011, 45, 4422–4428. [Google Scholar] [CrossRef]
- Liu, J.; Hurt, R.H. Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids. Environ. Sci. Technol. 2010, 44, 2169–2175. [Google Scholar] [CrossRef]
- Ho, C.-M.; Yau, S.K.-W.; Lok, C.-N.; So, M.-H.; Che, C.-M. Oxidative Dissolution of Silver Nanoparticles by Biologically Relevant Oxidants: A Kinetic and Mechanistic Study. Chem. Asian J. 2010, 5, 285–293. [Google Scholar] [CrossRef]
- Kittler, S.; Greulich, C.; Diendorf, J.; Köller, M.; Epple, M. Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions. Chem. Mater. 2010, 22, 4548–4554. [Google Scholar] [CrossRef]
- Mittelman, A.M.; Taghavy, A.; Wang, Y.; Abriola, L.M.; Pennell, K.D. Influence of Dissolved Oxygen on Silver Nanoparticle Mobility and Dissolution in Water-Saturated Quartz Sand. J. Nanopart. Res. 2013, 15, 1765. [Google Scholar] [CrossRef]
- Pokhrel, L.R.; Dubey, B.; Scheuerman, P.R. Natural Water Chemistry (Dissolved Organic Carbon, PH, and Hardness) Modulates Colloidal Stability, Dissolution, and Antimicrobial Activity of Citrate Functionalized Silver Nanoparticles. Environ. Sci. Nano 2014, 1, 45–54. [Google Scholar] [CrossRef]
- Adamczyk, Z.; Oćwieja, M.; Mrowiec, H.; Walas, S.; Lupa, D. Oxidative Dissolution of Silver Nanoparticles: A New Theoretical Approach. J. Colloid Interface Sci. 2016, 469, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Peretyazhko, T.S.; Zhang, Q.; Colvin, V.L. Size-Controlled Dissolution of Silver Nanoparticles at Neutral and Acidic PH Conditions: Kinetics and Size Changes. Environ. Sci. Technol. 2014, 48, 11954–11961. [Google Scholar] [CrossRef]
- Liu, J.; Sonshine, D.A.; Shervani, S.; Hurt, R.H. Controlled Release of Biologically Active Silver from Nanosilver Surfaces. ACS Nano 2010, 4, 6903–6913. [Google Scholar] [CrossRef]
- Molleman, B.; Hiemstra, T. Time, PH, and Size Dependency of Silver Nanoparticle Dissolution: The Road to Equilibrium. Environ. Sci. Nano 2017, 4, 1314–1327. [Google Scholar] [CrossRef]
- Ma, R.; Levard, C.; Marinakos, S.M.; Cheng, Y.; Liu, J.; Michel, F.M.; Brown, G.E.; Lowry, G.V. Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles. Environ. Sci. Technol. 2012, 46, 752–759. [Google Scholar] [CrossRef]
- Yin, Y.; Yu, S.; Yang, X.; Liu, J.; Jiang, G. Source and Pathway of Silver Nanoparticles to the Environment. In Silver Nanoparticles in the Environment; Springer: Berlin/Heidelberg, Germany, 2015; pp. 43–72. [Google Scholar]
- Glover, R.D.; Miller, J.M.; Hutchison, J.E. Generation of Metal Nanoparticles from Silver and Copper Objects: Nanoparticle Dynamics on Surfaces and Potential Sources of Nanoparticles in the Environment. ACS Nano 2011, 5, 8950–8957. [Google Scholar] [CrossRef]
- Badawy, A.M.E.L.; Luxton, T.P.; Silva, R.G.; Scheckel, K.G.; Suidan, M.T. Impact of Environmental Conditions (PH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions. Environ. Sci. Technol. 2010, 44, 1260–1266. [Google Scholar] [CrossRef]
- Dobias, J.; Bernier-Latmani, R. Silver Release from Silver Nanoparticles in Natural Waters. Environ. Sci. Technol. 2013, 47, 4140–4146. [Google Scholar] [CrossRef]
- Jung, Y.; Schaumann, G.E.; Baik, S.; Metreveli, G. Effects of Hydrophobicity-Based Fractions of Pony Lake Fulvic Acid on the Colloidal Stability and Dissolution of Oppositely Charged Surface-Coated Silver Nanoparticles. Environ. Chem. 2020, 17, 400. [Google Scholar] [CrossRef]
- Li, P.; Su, M.; Wang, X.; Zou, X.; Sun, X.; Shi, J.; Zhang, H. Environmental Fate and Behavior of Silver Nanoparticles in Natural Estuarine Systems. J. Environ. Sci. 2020, 88, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lenhart, J.J. Aggregation and Dissolution of Silver Nanoparticles in Natural Surface Water. Environ. Sci. Technol. 2012, 46, 5378–5386. [Google Scholar] [CrossRef] [PubMed]
- Metreveli, G.; Philippe, A.; Schaumann, G.E. Disaggregation of Silver Nanoparticle Homoaggregates in a River Water Matrix. Sci. Total Environ. 2015, 535, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Yang, X.; Zhou, X.; Wang, W.; Yu, S.; Liu, J.; Jiang, G. Water Chemistry Controlled Aggregation and Photo-Transformation of Silver Nanoparticles in Environmental Waters. J. Environ. Sci. 2015, 34, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Talling, J.F. PH, the CO2 System and Freshwater Science. Freshw. Rev. 2010, 3, 133–146. [Google Scholar] [CrossRef]
- Abkhalimov, E.V.; Ershov, V.A.; Ershov, B.G. “Pure” Silver Hydrosol: Nanoparticles and Stabilizing Carbonate Ions. J. Nanopart. Res. 2019, 21, 93. [Google Scholar] [CrossRef]
- Ershov, V.; Tarasova, N.; Abkhalimov, E.; Safonov, A.; Sorokin, V.; Ershov, B. Photochemical Synthesis of Silver Hydrosol Stabilized by Carbonate Ions and Study of Its Bactericidal Impact on Escherichia Coli: Direct and Indirect Effects. Int. J. Mol. Sci. 2022, 23, 949. [Google Scholar] [CrossRef]
- Abkhalimov, E.; Ershov, V.; Ershov, B. Determination of the Concentration of Silver Atoms in Hydrosol Nanoparticles. Nanomaterials 2022, 12, 3091. [Google Scholar] [CrossRef]
- Creighton, J.A.; Eadon, D.G. Ultraviolet–Visible Absorption Spectra of the Colloidal Metallic Elements. J. Chem. Soc. Faraday Trans. 1991, 87, 3881–3891. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley: Hoboken, NJ, USA, 1998; ISBN 9780471293408. [Google Scholar]
- Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 1995; Volume 25, ISBN 978-3-642-08191-0. [Google Scholar]
- Charlé, K.-P.; Frank, F.; Schulze, W. The Optical Properties of Silver Microcrystallites in Dependence on Size and the Influence of the Matrix Environment. Berichte Der Bunsenges. Für Phys. Chem. 1984, 88, 350–354. [Google Scholar] [CrossRef]
- Ershov, V.; Tarasova, N.; Ershov, B. Evolution of Electronic State and Properties of Silver Nanoparticles during Their Formation in Aqueous Solution. Int. J. Mol. Sci. 2021, 22, 10673. [Google Scholar] [CrossRef] [PubMed]
- Ershov, V.A.; Tarasova, N.P.; Ershov, B.G. Electronic State of Silver Nanoparticles during Their Photochemical Formation in a Deaerated Aqueous Solution. Dokl. Chem. 2020, 495, 171–174. [Google Scholar] [CrossRef]
- Ershov, B.; Ershov, V. Electrochemical Mechanism of Oxidative Dissolution of Silver Nanoparticles in Water: Effect of Size on Electrode Potential and Solubility. Nanomaterials 2023, 13, 1907. [Google Scholar] [CrossRef]
- Vanysek, P. Electrochemical Series. In Handbook of Chemistry and Physics; Hayen, W.M., Bruno, T.J., Lide, D.R., Eds.; CRC-Press: Boca Raton, FL, USA, 2014; pp. 5-80–5-90. ISBN 978-1-4822-0868-9. [Google Scholar]
- Sotiriou, G.A.; Meyer, A.; Knijnenburg, J.T.N.; Panke, S.; Pratsinis, S.E. Quantifying the Origin of Released Ag + Ions from Nanosilver. Langmuir 2012, 28, 15929–15936. [Google Scholar] [CrossRef]
- Plieth, W.J. Electrochemical Properties of Small Clusters of Metal Atoms and Their Role in the Surface Enhanced Raman Scattering. J. Phys. Chem. 1982, 86, 3166–3170. [Google Scholar] [CrossRef]
- Grafov, B.M.; Paasch, G.; Plieth, W.; Bund, A. Connection of the Generalized Shuttleworth Equation for the Elastic Spherical Electrode with the Laplace Formula and the Gibbs Adsorption Equation. Electrochim. Acta 2003, 48, 581–587. [Google Scholar] [CrossRef]
- Jones, S.E.W.; Toghill, K.E.; Zheng, S.H.; Morin, S.; Compton, R.G. The Stripping Voltammetry of Hemispherical Deposits Under Electrochemically Irreversible Conditions: A Comparison of the Stripping Voltammetry of Bismuth on Boron-Doped Diamond and Au(111) Electrodes. J. Phys. Chem. C 2009, 113, 2846–2854. [Google Scholar] [CrossRef]
- Masitas, R.A.; Allen, S.L.; Zamborini, F.P. Size-Dependent Electrophoretic Deposition of Catalytic Gold Nanoparticles. J. Am. Chem. Soc. 2016, 138, 15295–15298. [Google Scholar] [CrossRef]
- Kolb, D.M.; Engelmann, G.E.; Ziegler, J.C. On the Unusual Electrochemical Stability of Nanofabricated Copper Clusters. Angew. Chem. Int. Ed. 2000, 39, 1123–1125. [Google Scholar] [CrossRef]
- Ivanova, O.S.; Zamborini, F.P. Size-Dependent Electrochemical Oxidation of Silver Nanoparticles. J. Am. Chem. Soc. 2010, 132, 70–72. [Google Scholar] [CrossRef]
- Karpov, S.V.; Slabko, V.V. Optical and Photophysical Properties of Fractally Structured Metal Sols; SO RAS: Moscow, Russia, 2003. [Google Scholar]
- Suhov, N.L.; Ershov, B.G.; Mihalko, V.K.; Gordeev, A.V. Optical Absorption Spectra of Large Colloidal Silver Particles in an Aqueous Solution. Russ. Chem. Bull. 1997, 46, 197–199. [Google Scholar] [CrossRef]
- House, J.E. Ionic Bonding and Structures of Solids. In Inorganic Chemistry; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
Water | Indifferent Ions, 10−4 mol L−1 | Specific Ions, 10−4 mol L−1 | Ionic Strength, mol L−1 | [Ag+], mol L−1 * | ||
---|---|---|---|---|---|---|
Tap water | 29.6 | Cl− | 8.0 | 7.5 × 10−3 | 3.1 × 10−6 | |
Ca2+ | 15.0 | 4.1 | ||||
Mg2+ | 5.9 | |||||
Na+ | 7.8 | |||||
Mineral water | 25.9 | Cl− | 1.8 | 3.8 × 10−3 | 3.6 × 10−6 | |
Ca2+ | 8.3 | 0.26 | ||||
Mg2+ | 3.2 | |||||
Na+ | 1.9 | |||||
Artesian water | 63.8 | Cl− | 1.8 | 1.0 × 10−2 | 3.9 × 10−6 | |
1.0 | 1.1 | |||||
Ca2+ | 21.5 | |||||
Mg2+ | 13.2 | |||||
Na+ | 2.4 | |||||
Sea water | 26.2 | Cl− | 2814.6 | 3.2 × 10−1 | 6.8 × 10−6 | |
Ca2+ | 55.1 | 0.9 | ||||
Mg2+ | 253.5 | 93.2 | ||||
Na+ | 1931.3 | I− | 0.004 | |||
Br− | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ershov, V.A.; Ershov, B.G. Oxidative Dissolution and the Aggregation of Silver Nanoparticles in Drinking and Natural Waters: The Influence of the Medium on the Process Development. Toxics 2024, 12, 757. https://doi.org/10.3390/toxics12100757
Ershov VA, Ershov BG. Oxidative Dissolution and the Aggregation of Silver Nanoparticles in Drinking and Natural Waters: The Influence of the Medium on the Process Development. Toxics. 2024; 12(10):757. https://doi.org/10.3390/toxics12100757
Chicago/Turabian StyleErshov, Vadim A., and Boris G. Ershov. 2024. "Oxidative Dissolution and the Aggregation of Silver Nanoparticles in Drinking and Natural Waters: The Influence of the Medium on the Process Development" Toxics 12, no. 10: 757. https://doi.org/10.3390/toxics12100757
APA StyleErshov, V. A., & Ershov, B. G. (2024). Oxidative Dissolution and the Aggregation of Silver Nanoparticles in Drinking and Natural Waters: The Influence of the Medium on the Process Development. Toxics, 12(10), 757. https://doi.org/10.3390/toxics12100757