Relationship Between Perfluoroalkyl Acids in Human Serum and Sjogren’s Syndrome: A Case–Control Study of Populations in Hangzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Determination of Target PFAAs in Serum
2.3. Statistical Analysis
3. Results
3.1. Basic Demographic Information
3.2. Concentrations of PFAAs in Serum
3.3. Relationship Between Sjogren’s Syndrome and PFAAs
3.4. Relationship Between PFAAs and Immune Parameter
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANA | Antinuclear antibodies |
Anti-Ro52 | Anti-Ro52 antibodies |
Anti-SSA | Anti-SSA antibodies |
Anti-SSB | And anti-SSB antibodies |
BMI | Body mass index |
CRP | C-reactive protein |
EPA | Environmental Protection Agency |
ESR | Erythrocyte sedimentation rate |
LC-MS | Liquid chromatography–mass spectrometry |
LOD | Limit of detection |
MTBE | Methyl tert-butyl ether |
PFAAs | Perfluoroalkyl acids |
PFBS | Perfluorobutane sulfonate |
PFCAs | Perfluoroalkyl carboxylates |
PFDA | Perfluorodecanoate |
PFDoA | Perfluorododecanoate |
PFHpA | perfluoroheptanoate |
PFHxS | Perfluorohexane sulfonate |
PFNA | Perfluorononanoate |
PFOA | Perfluorooctanoate |
PFOS | Perfluorooctanesulfonate |
PFSAs | Perfluoroalkyl sulfonates |
PFTeDA | Perfluorotetradecanoic acid |
PFTrDA | Perfluorotrdecanoate |
PFUdA | Perfluoroundecanoat |
pSS | Primary Sjogren’s syndrome |
QC | Quality control |
SS | Sjogren’s syndrome |
sSS | Secondary Sjogren’s syndrome |
References
- Schellenberger, S.; Liagkouridis, I.; Awad, R.; Khan, S.; Plassmann, M.; Peters, G.; Benskin, J.P.; Cousins, I.T. An Outdoor Aging Study to Investigate the Release of Per- And Polyfluoroalkyl Substances (PFAS) from Functional Textiles. Environ. Sci. Technol. 2022, 56, 3471–3479. [Google Scholar] [CrossRef] [PubMed]
- Vorst, K.L.; Saab, N.; Silva, P.; Curtzwiler, G.; Steketee, A. Risk assessment of per- and polyfluoroalkyl substances (PFAS) in food: Symposium proceedings. Trends Food Sci. Technol. 2021, 116, 1203–1211. [Google Scholar] [CrossRef]
- Wu, Y.; Romanak, K.; Bruton, T.; Blum, A.; Venier, M. Per- and polyfluoroalkyl substances in paired dust and carpets from childcare centers. Chemosphere 2020, 251, 126771. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, G.; Meng, L.; Han, X.; Li, Y.; Shi, Y.; Li, A.; Turyk, M.E.; Zhang, Q.; Jiang, G. Associations between Novel and Legacy Per- and Polyfluoroalkyl Substances in Human Serum and Thyroid Cancer: A Case and Healthy Population in Shandong Province, East China. Environ. Sci. Technol. 2022, 56, 6144–6151. [Google Scholar] [CrossRef] [PubMed]
- Evich, M.G.; Davis, M.J.B.; McCord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.U.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, C.; Strynar, M.J.; et al. Per- and polyfluoroalkyl substances in the environment. Science 2022, 375. [Google Scholar] [CrossRef]
- Kabore, H.A.; Sung Vo, D.; Munoz, G.; Meite, L.; Desrosiers, M.; Liu, J.; Sory, T.K.; Sauve, S. Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. Sci. Total Environ. 2018, 616, 1089–1100. [Google Scholar] [CrossRef]
- McLachlan, M.S.; Felizeter, S.; Klein, M.; Kotthoff, M.; De Voogt, P. Fate of a perfluoroalkyl acid mixture in an agricultural soil studied in lysimeters. Chemosphere 2019, 223, 180–187. [Google Scholar] [CrossRef]
- Morales-McDevitt, M.E.; Becanova, J.; Blum, A.; Bruton, T.A.; Vojta, S.; Woodward, M.; Lohmann, R. The Air That We Breathe: Neutral and Volatile PFAS in Indoor Air. Environ. Sci. Technol. Lett. 2021, 8, 897–902. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef]
- Liu, D.; Tang, B.; Nie, S.; Zhao, N.; He, L.; Cui, J.; Mao, W.; Jin, H. Distribution of per- and poly-fluoroalkyl substances and their precursors in human blood. J. Hazard. Mater. 2023, 441, 129908. [Google Scholar] [CrossRef]
- Cheng, H.; Jin, H.; Lu, B.; Lv, C.; Ji, Y.; Zhang, H.; Fan, R.; Zhao, N. Emerging poly- and perfluoroalkyl sub-stances in water and sediment from Qiantang River-Hangzhou Bay. Sci. Total Environ. 2023, 875, 162687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Industry News: Global Food Contact Regulation Updates. J. Plast. Film Sheeting 2020, 36, 341–347. [Google Scholar] [CrossRef]
- Kwiatkowski, C.F.; Andrews, D.Q.; Birnbaum, L.S.; Bruton, T.A.; DeWitt, J.C.; Knappe, D.R.U.; Maffini, M.V.; Miller, M.F.; Pelch, K.E.; Reade, A.; et al. Scientific Basis for Managing PFAS as a Chemical Class. Environ. Sci. Technol. Lett. 2020, 7, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Heydebreck, F.; Tang, J.; Xie, Z.; Ebinghaus, R. Emissions of Per- and Polyfluoroalkyl Substances in a Tex-tile Manufacturing Plant in China and Their Relevance for Workers’ Exposure. Environ. Sci. Technol. 2016, 50, 10386–10396. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, K.; Li, X.; Tang, Z.; Xiang, L.; Zhao, H.; Fu, J.; Wang, L.; Zhu, N.; Cai, Z.; et al. Mass Spectrometry-Based Metabolomics Reveals Occupational Exposure to Per- and Polyfluoroalkyl Substances Relates to Oxidative Stress, Fatty Acid beta-Oxidation Disorder, and Kidney Injury in a Manu-factory in China. Environ. Sci. Technol. 2019, 53, 9800–9809. [Google Scholar] [CrossRef]
- Wee, S.Y.; Aris, A.Z. Revisiting the “forever chemicals”, PFOA and PFOS exposure in drinking water. NPJ Clean Water 2023, 6, 57. [Google Scholar] [CrossRef]
- Liang, L.; Pan, Y.; Bin, L.; Liu, Y.; Huang, W.; Li, R.; Lai, K.P. Immunotoxicity mechanisms of perfluorinated compounds PFOA and PFOS. Chemosphere 2022, 291, 132892. [Google Scholar] [CrossRef]
- Timmermann, C.A.G.; Jensen, K.J.; Nielsen, F.; Budtz-Jorgensen, E.; van der Klis, F.; Benn, C.S.; Grandjean, P.; Fisker, A.B. Serum Perfluoroalkyl Substances, Vaccine Responses, and Morbidity in a Cohort of Guinea-Bissau Children. Environ. Health Perspect. 2020, 128, 087002. [Google Scholar] [CrossRef]
- Kielsen, K.; Shamim, Z.; Ryder, L.P.; Nielsen, F.; Grandjean, P.; Budtz-Jorgensen, E.; Heilmann, C. Anti-body response to booster vaccination with tetanus and diphtheria in adults exposed to perfluorinated alkylates. J. Immunotoxicol. 2016, 13, 270–273. [Google Scholar] [CrossRef]
- Qu, J.; Zhao, Y.; Zhang, L.; Hu, S.; Liao, K.; Zhao, M.; Wu, P.; Jin, H. Evaluated serum perfluoroalkyl acids and their relationships with the incidence of rheumatoid arthritis in the general population in Hangzhou, China. Environ. Pollut. 2022, 307, 119505. [Google Scholar] [CrossRef]
- Zhao, Y.; Jin, H.; Qu, J.; Zhang, S.; Hu, S.; Xue, J.; Zhao, M. The influences of perfluoroalkyl substances on the rheumatoid arthritis clinic. BMC Immunol. 2022, 23, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, W.; Qu, J.; Hu, S.; Zhang, L.; Zhao, M.; Wu, P.; Xue, J.; Hangbiao, J. Per-/polyfluoroalkyl sub-stance concentrations in human serum and their associations with immune markers of rheumatoid arthritis. Chemosphere 2022, 298, 134338. [Google Scholar] [CrossRef] [PubMed]
- Brito-Zerón, P.; Baldini, C.; Bootsma, H.; Bowman, S.J.; Jonsson, R.; Mariette, X.; Sivils, K.; Theander, E.; Tzioufas, A.; Ramos-Casals, M. Sjögren syndrome. Nat. Rev. Dis. Prim. 2016, 2, 16047. [Google Scholar] [CrossRef] [PubMed]
- Valim, V.; Zandonade, E.; Pereira, A.M.; Brito Filho, O.H.d.; Serrano, E.V.; Musso, C.; Giovelli, R.A.; Ciconelli, R.M. Primary Sjögren’s syndrome prevalence in a major metropolitan area in Brazil. Rev. Bras. Reumatol. 2013, 53, 29–34. [Google Scholar] [CrossRef]
- Xiang, Y.-J.; Dai, S.-M. Prevalence of rheumatic diseases and disability in China. Rheumatol. Int. 2009, 29, 481–490. [Google Scholar] [CrossRef]
- Bjork, A.; Mofors, J.; Wahren-Herlenius, M. Environmental factors in the pathogenesis of primary Sjogren’s syndrome. J. Intern. Med. 2020, 287, 475–492. [Google Scholar] [CrossRef]
- Shiboski, S.C.; Shiboski, C.H.; Criswell, L.A.; Baer, A.N.; Challacombe, S.; Lanfranchi, H.; Schiodt, M.; Umehara, H.; Vivino, F.; Zhao, Y.; et al. American College of Rheumatology classification criteria for Sjogren’s syndrome: A data-driven, expert consensus approach in the Sjogren’s International Collabora-tive Clinical Alliance Cohort. Arthritis Care Res. 2012, 64, 475–487. [Google Scholar] [CrossRef]
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; et al. 2016 American College of Rheu-matology/European League Against Rheumatism classification criteria for primary Sjogren’s syndrome A consensus and data-driven methodology involving three international patient cohorts. Ann. Rheum. Dis. 2017, 76, 9–16. [Google Scholar] [CrossRef]
- Qin, B.; Wang, J.; Yang, Z.; Yang, M.; Ma, N.; Huang, F.; Zhong, R. Epidemiology of primary Sjögren’s syn-drome: A systematic review and meta-analysis. Ann. Rheum. Dis. 2015, 74, 1983–1989. [Google Scholar] [CrossRef]
- Mariette, X.; Criswell, L.A. Primary Sjogren’s Syndrome. N. Engl. J. Med. 2018, 378, 931–939. [Google Scholar] [CrossRef]
- Pan, Y.; Zhu, Y.; Zheng, T.; Cui, Q.; Buka, S.L.; Bin, Z.; Guo, Y.; Xia, W.; Yeung, L.W.Y.; Li, Y.; et al. Novel Chlorinated Polyfluorinated Ether Sulfonates and Legacy Per-/Polyfluoroalkyl Substances: Placental Transfer and Relationship with Serum Albumin and Glomerular Filtration Rate. Environ. Sci. Technol. 2017, 51, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Kvarnstrom, M.; Ottosson, V.; Nordmark, B.; Wahren-Herlenius, M. Incident cases of primary Sjogren’s syndrome during a 5-year period in Stockholm County: A descriptive study of the patients and their characteristics. Scand. J. Rheumatol. 2015, 44, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Liu, X.; Liu, X.; Zhou, Y.; Zhang, X.; Tian, H.; Wang, J.; Feng, S.; Wu, Y.; Bhatti, P.; et al. Perfluoroalkyl substances in umbilical cord serum and gestational and postnatal growth in a Chinese birth cohort. Environ. Int. 2018, 116, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Kim, S.; Kho, Y.; Sakong, J.; Paek, D.; Choi, K. Major perfluoroalkyl acid (PFAA) concentrations and influence of food consumption among the general population of Daegu, Korea. Sci. Total Environ.-Ment. 2012, 438, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.H.; Hitomi, T.; Niisoe, T.; Takanaka, K.; Kamiyama, S.; Watanabe, T.; Moon, C.S.; Yang, H.R.; Hung, N.N.; Koizumi, A. Odd-numbered perfluorocarboxylates predominate over perfluorooctanoic acid in serum samples from Japan, Korea and Vietnam. Environ. Int. 2011, 37, 1183–1189. [Google Scholar] [CrossRef]
- Tian, Y.; Liang, H.; Miao, M.; Yang, F.; Ji, H.; Cao, W.; Liu, X.; Zhang, X.; Chen, A.; Xiao, H.; et al. Maternal plasma concentrations of perfluoroalkyl and polyfluoroalkyl substances during pregnancy and anogenital distance in male infants. Hum. Reprod. 2019, 34, 1356–1368. [Google Scholar] [CrossRef]
- Steenland, K.; Zhao, L.; Winquist, A. A cohort incidence study of workers exposed to perfluorooctanoic acid (PFOA). Occup. Environ. Med. 2015, 72, 373–380. [Google Scholar] [CrossRef]
- Girardi, P.; Lupo, A.; Mastromatteo, L.Y.; Scrimin, S. Mothers living with contamination of perfluoroalkyl substances: An assessment of the perceived health risk and self-reported diseases. Environ. Sci. Pollut. Res. 2022, 29, 60491–60507. [Google Scholar] [CrossRef]
- Salihovic, S.; Lind, L.; Larsson, A.; Lind, P.M. Plasma perfluoroalkyls are associated with decreased levels of proteomic inflammatory markers in a cross-sectional study of an elderly population. Environ.-Ment. Int. 2020, 145, 106099. [Google Scholar] [CrossRef]
- He, L.; Yan, B.; Yao, C.; Chen, X.; Li, L.; Wu, Y.; Song, Z.; Song, S.; Zhang, Z.; Luo, P. Oligosaccharides from Polygonatum Cyrtonema Hua: Structural characterization and treatment of LPS-induced peritonitis in mice. Carbohydr. Polym. 2021, 255, 117392. [Google Scholar] [CrossRef]
- Keil, D.E.; Mehlmann, T.; Butterworth, L.; Peden-Adams, M.M. Gestational exposure to perfluorooctane sulfonate suppresses immune function in B6C3F1 mice. Toxicol. Sci. 2008, 103, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Bassler, J.; Ducatman, A.; Elliott, M.; Wen, S.; Wahlang, B.; Barnett, J.; Cave, M.C. Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines. Environ. Pollut. 2019, 247, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.D.; Woodlief, T.L.; Ahmed, A.; Hu, Q.; Duncker, P.C.; DeWitt, J.C. Quantifying the impact of PFOA exposure on B-cell development and antibody production. Toxicol. Sci. 2023, 194, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Nocturne, G.; Mariette, X. Advances in understanding the pathogenesis of primary Sjogren’s syndrome. Nat. Rev. Rheumatol. 2013, 9, 544–556. [Google Scholar] [CrossRef]
Characteristics | Cases (n = 136) | Controls (n = 148) | p-Value a |
---|---|---|---|
Age (years, mean ± standard) | 52.3 ± 13.0 | 48.3 ± 10.8 | 0.003 |
BMI (kg/m2) | <0.001 | ||
<18.5 | 23 (16.9%) | 24 (16.2%) | |
18.5~25 | 101 (74.3%) | 67 (45.3%) | |
25~30 | 10 (7.4%) | 37 (25.0%) | |
>30 | 2 (1.5%) | 20 (13.5%) | |
Smoke | 0.002 | ||
Yes | 46 (33.8%) | 26 (17.6%) | |
No | 90 (66.2%) | 122 (82.4%) | |
Drink | 0.124 | ||
Yes | 33 (24.3%) | 25(16.9%) | |
No | 103 (75.7%) | 123(83.1%) | |
Education | 0.504 | ||
High school and below | 103 (75.7%) | 117 (79.1%) | |
Bachelor or college degree | 33 (24.3%) | 31 (20.9%) | |
Occupations | 0.582 | ||
Farmers | 70 (51.5%) | 81 (54.7%) | |
Staff and workers | 66 (48.5%) | 67 (45.3%) | |
Income (CNY) | 0.101 | ||
≤100,000 | 95 (69.9%) | 116 (78.4%) | |
>100,000 | 41 (30.1%) | 32 (21.6%) | |
Parity | 0.203 | ||
≤1 | 70 (51.5%) | 65 (43.9%) | |
>1 | 66 (48.5%) | 83 (56.1%) | |
Eating habits | 0.217 | ||
Normal | 98 (72.1%) | 116 (78.4%) | |
Love spicy food | 38 (27.9%) | 32 (21.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Hu, S.; Jin, H.; Fan, C.; Liao, K.; Zhang, S.; Xue, J. Relationship Between Perfluoroalkyl Acids in Human Serum and Sjogren’s Syndrome: A Case–Control Study of Populations in Hangzhou, China. Toxics 2024, 12, 764. https://doi.org/10.3390/toxics12100764
Zhao Y, Hu S, Jin H, Fan C, Liao K, Zhang S, Xue J. Relationship Between Perfluoroalkyl Acids in Human Serum and Sjogren’s Syndrome: A Case–Control Study of Populations in Hangzhou, China. Toxics. 2024; 12(10):764. https://doi.org/10.3390/toxics12100764
Chicago/Turabian StyleZhao, Yun, Shetuan Hu, Hangbiao Jin, Chuanbing Fan, Kaizhen Liao, Songzhao Zhang, and Jing Xue. 2024. "Relationship Between Perfluoroalkyl Acids in Human Serum and Sjogren’s Syndrome: A Case–Control Study of Populations in Hangzhou, China" Toxics 12, no. 10: 764. https://doi.org/10.3390/toxics12100764
APA StyleZhao, Y., Hu, S., Jin, H., Fan, C., Liao, K., Zhang, S., & Xue, J. (2024). Relationship Between Perfluoroalkyl Acids in Human Serum and Sjogren’s Syndrome: A Case–Control Study of Populations in Hangzhou, China. Toxics, 12(10), 764. https://doi.org/10.3390/toxics12100764