Reproductive Toxicity and Multi/Transgenerational Effects of Emerging Pollutants on C. elegans
Abstract
:1. Introduction
2. Methods
3. Reproductive Toxicity of EPs on Contemporary C. elegans
3.1. PFCs
3.2. Endocrine Disrupting Chemicals (EDCs)
3.3. MPs
3.4. Antibiotics
EPs | Exposure Condition | Visualized Endpoints of Reproductive Toxicity | Reference | |
---|---|---|---|---|
PFCs | PFOS PFBS | 0.1 μM (50.0 μg/L) 500, 1000, 1500 μM (150.0, 300.1, 450.15 mg/L) | egg production, brood size, apoptosis | [20] |
PFOS PFOA | 0.001, 0.01, 0.1 mmol/L (0.5, 5.0, 50.0 mg/L) 0.001, 0.01, 0.1 mmol/L (0.4, 4.1, 41.4 mg/L) | brood size, spermatid (size, morphology, and activation), number of germ cells | [19] | |
EDCs | DEHP | 0.1, 1, 10 mg/L | brood size, generation time, oocyte numbers, gonadal structure, apoptosis | [23] |
BDE-47 | 1, 3, 10, 30 µg/mL | offspring number, average time of egg-laying, apoptosis | [32] | |
BPA | 100, 500 μM (22.8, 114.1 mg/L) | egg number, brood size, embryonic lethality, apoptosis | [42] | |
NP | 1, 10, 200, 400 μg/L | brood size, gonad system | [22] | |
Carbendazim | 0.01, 0.1, 10, 100 μg/L | brood size | [29] | |
ATR | 0.0004, 0.004, 0.04, 0.4, 4, 40 mg/L | brood size, generation time | [28] | |
TnBP | 0.1, 1, 10, 100, 1000 μg/L | brood size, numbers of germline cells and fertilized eggs, area of gonad arm, apoptosis | [31] | |
DEHP | 0.1, 1, 10 mg/L | brood size, egg-laying rate, eggs in the uterus, gonadal area, germline cell numbers | [24] | |
TCBPA | 0.01, 0.1, 1, 10, 100 μg/L | brood size, apoptosis | [43] | |
Fosthiazate | 0.01, 0.1, 1, 10 mg/L | brood size | [26] | |
ATR/2,4-D CPF/CYP/MCZ | 1, 10, 100, 1000 µg/L 0.1, 1, 10, 100 µg/L | brood size, percentage of gravid nematodes | [30] | |
FNT | 0.4, 4, 40, 400 µg/L | brood size, germ cell numbers, generation time, gonadal development | [27] | |
TPHP | 1, 10, 100, 500 µg/L | germline apoptotic cells, number of embryos, total progeny per worm | [44] | |
DEHP | 0.625, 1.25, 2.5, 5, 10 mM (0.2, 0.5, 1.0, 2.0, 3.9 g/L) | number of eggs | [25] | |
4-NP | 8 ng/L, 8 µg/L | brood size, oosperm numbers, ovulation rate, total number of germ cells | [21] | |
MPs/NPs | Pristine/NPS-NH2 | 1, 10, 100, 1000 µg/L | brood size, number of fertilized eggs, length of gonad arm, relative area of gonad arm, germline apoptosis | [36] |
MC-LR NPS | 0.1, 1, 10 µg/L 0.1, 1 µg/L | brood size | [39] | |
PS | 0.01, 0.1, 1, 10, 100 mg/L 0.01, 0.1, 1, 10, 100 mg/kg | number of offspring | [35] | |
NPS | 1, 10, 100, 1000 mg/kg | number of eggs in utero and hatched eggs, apoptosis | [34] | |
Pristine/UV-PS | 0.1, 1, 10, 100 µg/L | brood size, number of egg ejections, apoptosis | [37] | |
Pristine/aged PLA-MPs | 0.1, 1, 10, 100 µg/L | brood size, number of hatched eggs and fertilized eggs in the uterus, number of total germline cells, area and length of gonad arm, apoptosis | [38] | |
Antibiotics | ENR/CIP/NOR/OFL/FLE/LOM/SAR | 5.56, 13.9, 27.8, 55.6, 139, 209, 278, 556 μmol/kg | brood size, egg hatchability, morphology of eggs in the uterus, apoptosis | [40] |
SMX | 0.001, 1, 10, 100 mg/L | cumulative offspring | [41] |
4. Multi/Trans-Generational Reproductive Toxicity of EPs on C. elegans
4.1. PFCs
4.2. EDCs
4.3. MPs
4.4. Antibiotics
EPs | Exposure Condition | Exposure Method | Number of Generations | Visualized Endpoints | Reference | |
---|---|---|---|---|---|---|
PFCs | PFOS | 0.01, 0.1, 1 μM (5.0, 50.0, 500.13 μg/L) 0.001 μM (0.5 μg/L) | parental exposure successive exposure | six (P0–F5) | brood size | [52] |
EDCs | DEHP | 20 mg/L | parental exposure | six (F0–F5) | brood size | [54] |
HBCD | 0.2, 2, 20, 200 nM (0.13, 1.3, 12.8, 128.3 μg/L) | parental exposure | two (F0–F1) | brood size | [53] | |
BPS | 0.001, 0.01, 0.1, 1, 10, 100 µM (0.3, 2.5, 25.0, 250.3, 2502.7, 25,027 μg/L) | successive exposure | four (G1–G4) | brood size | [57] | |
TEB | 0.01, 0.1, 1, 10 μg/L | parental exposure | five (P0–F4) | brood size, reproductive system abnormality, embryo hatchability | [55] | |
TBBPA | 0.1, 1, 10, 100, 1000 μg/L | parental exposure | two (G1–G2) | brood size | [56] | |
Glufosinate | 0.1, 1, 10, 100 μg/L | successive exposure | three (F0–F2) | brood size, number of pregnant eggs | [67] | |
ATR | 0.0004, 0.004, 0.04, 0.4, 4, 40 mg/L | successive and parental exposure | six (P0–F5) | brood size, fertilized eggs, oocytes, ovulation rate, bag of worms, germ cell numbers, relative area of gonad arm | [58] | |
MPs/NPs | PS-NPs | 1, 10, 50, 100 mg/L/ 100 mg/L | successive exposure parental exposure | five (F0–F4) | brood size, germline apoptosis | [68] |
NPS/NPS-NH2 | 1, 10, 100 μg/L | parental exposure | five (P0–F4) | brood size, number of fertilized eggs and germline cells, length and area of gonad arm, apoptosis | [62] | |
NPS | 0.1, 1, 10, 100 μg/L | parental exposure | eight (P0–F7) | brood size | [61] | |
NPS | 1, 10, 100 μg/L | parental exposure | six (P0–F5) | brood size | [59] | |
NPS-S | 1, 10, 100 μg/L | parental exposure | five (P0–F4) | brood size, number of fertilized eggs | [69] | |
PLA-MPs | 1, 10, 100 μg/L | parental exposure | four (P0–F3) | brood size, number of fertilized eggs, gonad development, germline apoptosis | [60] | |
PS/PS-NH2/PS-COOH | 100 μg/L | parental exposure | five (P0–F4) | brood size, fertilized eggs, egg ejection rate, cell corpses per gonad | [63] | |
NPS-NH2 | 0.1, 1, 10 μg/L | parental exposure | five (P0–F4) | brood size, number of fertilized eggs | [70] | |
Antibiotics | OFL NOR | 2.6 ng/L 6.5 ng/L | successive and parental exposure | nine (F1–F9) | number of offspring | [64] |
ENR | 229 ng/L | successive exposure | nine (F1–F9) | number of offspring | [65] | |
ERY SMZ | 0.022, 22.0 mg/L 0.036, 36.0 mg/L | successive and parental exposure | four (F1–F4) | number of offspring | [66] |
5. Underlying Mechanisms of Reproductive Toxicity Induced by EPs
5.1. Apoptosis in Germ Cell
5.2. Spermatogenesis
5.3. Epigenetic Alteration
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; He, X.; Qi, K.; Wang, T.; Qi, Y.; Cui, L.; Wang, F.; Song, M. Effects of environmental contaminants on fertility and reproductive health. J. Environ. Sci. 2019, 77, 210–217. [Google Scholar] [CrossRef]
- Carson, S.A.; Kallen, A.N. Diagnosis and Management of Infertility. JAMA 2021, 326, 65–76. [Google Scholar] [CrossRef]
- Pedro, J.; Brandão, T.; Schmidt, L.; Costa, M.E.; Martins, M.V. What do people know about fertility? A systematic review on fertility awareness and its associated factors. Upsala J. Med. Sci. 2018, 123, 71–81. [Google Scholar] [CrossRef]
- Dutta, S.; Gorain, B.; Choudhury, H.; Roychoudhury, S.; Sengupta, P. Environmental and occupational exposure of metals and female reproductive health. Environ. Sci. Pollut. Res. 2022, 29, 62067–62092. [Google Scholar] [CrossRef] [PubMed]
- Chia, X.K.; Hadibarata, T.; Jusoh, M.N.H.; Sutiknowati, L.I.; Tan, I.S.; Foo, H.C.Y. Role of Extremophiles in Biodegradation of Emerging Pollutants. Top. Catal. 2024, 1–18. [Google Scholar] [CrossRef]
- Matei, E.; Covaliu-Mierla, C.I.; Ţurcanu, A.A.; Râpă, M.; Predescu, A.M.; Predescu, C. Multifunctional Membranes-A Versatile Approach for Emerging Pollutants Removal. Membranes 2022, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Xu, M.; Tu, P.; Xu, Y.; Li, X.; Xing, M.; Chen, Z.; Wang, X.; Lou, X.; Wu, L.; et al. Emerging Contaminants: An Emerging Risk Factor for Diabetes Mellitus. Toxics 2024, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Khasin, L.G.; Della Rosa, J.; Petersen, N.; Moeller, J.; Kriegsfeld, L.J.; Lishko, P.V. The Impact of Di-2-Ethylhexyl Phthalate on Sperm Fertility. Front. Cell Dev. Biol. 2020, 8, 426. [Google Scholar] [CrossRef]
- Cui, Q.; Pan, Y.; Wang, J.; Liu, H.; Yao, B.; Dai, J. Exposure to per- and polyfluoroalkyl substances (PFASs) in serum versus semen and their association with male reproductive hormones. Environ. Pollut. 2020, 266, 115330. [Google Scholar] [CrossRef]
- Albert, O.; Huang, J.Y.; Aleksa, K.; Hales, B.F.; Goodyer, C.G.; Robaire, B.; Chevrier, J.; Chan, P. Exposure to polybrominated diphenyl ethers and phthalates in healthy men living in the greater Montreal area: A study of hormonal balance and semen quality. Environ. Int. 2018, 116, 165–175. [Google Scholar] [CrossRef]
- Kim, Y.; Park, Y.; Hwang, J.; Kwack, K. Comparative genomic analysis of the human and nematode Caenorhabditis elegans uncovers potential reproductive genes and disease associations in humans. Physiol. Genom. 2018, 50, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- Habas, K.; Demir, E.; Guo, C.; Brinkworth, M.H.; Anderson, D. Toxicity mechanisms of nanoparticles in the male reproductive system. Drug Metab. Rev. 2021, 53, 604–617. [Google Scholar] [CrossRef]
- Barakat, R.; Lin, P.P.; Rattan, S.; Brehm, E.; Canisso, I.F.; Abosalum, M.E.; Flaws, J.A.; Hess, R.; Ko, C. Prenatal Exposure to DEHP Induces Premature Reproductive Senescence in Male Mice. Toxicol. Sci. 2017, 156, 96–108. [Google Scholar] [CrossRef]
- Song, P.; Li, D.; Wang, X.; Zhong, X. Effects of perfluorooctanoic acid exposure during pregnancy on the reproduction and development of male offspring mice. Andrologia 2018, 50, e13059. [Google Scholar] [CrossRef]
- Ruszkiewicz, J.A.; Pinkas, A.; Miah, M.R.; Weitz, R.L.; Lawes, M.J.A.; Akinyemi, A.J.; Ijomone, O.M.; Aschner, M.C. C. Elegans as a model in developmental neurotoxicology. Toxicol. Appl. Pharmacol. 2018, 354, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhang, T.; Tang, M. A critical review of advances in reproductive toxicity of common nanomaterials to Caenorhabditis elegans and influencing factors. Environ. Pollut. 2022, 306, 119270. [Google Scholar] [CrossRef] [PubMed]
- C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 1998, 282, 2012–2018. [Google Scholar] [CrossRef]
- Zitouni, F.; Kumar, M.; Uday, V.; Srivastava, P.; Deka, B.J.; Zitouni, F.; Mahlknecht, J. EI/IOT of PFCs: Environmental impacts/interactions, occurrences, and toxicities of perfluorochemicals. Environ. Res. 2023, 218, 114707. [Google Scholar]
- Yin, J.; Jian, Z.; Zhu, G.; Yu, X.; Pu, Y.; Yin, L.; Wang, D.; Bu, Y.; Liu, R. Male reproductive toxicity involved in spermatogenesis induced by perfluorooctane sulfonate and perfluorooctanoic acid in Caenorhabditis elegans. Environ. Sci. Pollut. Res. 2021, 28, 1443–1453. [Google Scholar] [CrossRef]
- Chen, F.; Wei, C.; Chen, Q.; Zhang, J.; Wang, L.; Zhou, Z.; Chen, M.; Liang, Y. Internal concentrations of perfluorobutane sulfonate (PFBS) comparable to those of perfluorooctane sulfonate (PFOS) induce reproductive toxicity in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2018, 158, 223–229. [Google Scholar] [CrossRef]
- Wang, J.; Yin, J.; Peng, D.; Zhang, X.; Shi, Z.; Li, W.; Shi, Y.; Sun, M.; Jiang, N.; Cheng, B.; et al. 4-Nitrophenol at environmentally relevant concentrations mediates reproductive toxicity in Caenorhabditis elegans via metabolic disorders-induced estrogen signaling pathway. J. Environ. Sci. 2025, 147, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Yan, C.; Wu, X.; Zhou, L.; Xiu, G. Nonylphenol induced individual and population fluctuation of Caenorhabditis elegans: Disturbances on developmental and reproductive system. Environ. Res. 2020, 186, 109486. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Liu, R.; Jian, Z.; Yang, D.; Pu, Y.; Yin, L.; Wang, D. Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2018, 163, 298–306. [Google Scholar] [CrossRef]
- Li, J.; Qu, M.; Wang, M.; Yue, Y.; Chen, Z.; Liu, R.; Bu, Y.; Li, Y. Reproductive toxicity and underlying mechanisms of di(2-ethylhexyl) phthalate in nematode Caenorhabditis elegans. J. Environ. Sci. 2021, 105, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zongur, A. Evaluation of the Effects of Di-(2-ethylhexyl) phthalate (DEHP) on Caenorhabditis elegans Survival and Fertility. Appl. Biochem. Biotecnolh. 2024, 1–12. [Google Scholar]
- Liu, S.; Wu, Q.; Zhong, Y.; He, Z.; Wang, Z.; Li, R.; Wang, M. Fosthiazate exposure induces oxidative stress, nerve damage, and reproductive disorders in nontarget nematodes. Environ. Sci. Pollut. Res. 2022, 30, 12522–12531. [Google Scholar] [CrossRef]
- Li, W.; Ma, L.; Shi, Y.; Wang, J.; Yin, J.; Wang, D.; Luo, K.; Liu, R. Meiosis-mediated reproductive toxicity by fenitrothion in Caenorhabditis elegans from metabolomic perspective. Ecotoxicol. Environ. Saf. 2023, 253, 114680. [Google Scholar]
- Yin, J.; Hong, X.; Ma, L.; Liu, R.; Bu, Y. Non-targeted metabolomic profiling of atrazine in Caenorhabditis elegans using UHPLC-QE Orbitrap/MS. Ecotoxicol. Environ. Saf. 2020, 206, 111170. [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Zhang, C.; Zhao, Y.; Zhu, Y.; Zhang, J.; Bai, J.; Xiao, X. The Effects of Carbendazim on Acute Toxicity, Development, and Reproduction in Caenorhabditis elegans. J. Food Qual. 2020, 2020, 8853537. [Google Scholar] [CrossRef]
- Moya, A.; Tejedor, D.; Manetti, M.; Clavijo, A.; Pagano, E.; Munarriz, E.; Kronberg, M.F. Reproductive toxicity by exposure to low concentrations of pesticides in Caenorhabditis elegans. Toxicology 2022, 475, 153229. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, T.; Song, X.; Zhou, Q.; Tang, J.; Sun, Q.; Pu, Y.; Yin, L.; Zhang, J. Study on the reproductive toxicity and mechanism of tri-n-butyl phosphate (TnBP) in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2021, 227, 112896. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Xi, J.; Liu, W.; Cao, Y.; Tang, W.; Zhang, X.; Yu, Y.; Luan, Y. 2,2′,4,4′-tetrabromodiphenyl ether induces germ cell apoptosis through oxidative stress by a MAPK-mediated p53-independent pathway. Environ. Pollut. 2018, 242, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Wu, S.; Lu, S.; Liu, M.; Song, Y.; Fu, Z.; Shi, H.; Raley-Susman, K.M.; He, D. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci. Total Environ. 2018, 619–620, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yen, P.; Kuo, Y.; Chang, C.; Liao, V.H. Nanoplastic exposure in soil compromises the energy budget of the soil nematode C. elegans and decreases reproductive fitness. Environ. Pollut. 2022, 312, 120071. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Kim, D.; Jeong, S.W.; An, Y.J. Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties. Environ. Pollut. 2020, 258, 113740. [Google Scholar] [CrossRef]
- Qu, M.; Qiu, Y.; Kong, Y.; Wang, D. Amino modification enhances reproductive toxicity of nanopolystyrene on gonad development and reproductive capacity in nematode Caenorhabditis elegans. Environ. Pollut. 2019, 254, 112978. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Y.; Wang, C.; Hua, X.; Li, H.; Xie, D.; Xiang, M.; Yu, Y. Reproductive toxicity of UV-photodegraded polystyrene microplastics induced by DNA damage-dependent cell apoptosis in Caenorhabditis elegans. Sci. Total Environ. 2022, 811, 152350. [Google Scholar] [CrossRef]
- Shao, Y.; Hua, X.; Li, Y.; Wang, D. Comparison of reproductive toxicity between pristine and aged polylactic acid microplastics in Caenorhabditis elegans. J. Hazard. Mater. 2024, 466, 133545. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Nida, A.; Kong, Y.; Du, H.; Xiao, G.; Wang, D. Nanopolystyrene at predicted environmental concentration enhances microcystin-LR toxicity by inducing intestinal damage in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2019, 183, 109568. [Google Scholar] [CrossRef]
- Huang, J.; Liao, L.; Wang, G.; Du, Z.; Wu, Z. Reproductive toxicity of enrofloxacin in Caenorhabditis elegans involves oxidative stress-induced cell apoptosis. J. Environ. Sci. 2023, 127, 726–737. [Google Scholar] [CrossRef]
- Kuo, Y.; How, C.M.; Huang, C.; Yen, P.; Yu, C.; Chang, C.; Liao, V.H. Co-contaminants of ethinylestradiol and sulfamethoxazole in groundwater exacerbate ecotoxicity and ecological risk and compromise the energy budget of C. elegans. Aquat. Toxicol. 2023, 257, 106473. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Panter, B.; Hussain, A.; Gibbs, K.; Ferreira, D.; Allard, P. BPA interferes with StAR-mediated mitochondrial cholesterol transport to induce germline dysfunctions. Reprod. Toxicol. 2019, 90, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Hua, X.; Chen, H.; Yang, Y.; Dang, Y.; Xiang, M. Tetrachlorobisphenol A mediates reproductive toxicity in Caenorhabditis elegans via DNA damage-induced apoptosis. Chemosphere 2022, 300, 134588. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wang, C.; Zeng, L.; Peng, Y.; Li, Y.; Hao, H.; Zheng, Y.; Chen, C.; Chen, H.; Zhang, J.; et al. Triphenyl phosphate induced reproductive toxicity through the JNK signaling pathway in Caenorhabditis elegans. J. Hazard. Mater. 2023, 446, 130643. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.R. The C. elegans model in toxicity testing. J. Appl. Toxicol. 2017, 37, 50–59. [Google Scholar]
- Lohr, H.; Hammerschmidt, M. Zebrafish in endocrine systems: Recent advances and implications for human disease. Annu. Rev. Physiol. 2011, 73, 183–211. [Google Scholar] [CrossRef]
- McNamara, M.P.; Singleton, J.M.; Cadney, M.D.; Ruegger, P.M.; Borneman, J.; Garland, T. Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. J. Exp. Biol. 2021, 224, jeb239699. [Google Scholar] [CrossRef]
- Long, N.P.; Kang, J.S.; Kim, H.M. Caenorhabditis elegans: A model organism in the toxicity assessment of environmental pollutants. Environ. Sci. Pollut. Res. Int. 2023, 30, 39273–39287. [Google Scholar] [CrossRef]
- Scharf, A.; Pohl, F.; Egan, B.M.; Kocsisova, Z.; Kornfeld, K. Reproductive Aging in Caenorhabditis elegans: From Molecules to Ecology. Front. Cell Dev. Biol. 2021, 9, 718522. [Google Scholar] [CrossRef]
- Li, H.; Zeng, L.; Wang, C.; Shi, C.; Li, Y.; Peng, Y.; Chen, H.; Zhang, J.; Cheng, B.; Chen, C.; et al. Review of the toxicity and potential molecular mechanisms of parental or successive exposure to environmental pollutants in the model organism Caenorhabditis elegans. Environ. Pollut. 2022, 311, 119927. [Google Scholar] [CrossRef]
- Wamucho, A.; Unrine, J.; May, J.; Tsyusko, O. Global DNA Adenine Methylation in Caenorhabditis elegans after Multigenerational Exposure to Silver Nanoparticles and Silver Nitrate. Int. J. Mol. Sci. 2023, 24, 6168. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.I.; Sana, T.; Panneerselvan, L.; Sivaram, A.K.; Megharaj, M. Perfluorooctane sulfonate (PFOS) induces several behavioral defects in Caenorhabditis elegans that can also be transferred to the next generations. Chemosphere 2022, 291, 132896. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Guo, S.; Li, H.; Zhou, D.; Cao, X.; Wang, C.; Liu, Y.; Xiang, M.; Li, L.; Yu, Y. Multi-generational effects and variations of stress response by hexabromocyclododecane (HBCD) exposure in the nematode Caenorhabditis elegans. J. Environ. Manag. 2019, 245, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; How, C.M.; Liao, V.H. Prolonged exposure of di(2-ethylhexyl) phthalate induces multigenerational toxic effects in Caenorhabditis elegans. Sci. Total Environ. 2018, 634, 260–266. [Google Scholar] [CrossRef]
- Lu, Q.; Bu, Y.; Ma, L.; Liu, R. Transgenerational reproductive and developmental toxicity of tebuconazole in Caenorhabditis elegans. J. Appl. Toxicol. 2020, 40, 578–591. [Google Scholar] [CrossRef]
- Liu, F.; Luo, Q.; Zhang, Y.; Huang, K.; Cao, X.; Cui, C.; Lin, K.; Zhang, M. Trans-generational effect of neurotoxicity and related stress response in Caenorhabditis elegans exposed to tetrabromobisphenol A. Sci. Total Environ. 2020, 703, 134920. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, X.; Zhang, C.; Li, J.; Zhao, Y.; Zhu, Y.; Zhang, J.; Zhou, X. Toxicity and multigenerational effects of bisphenol S exposure to Caenorhabditis elegans on developmental, biochemical, reproductive and oxidative stress. Toxicol. Res. 2019, 8, 630–640. [Google Scholar] [CrossRef]
- Yin, J.; Hong, X.; Wang, J.; Li, W.; Shi, Y.; Wang, D.; Liu, R. DNA methylation 6 mA and histone methylation involved in multi-/trans-generational reproductive effects in Caenorhabditis elegans induced by Atrazine. Ecotoxicol. Environ. Saf. 2023, 249, 114348. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Zhao, Y.; Nurdebek, B.; Bu, Y.; Wang, D. Long-term exposure to polystyrene nanoparticles causes transgenerational toxicity by affecting the function and expression of MEV-1 and DAF-2 signals in Caenorhabditis elegans. Nanoimpact 2022, 26, 100403. [Google Scholar] [CrossRef]
- Shao, Y.; Li, Y.; Wang, D. Polylactic acid microplastics cause transgenerational reproductive toxicity associated with activation of insulin and hedgehog ligands in C. elegans. Sci. Total Environ. 2024, 942, 173746. [Google Scholar] [CrossRef]
- Liu, H.; Tian, L.; Wang, S.; Wang, D. Size-dependent transgenerational toxicity induced by nanoplastics in nematode Caenorhabditis elegans. Sci. Total Environ. 2021, 790, 148217. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liao, K.; Wang, D. Comparison of transgenerational reproductive toxicity induced by pristine and amino modified nanoplastics in Caenorhabditis elegans. Sci. Total Environ. 2021, 768, 144362. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, X.; Gu, Y.; Jiang, Y.; Guo, H.; Chen, J.; Yu, J.; Wang, C.; Chen, C.; Li, H. Transgenerational reproductive toxicity induced by carboxyl and amino charged microplastics at environmental concentrations in Caenorhabditis elegans: Involvement of histone methylation. Sci. Total Environ. 2024, 949, 175132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zheng, Y.; Yu, Z. Reproductive toxicities of ofloxacin and norfloxacin on Caenorhabditis elegans with multi-generational oscillatory effects and trans-generational residual influences. Environ. Toxicol. Phar. 2022, 95, 103962. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yu, Z.; Zhang, J. Multi-generational effects of enrofloxacin on lifespan and reproduction of Caenorhabditis elegans with SKN-1-mediated antioxidant responses and lipid metabolism disturbances. Sci. Total Environ. 2022, 804, 150250. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, L.; Li, G.; Zhang, J. Reproductive Influences of Erythromycin and Sulfamethoxazole on Caenorhabditis elegans over Generations Mediated by Lipid Metabolism. Chem. Res. Chin. 2023, 39, 434–440. [Google Scholar] [CrossRef]
- Zhao, X.; Fu, K.; Xiang, K.; Wang, L.; Zhang, Y.; Luo, Y. Comparison of the chronic and multigenerational toxicity of racemic glufosinate and -glufosinate to Caenorhabditis elegans at environmental concentrations. Chemosphere 2023, 316, 137863. [Google Scholar] [CrossRef]
- Yu, C.; Luk, T.C.; Liao, V.H. Long-term nanoplastics exposure results in multi and trans-generational reproduction decline associated with germline toxicity and epigenetic regulation in Caenorhabditis elegans. J. Hazard. Mater. 2021, 412, 125173. [Google Scholar] [CrossRef]
- He, W.; Gu, A.; Wang, D. Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans. Toxics 2023, 11, 511. [Google Scholar] [CrossRef]
- Liu, H.; Tan, X.; Li, X.; Wu, Y.; Lei, S.; Wang, Z. Amino-modified nanoplastics at predicted environmental concentrations cause transgenerational toxicity through activating germline EGF signal in Caenorhabditis elegans. Sci. Total Environ. 2024, 947, 174766. [Google Scholar] [CrossRef]
- Lettre, G.; Hengartner, M.O. Developmental apoptosis in C. elegans: A complex CEDnario. Nat. Rev. Mol. Cell Biol. 2006, 7, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Pourkarimi, E.; Greiss, S.; Gartner, A. Evidence that CED-9/Bcl2 and CED-4/Apaf-1 localization is not consistent with the current model for C. elegans apoptosis induction. Cell. Death Differ. 2012, 19, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, E.R.; Milstein, S.; Boulton, S.J.; Ye, M.; Hofmann, J.J.; Stergiou, L.; Gartner, A.; Vidal, M.; Hengartner, M.O. Caenorhabditis elegans HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis. Curr. Biol. 2002, 12, 1908–1918. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, Q.; Wang, D. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials 2016, 79, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Derry, W.B.; Putzke, A.P.; Rothman, J.H. Caenorhabditis elegans p53: Role in apoptosis, meiosis, and stress resistance. Science 2001, 294, 591–595. [Google Scholar] [CrossRef]
- Halliwell, B. Free radicals and antioxidants—Quo vadis? Trends Pharmacol. Sci. 2011, 32, 125–130. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signaling pathways by reactive oxygen species. Biochim. Biophys. Acta (BBA) Mol. Cell. Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Kaliman, P. Epigenetics and meditation. Curr. Opin. Psychol. 2019, 28, 76–80. [Google Scholar] [CrossRef]
- Ashapkin, V.; Suvorov, A.; Pilsner, J.R.; Krawetz, S.A.; Sergeyev, O. Age-associated epigenetic changes in mammalian sperm: Implications for offspring health and development. Hum. Reprod. 2023, 29, 24–44. [Google Scholar] [CrossRef]
- Lee, G.S.; Conine, C.C. The Transmission of Intergenerational Epigenetic Information by Sperm microRNAs. Epigenomes 2022, 6, 12. [Google Scholar] [CrossRef]
- Wei, C.; Yen, P.; Chaikritsadakarn, A.; Huang, C.; Chang, C.; Liao, V.H. Parental CuO nanoparticles exposure results in transgenerational toxicity in Caenorhabditis elegans associated with possible epigenetic regulation. Ecotoxicol. Environ. Saf. 2020, 203, 111001. [Google Scholar] [CrossRef] [PubMed]
- Kerr, S.C.; Ruppersburg, C.C.; Francis, J.W.; Katz, D.J. SPR-5 and MET-2 function cooperatively to reestablish an epigenetic ground state during passage through the germ line. Proc. Natl. Acad. Sci. USA 2014, 111, 9509–9514. [Google Scholar] [CrossRef] [PubMed]
EPs | Possible Mechanisms Involved | Genes Involved | References |
---|---|---|---|
PFOS/PFBS | ROS, germ cell apoptosis | sod-3, ctl-2, gst-4, ced-13, egl-1 | [20] |
DEHP | oxidative stress, DNA damage, oocyte apoptosis | cep-1, ced-4, ced-3, ced-9, egl-1, mev-1, gas-1 | [23] |
BDE-47 | oxidative stress, oocyte apoptosis (p53-independent MAPK pathway) | cep-1, sek-1, abl-1, mek-1, hus-1, egl-1 | [32] |
BPA | StAR-mediated mitochondrial cholesterol transport | strl-1, tspo-1 | [42] |
TnBP | DNA damage, oxidative stress, germ cell apoptosis | ced-4, ced-3, ced-9, hus-1, egl-1, clk-2, mev-1, gas-1, cep-1 | [31] |
DEHP | autophagy, ROS | unc-86, atg-7, atg-18, lgg-1, bec-1, unc-51 | [24] |
PFOS/PFOA | spermatogenesis | spe-4, spe-6, spe-10, spe-15, spe-17, fer-1, wee-1.3, swm-1, puf-8, try-5 | [19] |
TCBPA | germ cell apoptosis, DNA damage | cep-1, ced-4, ced-3, ced-9, hus-1, egl-1, efl-2, egl-38, lin-35, dpl-1, sir-2.1, pax-2 | [43] |
Fosthiazate | oxidative stress, spermatogenesis | puf-8, fer-1, swm-1, try-5, spe-5, wee-1.3, sod-3, sod-1, isp-1, sod-2, sod-5, gst-4, mlt-1, mlt-2 | [26] |
Pristine/NPS-NH2 | germline apoptosis, DNA damage | cep-1, ced-4, ced-3, ced-9, hus-1, egl-1, clk-2 | [43] |
Pristine/UV-PS | DNA damage, germline apoptosis | ced-4, ced-3, ced-9, hus-1, egl-1, clk-2, cep-1, | [37] |
FNT | germ cell meiosis and sperm formation (androgen receptor signaling) | nhr-69, gld-2, gld-3, fbf-1, fbf-2, fog-1, fog-3 | [27] |
TPHP | JNK signaling pathway | mkk-4, dlk-1, egl-15, jnk-1, vhp-1, kgb-2, kgb-1, | [44] |
ENR/CIP/NOR/OFL/FLE/LOM/SAR | oxidative stress, germ cell apoptosis | gst-1, gst-4, mev-1, sod-2, gst-5, gpx-2, ctl-1, ctl-2, gst-3, gst-8, sod-1, gpx-3, egl-5, egl-38, pax2-b, dpl-1, ced-11, egl-13, pax3, ced-7, egl-3 | [40] |
Pristine/aged PLA-MPs | DNA damage, germline apoptosis | cep-1, hus-1, egl-1, clk-2, mrt-2, ced-4, ced-3, ced-9 | [38] |
EPs | Possible Mechanisms Involved | Genes Involved | References |
---|---|---|---|
DEHP | production of inadequate vitellogenin, malfunction of H3Kme2 demethylase | vit-2, spr-5, vit-6 | [54] |
HBCD | oxidative stress, cell apoptosis | hsp-16.2, hsp-16.48, sod-1, sod-3, cep-1 | [53] |
PS-NPs | epigenetic regulation | ced-4, ced-3, ced-9, met-2, spr-5, set-2 | [68] |
NPS/NPS-NH2 | germ cell apoptosis | ced-4, ced-3, ced-9 | [62] |
NPS | oxidative stress | daf-2, sod-3, mev-1 | [59] |
NPS-S | germline Notch signal | lag-2, glp-1, glb-10, ins-3, daf-28, ins-39, daf-7, dbl-1 | [69] |
ATR | epigenetic modification (methylation of DNA and histones) | damt-1, nmad-1, set-2, set-25, met-2, mes-4, utx-1, pat-12, wrt-3, flwr-1, lnp-1, fbxa-108, ZC317.7, atfs-1, hsp-6, hsp-60 | [58] |
PS/PS-NH2/PS-COOH | histone methylation | set-30, met-2 | [63] |
PLA-MPs | histone methylation, secreted ligands | ced-4, ced-3, ced-9, egl-1, cep-1, mrt-2, clk-2, hus-1, ins-39, wrt-3, met-2, set-6, mes-2, set-24, set-31, set-2, set-16 | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Wang, L.; Chen, W.; Wang, Y.; Cui, K.; Chen, W.; Liu, J.; Jin, H.; Zhou, Z. Reproductive Toxicity and Multi/Transgenerational Effects of Emerging Pollutants on C. elegans. Toxics 2024, 12, 785. https://doi.org/10.3390/toxics12110785
Wu Z, Wang L, Chen W, Wang Y, Cui K, Chen W, Liu J, Jin H, Zhou Z. Reproductive Toxicity and Multi/Transgenerational Effects of Emerging Pollutants on C. elegans. Toxics. 2024; 12(11):785. https://doi.org/10.3390/toxics12110785
Chicago/Turabian StyleWu, Zhiling, Lingqiao Wang, Weihua Chen, Yiqi Wang, Ke Cui, Weiyan Chen, Jijun Liu, Huidong Jin, and Ziyuan Zhou. 2024. "Reproductive Toxicity and Multi/Transgenerational Effects of Emerging Pollutants on C. elegans" Toxics 12, no. 11: 785. https://doi.org/10.3390/toxics12110785
APA StyleWu, Z., Wang, L., Chen, W., Wang, Y., Cui, K., Chen, W., Liu, J., Jin, H., & Zhou, Z. (2024). Reproductive Toxicity and Multi/Transgenerational Effects of Emerging Pollutants on C. elegans. Toxics, 12(11), 785. https://doi.org/10.3390/toxics12110785