Enhancing Analytical Potential for Ultratrace Analysis of Inorganic Oxyanions Using Extraction Procedures with Layered Double Hydroxides
Abstract
:1. Introduction
2. Composition of LDHs
3. Separation Mechanisms
4. Environmental Applications
5. Analytical Applications
5.1. Extraction Procedures for Chromate Ions
5.2. Extraction Procedures for Arsenic Oxyanions
5.3. Extraction Procedures for Selenium Oxyanions
6. A Few Notes on Detection Techniques
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AHNDA | 4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid monosodium salt |
ALA | L-alanine |
APDC | ammonium pyrrolidine dithiocarbamate |
ASP | L-aspartic acid |
CL | chemiluminescence |
CNTs | carbon nanotubes |
CRM | certified reference material |
D-μ-SPE | dispersive micro solid-phase extraction |
DSPE | dispersive solid-phase extraction |
EF | enrichment factor |
EISE | electrostatically induced stoichiometric extraction |
ETAAS | electrothermal atomic absorption spectrometry |
FAAS | flame atomic absorption spectrometry |
GL | glycerol |
HG-AAS | hydride generation atomic absorption spectrometry |
HG-AFS | hydride generation atomic fluorescence spectrometry |
ICP-OES | inductively coupled plasma optical emission spectrometry |
I-OS-DSPE | integrated one-step dispersive solid |
IT-SPME | in-tube solid-phase microextraction |
LDHs | layered double hydroxides |
LLE | liquid–liquid extraction |
LOD | limit of detection |
LOQ | limit of quantification |
MSPE | magnetic solid-phase extraction |
PANI | polyaniline |
PF | preconcentration factor |
RSD | relative standard deviation |
SBSE | stir bar sorptive extraction |
SPE | solid-phase extraction |
SPME | solid-phase microextraction |
TFME | thin-film microextraction |
UA-CPE | ultrasound-assisted cloud point extraction |
USE-AA-DSPE | ultrasound-enhanced air-agitated dispersive solid-phase extraction |
UV-Vis | UV-Vis spectrophotometry |
XRF | X-ray fluorescence |
References
- Nickerson, B.; Colón, I. Liquid-liquid and solid-phase extraction techniques. In Sample Preparation of Pharmaceutical Dosage Forms: Challenges and Strategies for Sample Preparation and Extraction; Nickerson, B., Ed.; Springer: Boston, MA, USA, 2011; pp. 63–92. [Google Scholar]
- Zhang, C.; Xing, H.F.; Yang, L.R.; Fei, P.F.; Liu, H.Z. Development trend and prospect of solid phase extraction technology. Chin. J. Chem. Eng. 2022, 42, 245–255. [Google Scholar] [CrossRef]
- Nouri, N.; Khorram, P.; Duman, O.; Tunç, S.; Sereshti, H. Overview of nanosorbents used in solid phase extraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Trends Environ. Anal. Chem. 2020, 25, e00081. [Google Scholar] [CrossRef]
- Sajid, M.; Nazal, M.K.; Ihsanullah, I. Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: A review. Anal. Chim. Acta 2021, 1141, 246–262. [Google Scholar] [CrossRef] [PubMed]
- Hagarová, I.; Nemček, L. Analytical application of layered double hydroxides as high-capacity sorbents in dispersive solid phase extraction for the separation and preconcentration of (ultra)trace heavy metals. Crit. Rev. Anal. Chem. 2023, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Maya, F.; Cabello, C.P.; Ghani, M.; Palomino, G.T.; Cerdà, V. Emerging materials for sample preparation. J. Sep. Sci. 2018, 41, 262–287. [Google Scholar] [CrossRef] [PubMed]
- Faraji, M.; Yamini, Y.; Gholami, M. Recent advances and trends in applications of solid-phase extraction techniques in food and environmental analysis. Chromatographia 2019, 82, 1207–1249. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Recent developments in selective materials for solid phase extraction. Chromatographia 2019, 82, 1171–1189. [Google Scholar] [CrossRef]
- Sunder, G.S.S.; Adhikari, S.; Rohanifar, A.; Poudel, A.; Kirchhoff, J.R. Evolution of environmentally friendly strategies for metal extraction. Separations 2020, 7, 4. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022, 38, 1457–1487. [Google Scholar] [CrossRef]
- Gu, P.C.; Zhang, S.; Li, X.; Wang, X.X.; Wen, T.; Jehan, R.; Alsaedi, A.; Hayat, T.; Wang, X.K. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ. Pollut. 2018, 240, 493–505. [Google Scholar] [CrossRef]
- Johnston, A.L.; Lester, E.; Williams, O.; Gomes, R.L. Understanding layered double hydroxide properties as sorbent materials for removing organic pollutants from environmental waters. J. Environ. Chem. Eng. 2021, 9, 105197. [Google Scholar] [CrossRef]
- Nava-Andrade, K.; Carbajal-Arízaga, G.G.; Obregón, S.; Rodriguez-Gonzalez, V. Layered double hydroxides and related hybrid materials for removal of pharmaceutical pollutants from water. J. Environ. Manag. 2021, 288, 112399. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.F.; Long, R.X.; Wang, L.L.; Liu, C.C.; Bai, Z.X.; Liu, X.B. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites. Sep. Purif. Technol. 2022, 284, 120099. [Google Scholar] [CrossRef]
- Dong, Y.C.; Kong, X.R.; Luo, X.S.; Wang, H.T. Adsorptive removal of heavy metal anions from water by layered double hydroxide: A review. Chemosphere 2022, 303, 134685. [Google Scholar] [CrossRef]
- Sajid, M.; Basheer, C. Layered double hydroxides: Emerging sorbent materials for analytical extractions. Trac-Trends Anal. Chem. 2016, 75, 174–182. [Google Scholar] [CrossRef]
- Mishra, G.; Dash, B.; Pandey, S. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 2018, 153, 172–186. [Google Scholar] [CrossRef]
- Bukhtiyarova, M.V. A review on effect of synthesis conditions on the formation of layered double hydroxides. J. Solid State Chem. 2019, 269, 494–506. [Google Scholar] [CrossRef]
- Tonelli, D.; Gualandi, I.; Musella, E.; Scavetta, E. Synthesis and characterization of layered double hydroxides as materials for electrocatalytic applications. Nanomaterials 2021, 11, 725. [Google Scholar] [CrossRef]
- Guan, X.; Yuan, X.Z.; Zhao, Y.L.; Wang, H.; Wang, H.; Bai, J.; Li, Y. Application of functionalized layered double hydroxides for heavy metal removal: A review. Sci. Total Environ. 2022, 838, 155693. [Google Scholar] [CrossRef]
- Gautam, R.K.; Singh, A.K.; Tiwari, I. Nanoscale layered double hydroxide modified hybrid nanomaterials for wastewater treatment: A review. J. Mol. Liq. 2022, 350, 118505. [Google Scholar] [CrossRef]
- Kameliya, J.; Verma, A.; Dutta, P.; Arora, C.; Vyas, S.; Varma, R.S. Layered double hydroxide materials: A review on their preparation, characterization, and applications. Inorganics 2023, 11, 121. [Google Scholar] [CrossRef]
- Altalhi, A.A.; Mohamed, E.A.; Negm, N.A. Recent advances in layered double hydroxide (LDH)-based materials: Fabrication, modification strategies, characterization, promising environmental catalytic applications, and prospective aspects. Energy Adv. 2024, 3, 2136–2151. [Google Scholar] [CrossRef]
- Feng, L.; Duan, X. Applications of layered double hydroxides. In Layered Double Hydroxides; Duan, X., Evans, D.G., Eds.; Structure and Bonding; Springer: Berlin, Germany, 2006; Volume 119, pp. 193–223. [Google Scholar]
- Goh, K.H.; Lim, T.T.; Dong, Z. Application of layered double hydroxides for removal of oxyanions: A review. Water Res. 2008, 42, 1343–1368. [Google Scholar] [CrossRef]
- Turk, T.; Boyraz, T.; Alp, I. Arsenic removal by layered double hydroxides (LDH): A mini review. Water Pract. Technol. 2024, 19, 2088–2107. [Google Scholar] [CrossRef]
- Tran, H.N.; Nguyen, D.T.; Le, G.T.; Tomul, F.; Lima, E.C.; Woo, S.H.; Sarmah, A.K.; Nguyen, H.Q.; Nguyen, P.T.; Nguyen, D.D.; et al. Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review. J. Hazard. Mater. 2019, 373, 258–270. [Google Scholar] [CrossRef]
- Dai, C.L.; Wu, X.C.; Wang, Q.; Bai, Y.C.; Zhao, D.; Fu, J.F.; Fu, B.F.; Ding, H. Layered double hydroxides for efficient treatment of heavy metals and organic pollutants: Recent progress and future perspectives. Sep. Purif. Technol. 2025, 352, 128277. [Google Scholar] [CrossRef]
- Fu, Y.L.; Fu, X.Q.; Song, W.; Li, Y.F.; Li, X.G.; Yan, L.G. Recent progress of layered double hydroxide-based materials in wastewater treatment. Materials 2023, 16, 5723. [Google Scholar] [CrossRef]
- Liu, T.T.; Zheng, M.Q.; Hao, P.P.; Ji, K.Y.; Shao, M.F.; Duan, H.H.; Kong, X.G. Efficient photo-oxidation remediation strategy toward arsenite-contaminated water and soil with zinc-iron layered double hydroxide as amendment. J. Environ. Chem. Eng. 2023, 11, 109233. [Google Scholar] [CrossRef]
- Hudcová, B.B.; Antelo, J.; Komárek, M. Arsenate and phosphate adsorption onto Mg-Fe layered double hydroxides: The charge-distribution multisite complexation (CD-MUSIC) modeling as a tool to predict competitive oxyanion behavior. Chem. Geol. 2024, 646, 121921. [Google Scholar] [CrossRef]
- Luengo, C.V.; Lopez, N.A.; Ramos, C.P.; Avena, M.J. Highly efficient arsenic adsorption onto Mg/Al/Fe layered double hydroxides: Kinetics, isotherm, XPS and Mossbauer spectroscopies. J. Water Process Eng. 2023, 56, 104542. [Google Scholar] [CrossRef]
- Roy, S.C.; Rahman, M.A.; Celik, A.; Wilson, S.; Azmy, A.; Bieber, J.; Spanopoulos, I.; Islam, R.; Zhu, X.C.; Han, F.X.X.; et al. Efficient removal of chromium(VI) ions by hexagonal nanosheets of CoAl-MoS4 layered double hydroxide. J. Coord. Chem. 2022, 75, 1581–1595. [Google Scholar] [CrossRef]
- Rezak, N.; Bahmani, A.; Bettahar, N. Adsorptive removal of P(V) and Cr(VI) by calcined Zn-Al-Fe ternary LDHs. Water Sci. Technol. 2021, 83, 2504–2517. [Google Scholar] [CrossRef] [PubMed]
- Guaya, D.; Cobos, H.; Valderrama, C.; Cortina, J.L. Effect of Mn2+/Zn2+/Fe3+ oxy(hydroxide) nanoparticles doping onto Mg-Al-LDH on the phosphate removal capacity from simulated wastewater. Nanomaterials 2022, 12, 3680. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.; Roy, S.C.; Islam, T.; Feng, R.F.; Zhu, X.C.; Donley, C.L.; Islam, S.M. Molybdenum-oxysulfide-functionalized MgAl-layered double hydroxides-A sorbent for selenium oxoanions. Inorg. Chem. 2024, 63, 10997–11005. [Google Scholar] [CrossRef]
- Chubar, N. XPS determined mechanism of selenite (HSeO3−) sorption in absence/ presence of sulfate (SO42−) on Mg-Al-CO3 Layered double hydroxides (LDHs): Solid phase speciation focus. J. Environ. Chem. Eng. 2023, 11, 109669. [Google Scholar] [CrossRef]
- Ibrahim, A.I.A.; Vohra, M.S. Mg-Fe-LDH for aquatic selenium treatment: Adsorption, RSM modeling, and machine learning neural network. Water Air Soil Pollut. 2023, 234, 433. [Google Scholar] [CrossRef]
- Akdag, S.; Keyikoglu, R.; Karagunduz, A.; Keskinler, B.; Khataee, A.; Yoon, Y. Recent advances in boron species removal and recovery using layered double hydroxides. Appl. Clay Sci. 2023, 233, 106814. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Kamel, N.K.; Amira, M.F.; Fekry, N.A. Nitrate removal from wastewater by a novel co-biochar from guava seeds/ beetroot peels-functionalized-Mg/Al double-layered hydroxide. Sep. Purif. Technol. 2024, 344, 127067. [Google Scholar] [CrossRef]
- Elhachemi, M.; Chemat-Djenni, Z.; Chebli, D.; Bouguettoucha, A.; Amrane, A. Synthesis and physicochemical characterization of new calcined layered double hydroxide Mg Zn Co Al-CO3; classical modeling and statistical physics of nitrate adsorption. Inorg. Chem. Commun. 2022, 145, 109549. [Google Scholar] [CrossRef]
- Celik, A.; Roy, S.C.; Quintero, M.A.; Taylor-Pashow, K.; Li, D.; Kanatzidis, M.G.; Zhu, X.C.; Islam, S.M. Unveiling the potential of (Sn2S6)4− functionalized layered double hydroxides for the sorption of ReO4− as a surrogate for 99TcO4−. Acs Appl. Eng. Mater. 2023, 1, 1711–1718. [Google Scholar] [CrossRef]
- Mayordomo, N.; Rodríguez, D.M.; Rossberg, A.; Foerstendorf, H.; Heim, K.; Brendler, V.; Müller, K. Analysis of technetium immobilization and its molecular retention mechanisms by Fe(II)-Al(III)-Cl layered double hydroxide. Chem. Eng. J. 2021, 408, 127265. [Google Scholar] [CrossRef]
- Kim, J.; Kang, J.; Um, W. Simultaneous removal of cesium and iodate using prussian blue functionalized CoCr layered double hydroxide (PB-LDH). J. Environ. Chem. Eng. 2022, 10, 107477. [Google Scholar] [CrossRef]
- Golban, A.; Lupa, L.; Cocheci, L.; Pode, R. Comparative studies regarding molybdate adsorption onto MgnFe layered double hydroxides obtained from reagent and waste sludge. Environ. Eng. Manag. J. 2020, 19, 235–245. [Google Scholar]
- Guo, Y.W.; Lu, H.T.; Han, B.J.; Zou, T.M.; Zhu, Z.L. Efficient vanadate removal by Mg-Fe-Ti layered double hydroxide. Water 2022, 14, 2090. [Google Scholar] [CrossRef]
- El-Reesh, G.Y.A.; Farghali, A.A.; Taha, M.; Mahmoud, R.K. Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(VI) removal. Sci. Rep. 2020, 10, 587. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.W.; Guo, Q.H.; Liang, M.S.; Sun, W.H. Sb(III) and Sb(V) removal from water by a hydroxyl-intercalated, mechanochemically synthesized Mg-Fe-LDH. Appl. Clay Sci. 2020, 196, 105766. [Google Scholar] [CrossRef]
- Hu, Y.X.; Zhang, S.Y.; Luo, C.H.; Wan, L.; Wu, S.; Baig, S.A.; Xu, X.H. Enhanced removal of Sb(V) from aqueous solutions using layered double hydroxide modified with sodium dodecyl sulfate. J. Environ. Chem. Eng. 2022, 10, 107776. [Google Scholar] [CrossRef]
- Ghobadi, S.; Samiey, B.; Esmaili, E.; Cheng, C.H. Comparison of kinetics of adsorption of permanganate on Co-Al-layered double hydroxide and MoS2 Nanocompounds. Acta Chim. Slov. 2023, 70, 44–58. [Google Scholar] [CrossRef]
- Tang, S.; Yao, Y.; Chen, T.Y.; Kong, D.Z.; Shen, W.; Lee, H.K. Recent advances in the application of layered double hydroxides in analytical chemistry: A review. Anal. Chim. Acta 2020, 1103, 32–48. [Google Scholar] [CrossRef]
- Abdallah, I.A.; Hammad, S.F.; Bedair, A.; Abdelhameed, R.M.; Locatelli, M.; Mansour, F.R. Applications of layered double hydroxides in sample preparation: A review. Microchem. J. 2023, 192, 108916. [Google Scholar] [CrossRef]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 1993; pp. 1972–1993. [Google Scholar]
- Tandon, R.K.; Crisp, P.T.; Ellis, J.; Baker, R.S. Effect of pH on chromium(VI) species in solution. Talanta 1984, 31, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Shenyang, T.; Kean, L. The distribution of chromium(VI) species in solution as a function of pH and concentration. Talanta 1986, 33, 775–777. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.W.; Alharbi, N.S.; Ren, X.M.; Chen, C.L. A comprehensive review on emerging natural and tailored materials for chromium-contaminated water treatment and environmental remediation. J. Environ. Chem. Eng. 2022, 10, 107325. [Google Scholar] [CrossRef]
- Khonkayan, K.; Sansuk, S.; Srijaranai, S.; Tuntulani, T.; Saiyasombat, C.; Busayaporn, W.; Ngeontae, W. New approach for detection of chromate ion by preconcentration with mixed metal hydroxide coupled with fluorescence sensing of copper nanoclusters. Microchim. Acta 2017, 184, 2965–2974. [Google Scholar] [CrossRef]
- Sansuk, S.; Nanan, S.; Srijaranai, S. New eco-friendly extraction of anionic analytes based on formation of layered double hydroxides. Green Chem. 2015, 17, 3837–3843. [Google Scholar] [CrossRef]
- Barfi, B.; Asghari, A.; Rajabi, M. Toward use of a nano layered double hydroxide/ammonium pyrrolidine dithiocarbamate in speciation analysis: One-step dispersive solid-phase extraction of chromium species in human biological samples. Arab. J. Chem. 2020, 13, 568–579. [Google Scholar] [CrossRef]
- Rajabi, M.; Arghavani-Beydokhti, S.; Barfi, B.; Asghari, A. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples. Anal. Chim. Acta 2017, 957, 1–9. [Google Scholar] [CrossRef]
- Leite, V.D.A.; de Jesus, B.G.L.; Duarte, V.G.D.; Constantino, V.R.L.; Izumi, C.M.S.; Tronto, J.; Pinto, F.G. Determination of chromium (VI) by dispersive solid-phase extraction using dissolvable Zn-Al layered double hydroxide intercalated with L-Alanine as adsorbent. Microchem. J. 2019, 146, 650–657. [Google Scholar] [CrossRef]
- Leite, V.D.A.; Constantino, V.R.L.; Izumi, C.M.S.; Tronto, J.; Pinto, F.G. A dispersive solid phase extraction-based method for chromium(vi) analysis using a Zn-Al layered double hydroxide intercalated withl-aspartic acid as a dissolvable adsorbent. New J. Chem. 2020, 44, 10087–10094. [Google Scholar] [CrossRef]
- Beyki, M.H.; Shemirani, F.; Aghagoli, M.J. Solid phase extraction of hexavalent chromium by Mannich base polymer wrapped flower-like layered double hydroxide. Int. J. Environ. Anal. Chem. 2017, 97, 201–216. [Google Scholar] [CrossRef]
- Jamali, B.U.; Elçi, A.; Siyal, A.N.; Samoon, M.K.; Elçi, L. Fabrication of nanostructured ZnNiBi-NO3 layered double hydroxides for speciation and preconcentration/separation of chromium ions prior to MIS-FAAS determination. Int. J. Environ. Anal. Chem. 2023. [Google Scholar] [CrossRef]
- Wani, A.A.; Khan, A.M.; Manea, Y.K.; Salem, M.A.S.; Shahadat, M. Selective adsorption and ultrafast fluorescent detection of Cr(VI) in wastewater using neodymium doped polyaniline supported layered double hydroxide nanocomposite. J. Hazard. Mater. 2021, 416, 125754. [Google Scholar] [CrossRef] [PubMed]
- Abdolmohammad-Zadeh, H.; Sadeghi, G.H. A nano-structured material for reliable speciation of chromium and manganese in drinking waters, surface waters and industrial wastewater effluents. Talanta 2012, 94, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Nyaba, L.; Nomngongo, P.N. Determination of trace metals in vegetables and water samples using dispersive ultrasound-assisted cloud point-dispersive μ-solid phase extraction coupled with inductively coupled plasma optical emission spectrometry. Food Chem. 2020, 322, 126749. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Rathinam, V.; Sharma, A.; Vallinayagam, S.; Muthusamy, M. Arsenic and environment: A systematic review on arsenic sources, uptake mechanism in plants, health hazards and remediation strategies. Top. Catal. 2024, 67, 325–341. [Google Scholar] [CrossRef]
- Kaur, R.; Garkal, A.; Sarode, L.; Bangar, P.; Mehta, T.; Singh, D.P.; Rawal, R. Understanding arsenic toxicity: Implications for environmental exposure and human health. J. Hazard. Mater. Lett. 2024, 5, 100090. [Google Scholar] [CrossRef]
- Patel, K.S.; Pandey, P.K.; Martin-Ramos, P.; Corns, W.T.; Varol, S.; Bhattacharya, P.; Zhu, Y.B. A review on arsenic in the environment: Contamination, mobility, sources, and exposure. Rsc. Adv. 2023, 13, 8803–8821. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Rahman, M.M.; Mise, N.; Sikder, M.T.; Ichihara, G.; Uddin, M.K.; Kurasaki, M.; Ichihara, S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ. Pollut. 2021, 289, 117940. [Google Scholar] [CrossRef]
- Fatoki, J.O.; Badmus, J.A. Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation. J. Hazard. Mater. Adv. 2022, 5, 100052. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef]
- Dias, A.C.; Fontes, M.P.F. Arsenic (V) removal from water using hydrotalcites as adsorbents: A critical review. Appl. Clay Sci. 2020, 191, 105615. [Google Scholar] [CrossRef]
- Abdolmohammad-Zadeh, H.; Talleb, Z. Speciation of As(III)/As(V) in water samples by a magnetic solid phase extraction based on Fe3O4/Mg-Al layered double hydroxide nano-hybrid followed by chemiluminescence detection. Talanta 2014, 128, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Abdolmohammad-Zadeh, H.; Jouyban, A.; Amini, R. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent. Talanta 2013, 116, 604–610. [Google Scholar] [CrossRef]
- Tan, L.C.; Nancharaiah, Y.V.; van Hullebusch, E.D.; Lens, P.N.L. Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnol. Adv. 2016, 34, 886–907. [Google Scholar] [CrossRef] [PubMed]
- Hadrup, N.; Ravn-Haren, G. Toxicity of repeated oral intake of organic selenium, inorganic selenium, and selenium nanoparticles: A review. J. Trace Elem. Med. Biol. 2023, 79, 127235. [Google Scholar] [CrossRef]
- Zeng, H.W. Selenium as an Essential Micronutrient: Roles in Cell Cycle and Apoptosis. Molecules 2009, 14, 1263–1278. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Sentkowska, A. Selenium in plant foods: Speciation analysis, bioavailability, and factors affecting composition. Crit. Rev. Food Sci. Nutr. 2021, 61, 1340–1352. [Google Scholar] [CrossRef]
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological activity of selenium and its impact on human health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef]
- Latorre, C.H.; García, J.B.; Martín, S.G.; Crecente, R.M.P. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: A review. Anal. Chim. Acta 2013, 804, 37–49. [Google Scholar] [CrossRef]
- Santos, S.; Ungureanu, G.; Boaventura, R.; Botelho, C. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods. Sci. Total Environ. 2015, 521, 246–260. [Google Scholar] [CrossRef]
- Séby, F.; Potin-Gautier, M.; Giffaut, E.; Borge, G.; Donard, O.F.X. A critical review of thermodynamic data for selenium species at 25 °C. Chem. Geol. 2001, 171, 173–194. [Google Scholar] [CrossRef]
- Etteieb, S.; Magdouli, S.; Zolfaghari, M.; Brar, S. Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review. Sci. Total Environ. 2020, 698, 134339. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, K.S.; Dhillon, S.K. Distribution and management of seleniferous soils. In Advances in Agronomy; Sparks, D.L., Ed.; Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2003; Volume 79, pp. 119–184. [Google Scholar]
- Chubar, N. EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol-gel generated Mg-Al-CO3 layered double hydroxide with very labile interlayer anions. J. Mater. Chem. A 2014, 2, 15995–16007. [Google Scholar] [CrossRef]
- Han, D.S.; Batchelor, B.; Abdel-Wahab, A. Sorption of selenium(IV) and selenium(VI) onto synthetic pyrite (FeS2): Spectroscopic and microscopic analyses. J. Colloid Interface Sci. 2012, 368, 496–504. [Google Scholar] [CrossRef]
- Chen, M.L.; An, M.I. Selenium adsorption and speciation with Mg-FeCO3 layered double hydroxides loaded cellulose fibre. Talanta 2012, 95, 31–35. [Google Scholar] [CrossRef]
- Abdolmohammad-Zadeh, H.; Jouyban, A.; Amini, R.; Sadeghi, G. Nickel-aluminum layered double hydroxide as a nano-sorbent for the solid phase extraction of selenium, and its determination by continuous flow HG-AAS. Microchim. Acta 2013, 180, 619–626. [Google Scholar] [CrossRef]
- Prasad, K.; Rao, K.S.; Gladis, J.M.; Naidu, G.R.K.; Rao, T.P. Determination of selenium(IV) after co-precipitation with Fe-Ti layered double hydroxides. Chem. Anal. 2006, 51, 613–622. [Google Scholar]
- Korany, M.A.; Mahmoud, R.K. A new approach for determination of water soluble hexavalent chromium in real cement and industrial water samples using Ni-Fe layered double hydroxides/urea/glycerol nanocomposite based potentiometric sensor. Microchem. J. 2021, 171, 106890. [Google Scholar] [CrossRef]
Sorbent Material | Advantages | Limitations |
---|---|---|
Layered double hydroxides | High sorption capacity; tunable composition; easy synthesis | Stability influenced by pH; regeneration may require chemical treatment |
Metal oxides | High affinity for oxyanions; relatively low cost | Limited pH range for effectiveness; challenging regeneration |
Activated carbon | Large surface area; high porosity; widely available | Non-selective; low efficiency for certain oxyanions without modification |
Anion exchange resins | High selectivity; good regeneration potential | Limited capacity; expensive; prone to fouling |
Zeolites | High surface area; good ion-exchange properties | Can be costly; selectivity varies with zeolite type |
Biochar | Sustainable; environmentally friendly; low-cost | Low selectivity; often requires modification for better performance |
Chitosan-based materials | Biodegradable; high affinity for oxyanions; easy to modify | Lower mechanical strength; limited sorption capacity |
Clay minerals | Abundant; inexpensive; good ion-exchange properties | Limited capacity and selectivity; often require modification |
Polymeric sorbents | Highly selective; good mechanical stability | Expensive; complex synthesis |
Advantages | Disadvantages |
---|---|
High surface area | Sensitivity to pH and ionic strength |
High sorption capacity | Limited stability |
Tunable composition | Limited understanding of mechanisms |
Selective anion sorption | Anion competition |
Enhanced extraction efficiency | Potential leaching |
Eco-friendliness | Cost considerations |
Regenerability and reusability | Limited commercial availability |
Intercalation properties | Characterization challenges |
LDH | Analyte | Detection Technique | LOD (µg/L) | RSD (%) | PF | Recovery (%) | Ref. |
---|---|---|---|---|---|---|---|
Mg/Al(Cl−) | Cr(VI) | UV-Vis | 22.0 | 9.8 | 10 | 30–97 | [58] |
Zn/Al(APDC) | Cr(VI) | FAAS | 2.4 | 4.0 | 42.5 | 96–101 | [59] |
Zn/Al(ALA) | Cr(VI) | FAAS | 7.1 | 2.7 | 6.6 | 98–110 | [61] |
Zn/Al(ASP) | Cr(VI) | FAAS | 3.1 | 3.0 | 7.0 | 98–103 | [62] |
Mg/Al(Cl−/(CO32−)/polymer | Cr(VI) | FAAS | 0.22 | 3.3 | n.r. | 96–98 | [63] |
Zn/Ni/Bi(NO3−) | Cr(VI) | FAAS | 0.030 | 2.4 | 400 | >97 | [64] |
Ni/Al(NO3−) | Cr(VI) | FAAS | 0.51 | 2.5 | 100 | 95–101 | [66] |
Mg/Al(NO3−)/CNTs | Cr(VI) | ICP-OES | 0.10 | 4.2 | 185 | 97–99 | [67] |
Mg/Al(Cl−) | Cr(VI) | Fluorescence | 310 * | 6.0 | 12.4 | 102–107 | [57] |
Nd/Zn/Al(PANI) | Cr(VI) | Fluorescence | 96 * | 5.5 | n.r. | 57–97 | [65] |
Ni/Fe(UA/GL) | Cr(VI) | Potentiometry | 64 * | 1.4 | n.r. | 97–101 | [92] |
Ni/Fe(UA) | Cr(VI) | Potentiometry | 100 * | 1.0 | n.r. | 99–101 | [92] |
Fe3O4-doped Mg/Al(NO3−) | As(V) | CL | 0.002 | 2.2 | 80 | 93–107 | [75] |
Mg/Al/Fe(NO3−) | iAstot | ETAAS | 0.0046 | 3.9 | 300 | 97–103 | [76] |
Mg/Al/NO3−)/CNTs | iAstot | ICP-OES | 0.15 | 1.9 | 177 | 97–100 | [67] |
Mg/Fe(CO32−)/cellulose | Se(IV) | HG-AFS | 0.022 | 3.3 | 13.3 | 95–96 | [89] |
Ni/Al(NO3−) | Se(IV) | HG-AAS | 0.010 | 2.8 | 33 | 95–103 | [90] |
Fe/Ti(SO42−) | Se(IV) | UV-Vis | 1.0 | 3.0 | 200 | 96–100 | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagarová, I.; Andruch, V. Enhancing Analytical Potential for Ultratrace Analysis of Inorganic Oxyanions Using Extraction Procedures with Layered Double Hydroxides. Toxics 2024, 12, 780. https://doi.org/10.3390/toxics12110780
Hagarová I, Andruch V. Enhancing Analytical Potential for Ultratrace Analysis of Inorganic Oxyanions Using Extraction Procedures with Layered Double Hydroxides. Toxics. 2024; 12(11):780. https://doi.org/10.3390/toxics12110780
Chicago/Turabian StyleHagarová, Ingrid, and Vasil Andruch. 2024. "Enhancing Analytical Potential for Ultratrace Analysis of Inorganic Oxyanions Using Extraction Procedures with Layered Double Hydroxides" Toxics 12, no. 11: 780. https://doi.org/10.3390/toxics12110780
APA StyleHagarová, I., & Andruch, V. (2024). Enhancing Analytical Potential for Ultratrace Analysis of Inorganic Oxyanions Using Extraction Procedures with Layered Double Hydroxides. Toxics, 12(11), 780. https://doi.org/10.3390/toxics12110780