Advancements and Challenges in Nanoscale Zero-Valent Iron-Activated Persulfate Technology for the Removal of Endocrine-Disrupting Chemicals
Abstract
:1. Introduction
2. Sources and Contamination of EDCs
3. Current Status of Treatment Techniques for EDCs
3.1. Common Removal Techniques for EDCs
3.2. Persulphate Oxidation Technology
3.2.1. Ultraviolet Activation
3.2.2. Thermal Activation
3.2.3. Alkaline Activation
3.2.4. Transition Metal Activation
3.2.5. Nano Zero-Valent Iron Activation
4. Progress of Nano Zero-Valent Iron-Activated Persulfate for Removal of EDCs
4.1. Surface Modification nZVI
4.2. Load-Modified nZVI
4.3. Bimetallic-Modified nZVI
4.4. Sulfide-Modified nZVI
5. Recycling of Nano Zero-Valent Iron
6. Challenges and Recommendations for the Removal of EDCs by Nano Zero-Valent Iron-Activated Persulfate Systems
6.1. Stability and Persistence of nZVI
6.2. Optimization of Reaction Conditions
6.3. Economic Feasibility
6.4. Environmental Risks and Mitigation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reincke, M.; Arlt, W.; Damdimopoulou, P.; Köhrle, J.; Bertherat, J. Endocrine disrupting chemicals are a threat to hormone health: A commentary on behalf of the ESE. Nat. Rev. Endocrinol. 2024, 20, 187–188. [Google Scholar] [CrossRef] [PubMed]
- Guarnotta, V.; Amodei, R.; Frasca, F.; Aversa, A.; Giordano, C. Impact of chemical endocrine disruptors and hormone modulators on the endocrine system. Int. J. Mol. Sci. 2022, 23, 5710. [Google Scholar] [CrossRef] [PubMed]
- Adamovsky, O.; Groh, K.J.; Białk-Bielińska, A.; Escher, B.I.; Beaudouin, R.; Lagares, L.M.; Tollefsen, K.E.; Fenske, M.; Mulkiewicz, E.; Creusot, N. Exploring BPA alternatives–Environmental levels and toxicity review. Environ. Int. 2024, 189, 108728. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, J.; Yao, B.; Zhi, D.; Luo, L.; Zhou, Y. Endocrine disrupting chemicals in the environment: Environmental sources, biological effects, remediation techniques, and perspective. Environ. Pollut. 2022, 310, 119918. [Google Scholar] [CrossRef]
- Liao, Z.; Jian, Y.; Lu, J.; Liu, Y.; Li, Q.; Deng, X.; Xu, Y.; Wang, Q.; Yang, Y.; Luo, Z. Distribution, migration patterns, and food chain human health risks of endocrine-disrupting chemicals in water, sediments, and fish in the Xiangjiang River. Sci. Total Environ. 2024, 930, 172484. [Google Scholar] [CrossRef]
- Marlatt, V.; Bayen, S.; Castaneda-Cortès, D.; Delbès, G.; Grigorova, P.; Langlois, V.S.; Martyniuk, C.J.; Metcalfe, C.D.; Parent, L.; Rwigemera, A. Impacts of endocrine disrupting chemicals on reproduction in wildlife and humans. Environ. Res. 2022, 208, 112584. [Google Scholar] [CrossRef]
- Saha, U.; Kumari, P.; Ghosh, A.; Sinha, A.; Jena, S.; Kirti, A.; Gupta, A.; Choudhury, A.; Simnani, F.Z.; Nandi, A. Detrimental consequences of micropolymers associated plasticizers on endocrinal disruption. Mater. Today Bio 2024, 27, 101139. [Google Scholar] [CrossRef]
- Warner, G.R.; Mourikes, V.E.; Neff, A.M.; Brehm, E.; Flaws, J.A. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol. Cell. Endocrinol. 2020, 502, 110680. [Google Scholar] [CrossRef]
- Schjenken, J.E.; Green, E.S.; Overduin, T.S.; Mah, C.Y.; Russell, D.L.; Robertson, S.A. Endocrine disruptor compounds—A cause of impaired immune tolerance driving inflammatory disorders of pregnancy? Front. Endocrinol. 2021, 12, 607539. [Google Scholar] [CrossRef]
- Caliman, F.A.; Gavrilescu, M. Pharmaceuticals, personal care products and endocrine disrupting agents in the environment–a review. CLEAN Soil Air Water 2009, 37, 277–303. [Google Scholar] [CrossRef]
- Yue, M.; Zhou, X.; Fan, J.; Gao, S.; Zhao, X.-E.; Zhu, S.; Liu, Q.; Jiang, G. Recent advances of mass spectrometry-based analytical methods for endocrine disrupting chemicals in human matrices. TrAC-Trend. Anal. Chem. 2024, 171, 117523. [Google Scholar] [CrossRef]
- Leung, Y.-K. A silent threat: Exploring the impact of endocrine disruption on human health. Int. J. Mol. Sci. 2023, 24, 9790. [Google Scholar] [CrossRef] [PubMed]
- Kasonga, T.K.; Coetzee, M.A.; Kamika, I.; Ngole-Jeme, V.M.; Momba, M.N.B. Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: A review. J. Environ. Chem. Eng. 2021, 277, 111485. [Google Scholar] [CrossRef] [PubMed]
- Vieira, W.T.; de Farias, M.B.; Spaolonzi, M.P.; da Silva, M.G.C.; Vieira, M.G.A. Endocrine-disrupting compounds: Occurrence, detection methods, effects and promising treatment pathways—A critical review. J. Environ. Chem. Eng. 2021, 9, 104558. [Google Scholar] [CrossRef]
- Ahmed, S.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, M.A.; Inayat, A.; Mahlia, T.; Ong, H.C.; Chia, W.Y. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef]
- Wee, S.Y.; Aris, A.Z. Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environ. Int. 2017, 106, 207–233. [Google Scholar] [CrossRef]
- Corsi, I.; Venditti, I.; Trotta, F.; Punta, C. Environmental safety of nanotechnologies: The eco-design of manufactured nanomaterials for environmental remediation. Sci. Total Environ. 2023, 864, 161181. [Google Scholar] [CrossRef]
- Asghar, N.; Hussain, A.; Nguyen, D.A.; Ali, S.; Hussain, I.; Junejo, A.; Ali, A. Advancement in nanomaterials for environmental pollutants remediation: A systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. J. Nanobiotechnol. 2024, 22, 26. [Google Scholar] [CrossRef]
- Tian, K.; Hu, L.; Li, L.; Zheng, Q.; Xin, Y.; Zhang, G. Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment. Chin. Chem. Lett. 2022, 33, 4461–4477. [Google Scholar] [CrossRef]
- Kang, Y.-G.; Yoon, H.; Lee, W.; Kim, E.-J.; Chang, Y.-S. Comparative study of peroxide oxidants activated by nZVI: Removal of 1, 4-Dioxane and arsenic (III) in contaminated waters. Chem. Eng. J. 2018, 334, 2511–2519. [Google Scholar] [CrossRef]
- Barka, E.; Nika, M.C.; Galani, A.; Mamais, D.; Thomaidis, N.S.; Malamis, S.; Noutsopoulos, C. Evaluating an integrated nano zero-valent iron column system for emerging contaminants removal from different wastewater matrices–Identification of transformation products. Chemosphere 2024, 352, 141425. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Jiang, J.; Chen, Y.; Wen, X.; Chen, W.; Wang, Y.; Su, L.; Cao, J. Synthesis of nZVI-BC composite for persulfate activation to degrade pyrene: Performance, correlative mechanisms and degradation pathways. Process Saf. Environ. 2022, 162, 733–745. [Google Scholar] [CrossRef]
- Khetan, S.K. Endocrine Disruptors in the Environment; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Zoeller, R.T.; Brown, T.R.; Doan, L.L.; Gore, A.C.; Skakkebaek, N.E.; Soto, A.M.; Woodruff, T.; Vom Saal, F. Endocrine-disrupting chemicals and public health protection: A statement of principles from The Endocrine Society. Endocrinology 2012, 153, 4097–4110. [Google Scholar] [CrossRef] [PubMed]
- Gonsioroski, A.; Mourikes, V.E.; Flaws, J.A. Endocrine disruptors in water and their effects on the reproductive system. Int. J. Mol. Sci. 2020, 21, 1929. [Google Scholar] [CrossRef]
- Pironti, C.; Ricciardi, M.; Proto, A.; Bianco, P.M.; Montano, L.; Motta, O. Endocrine-disrupting compounds: An overview on their occurrence in the aquatic environment and human exposure. Water 2021, 13, 1347. [Google Scholar] [CrossRef]
- Xiao, Y.; Han, D.; Currell, M.; Song, X.; Zhang, Y. Review of Endocrine Disrupting Compounds (EDCs) in China’s water environments: Implications for environmental fate, transport and health risks. Water Res. 2023, 245, 120645. [Google Scholar] [CrossRef]
- Puri, M.; Gandhi, K.; Suresh Kumar, M. A global overview of endocrine disrupting chemicals in the environment: Occurrence, effects, and treatment methods. Int. J. Environ. Sci. Technol. 2023, 20, 12875–12902. [Google Scholar] [CrossRef]
- Gałązka, A.; Jankiewicz, U. Endocrine disrupting compounds (nonylphenol and bisphenol A)–sources, harmfulness and laccase-assisted degradation in the aquatic environment. Microorganisms 2022, 10, 2236. [Google Scholar] [CrossRef]
- Lei, K.; Pan, H.-Y.; Zhu, Y.; Chen, W.; Lin, C.-Y. Pollution characteristics and mixture risk prediction of phenolic environmental estrogens in rivers of the Beijing–Tianjin–Hebei urban agglomeration, China. Sci. Total Environ. 2021, 787, 147646. [Google Scholar] [CrossRef]
- Ramaswamy, B.R.; Shanmugam, G.; Velu, G.; Rengarajan, B.; Larsson, D.J. GC–MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. J. Hazard. Mater. 2011, 186, 1586–1593. [Google Scholar] [CrossRef]
- Zamri, M.F.M.A.; Bahru, R.; Pramanik, S.K.; Fattah, I.M.R. Treatment strategies for enhancing the removal of endocrine-disrupting chemicals in water and wastewater systems. J. Water Process Eng. 2021, 41, 102017. [Google Scholar] [CrossRef]
- Azizi, D.; Arif, A.; Blair, D.; Dionne, J.; Filion, Y.; Ouarda, Y.; Pazmino, A.G.; Pulicharla, R.; Rilstone, V.; Tiwari, B. A comprehensive review on current technologies for removal of endocrine disrupting chemicals from wastewaters. Environ. Res. 2022, 207, 112196. [Google Scholar] [CrossRef] [PubMed]
- Zaibel, I.; Arnon, S.; Zilberg, D. Treated municipal wastewater as a water source for sustainable aquaculture: A review. Rev. Aquacult. 2022, 14, 362–377. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, Z.-h.; Wang, H.; Dang, Z.; Yin, H.; Zhou, Y.; Liu, Y. Trace determination of eleven natural estrogens and insights from their occurrence in a municipal wastewater treatment plant and river water. Water Res. 2020, 182, 115976. [Google Scholar] [CrossRef] [PubMed]
- Nasu, M.; Goto, M.; Kato, H.; Oshima, Y.; Tanaka, H. Study on endocrine disrupting chemicals in wastewater treatment plants. Water Sci. Technol. 2001, 43, 101–108. [Google Scholar] [CrossRef]
- Petrie, B.; Lopardo, L.; Proctor, K.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. Assessment of bisphenol-A in the urban water cycle. Sci. Total Environ. 2019, 650, 900–907. [Google Scholar] [CrossRef]
- Zheng, S.; Shi, J.-C.; Hu, J.-Y.; Hu, W.-X.; Zhang, J.; Shao, B. Chlorination of bisphenol F and the estrogenic and peroxisome proliferator-activated receptor gamma effects of its disinfection byproducts. Water Res. 2016, 107, 1–10. [Google Scholar] [CrossRef]
- Yost, E.E.; Meyer, M.T.; Dietze, J.E.; Meissner, B.M.; Worley-Davis, L.; Williams, C.M.; Lee, B.; Kullman, S.W. Comprehensive assessment of hormones, phytoestrogens, and estrogenic activity in an anaerobic swine waste lagoon. Environ. Sci. Technol. 2013, 47, 13781–13790. [Google Scholar] [CrossRef]
- Havens, S.M.; Hedman, C.J.; Hemming, J.D.; Mieritz, M.G.; Shafer, M.M.; Schauer, J.J. Occurrence of estrogens, androgens and progestogens and estrogenic activity in surface water runoff from beef and dairy manure amended crop fields. Sci. Total Environ. 2020, 710, 136247. [Google Scholar] [CrossRef]
- Katibi, K.K.; Yunos, K.F.; Che Man, H.; Aris, A.Z.; bin Mohd Nor, M.Z.; Binti Azis, R.S. Recent advances in the rejection of endocrine-disrupting compounds from water using membrane and membrane bioreactor technologies: A review. Polymers 2021, 13, 392. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, W.; Chi, Q.; Yang, Y.; Tan, X.; Liu, J.; Xiao, H.; Wang, X. A novel magnetic porous organic cage adsorbent for high-efficient removal of endocrine disrupting chemicals from environmental water. Chem. Eng. Sci. 2024, 285, 119621. [Google Scholar] [CrossRef]
- Yang, L.; Xia, C.; Jiang, J.; Chen, X.; Zhou, Y.; Yuan, C.; Bai, L.; Meng, S.; Cao, G. Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes. J. Hazard. Mater. 2024, 461, 132628. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Niu, S.; Xu, Y.; Wei, Z.; Wang, J.J. Removal of dibutyl phthalate (DBP) by bacterial extracellular polymeric substances (EPS) via enzyme catalysis and electron transmission. J. Environ. Manag. 2024, 368, 122161. [Google Scholar] [CrossRef] [PubMed]
- Javed, H.; Luong, D.X.; Lee, C.-G.; Zhang, D.; Tour, J.M.; Alvarez, P.J. Efficient removal of bisphenol-A by ultra-high surface area porous activated carbon derived from asphalt. Carbon 2018, 140, 441–448. [Google Scholar] [CrossRef]
- El Moukhtari, F.; Martín-Pozo, L.; Zafra-Gómez, A. Strategies based on the use of microorganisms for the elimination of pollutants with endocrine-disrupting activity in the environment. J. Environ. Chem. Eng. 2023, 11, 109268. [Google Scholar] [CrossRef]
- Castellanos, R.M.; Bassin, J.P.; Bila, D.M.; Dezotti, M. Biodegradation of natural and synthetic endocrine-disrupting chemicals by aerobic granular sludge reactor: Evaluating estrogenic activity and estrogens fate. Environ. Pollut. 2021, 274, 116551. [Google Scholar] [CrossRef]
- da Mota Oliveira, J.; de Souza, T.; Gomes, L.; Saggioro, E. Removal of 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) by a sequencing batch reactor following UV/H2O2 process. Int. J. Environ. Sci. Technol. 2024, 21, 7733–7748. [Google Scholar] [CrossRef]
- Katibi, K.K.; Yunos, K.F.; Che Man, H.; Aris, A.Z.; Mohd Nor, M.Z.; Azis, R.S.; Umar, A.M. Contemporary techniques for remediating endocrine-disrupting compounds in various water sources: Advances in treatment methods and their limitations. Polymers 2021, 13, 3229. [Google Scholar] [CrossRef]
- Du, X.; Li, H.; Liang, J.; Wang, R.; Huang, K.; Hayat, W.; Cai, L.; Tao, X.; Dang, Z.; Lu, G. Hydrogen-donor-controlled polybrominated dibenzofuran (PBDF) formation from polybrominated diphenyl ether (PBDE) photolysis in solutions: Competition mechanisms of radical-based cyclization and hydrogen abstraction reactions. Environ. Sci. Technol. 2023, 57, 7777–7788. [Google Scholar] [CrossRef]
- Bezares-Cruz, J.; Jafvert, C.T.; Hua, I. Solar photodecomposition of decabromodiphenyl ether: Products and quantum yield. Environ. Sci. Technol. 2004, 38, 4149–4156. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, H.; He, J.; Yang, P.; Wang, D.; Ma, T.; Xia, H.; Xu, X. Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: Optimization of operating conditions and degradation pathway. Sep. Purif. Technol. 2017, 172, 158–167. [Google Scholar] [CrossRef]
- Konstantinov, A.; Bejan, D.; Bunce, N.J.; Chittim, B.; McCrindle, R.; Potter, D.; Tashiro, C. Electrolytic debromination of PBDEs in DE-83TM technical decabromodiphenyl ether. Chemosphere 2008, 72, 1159–1162. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhu, M. Were Persulfate-Based Advanced Oxidation Processes Really Understood? Basic Concepts, Cognitive Biases, and Experimental Details. Environ. Sci. Technol. 2024, 58, 10415–10444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, X.; Zhou, L.; Crump, D. Quantum chemical investigations of the decomposition of the peroxydisulfate ion to sulfate radicals. Chem. Eng. J. 2019, 361, 960–967. [Google Scholar] [CrossRef]
- He, X.; de la Cruz, A.A.; O’Shea, K.E.; Dionysiou, D.D. Kinetics and mechanisms of cylindrospermopsin destruction by sulfate radical-based advanced oxidation processes. Water Res. 2014, 63, 168–178. [Google Scholar] [CrossRef]
- Fan, X.; Bao, Y.; Mumtaz, M.; Huang, J.; Yu, G. Determination of total oxidizable precursors in foam surfactants and foam contaminated water based on UV-activated persulfate oxidation. Sci. Total Environ. 2021, 763, 142943. [Google Scholar] [CrossRef]
- Yan, B.; Xu, D.; Liu, Z.; Tang, J.; Huang, R.; Zhang, M.; Cui, F.; Shi, W.; Hu, C. Degradation of neurotoxin β-N-methylamino-L-alanine by UV254 activated persulfate: Kinetic model and reaction pathways. Chem. Eng. J. 2021, 404, 127041. [Google Scholar] [CrossRef]
- Khan, S.; Sohail, M.; Han, C.; Khan, J.A.; Khan, H.M.; Dionysiou, D.D. Degradation of highly chlorinated pesticide, lindane, in water using UV/persulfate: Kinetics and mechanism, toxicity evaluation, and synergism by H2O2. J. Hazard. Mater. 2021, 402, 123558. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, Y.; Gao, N.; Lu, X.; An, N. Degradation kinetic of phthalate esters and the formation of brominated byproducts in heat-activated persulfate system. Chem. Eng. J. 2019, 359, 1086–1096. [Google Scholar] [CrossRef]
- Lebik-Elhadi, H.; Frontistis, Z.; Ait-Amar, H.; Madjene, F.; Mantzavinos, D. Degradation of pesticide thiamethoxam by heat–activated and ultrasound–activated persulfate: Effect of key operating parameters and the water matrix. Process Saf. Environ. 2020, 134, 197–207. [Google Scholar] [CrossRef]
- Chen, L.; Hu, X.; Cai, T.; Yang, Y.; Zhao, R.; Liu, C.; Li, A.; Jiang, C. Degradation of Triclosan in soils by thermally activated persulfate under conditions representative of in situ chemical oxidation (ISCO). Chem. Eng. J. 2019, 369, 344–352. [Google Scholar] [CrossRef]
- García-Cervilla, R.; Santos, A.; Romero, A.; Lorenzo, D. Compatibility of nonionic and anionic surfactants with persulfate activated by alkali in the abatement of chlorinated organic compounds in aqueous phase. Sci. Total Environ. 2021, 751, 141782. [Google Scholar] [CrossRef] [PubMed]
- García-Cervilla, R.; Santos, A.; Romero, A.; Lorenzo, D. Remediation of soil contaminated by lindane wastes using alkaline activated persulfate: Kinetic model. Chem. Eng. J. 2020, 393, 124646. [Google Scholar] [CrossRef]
- Xu, Q.; Shi, F.; You, H.; Wang, S. Integrated remediation for organic-contaminated site by forcing running-water to modify alkali-heat/persulfate via oxidation process transfer. Chemosphere 2021, 262, 128352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, S.; Ran, L.; Yu, H. Enhanced PMS activation by surface electronic reconstruction at Co3O4/ZnO heterointerface: Performance and mechanism. Process Saf. Environ. 2023, 171, 330–340. [Google Scholar] [CrossRef]
- Wang, J.; Hasaer, B.; Yang, M.; Liu, R.; Hu, C.; Liu, H.; Qu, J. Anaerobically-digested sludge disintegration by transition metal ions-activated peroxymonosulfate (PMS): Comparison between Co2+, Cu2+, Fe2+ and Mn2+. Sci. Total Environ. 2020, 713, 136530. [Google Scholar] [CrossRef]
- Guo, J.; Gao, Q.; Yang, S.; Zheng, F.; Du, B.; Wen, S.; Wang, D. Degradation of pyrene in contaminated water and soil by Fe2+-activated persulfate oxidation: Performance, kinetics, and background electrolytes (Cl−, HCO3-and humic acid) effects. Process Saf. Environ. 2021, 146, 686–693. [Google Scholar] [CrossRef]
- Shang, K.; Li, W.; Wang, X.; Lu, N.; Jiang, N.; Li, J.; Wu, Y. Degradation of p-nitrophenol by DBD plasma/Fe2+/persulfate oxidation process. Sep. Purif. Technol. 2019, 218, 106–112. [Google Scholar] [CrossRef]
- Peluffo, M.; Pardo, F.; Santos, A.; Romero, A. Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil. Sci. Total Environ. 2016, 563, 649–656. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Yang, Y.; Sun, P. Degradation of Norfloxacin in an Aqueous Solution by the Nanoscale Zero-Valent Iron-Activated Persulfate Process. J. Hazard. Mater. 2020, 2020, 3286383. [Google Scholar] [CrossRef]
- Ding, J.; Xu, W.; Liu, S.; Liu, Y.; Tan, X.; Li, X.; Li, Z.; Zhang, P.; Du, L.; Li, M. Activation of persulfate by nanoscale zero-valent iron loaded porous graphitized biochar for the removal of 17β-estradiol: Synthesis, performance and mechanism. J. Colloid Interf. Sci. 2021, 588, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Deng, C.; Ma, W.; Sun, Y. Modified nanoscale zero-valent iron in persulfate activation for organic pollution remediation: A review. Environ. Sci. Pollut. Res. 2021, 28, 34229–34247. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Liang, D.; Fan, X.; He, Y.; Zhang, R.; Lei, X.; Wei, H.; Sun, D. Activated carbon fiber loaded nano zero-valent iron for Microcystis aeruginosa removal: Performance and mechanisms. Bioresour. Technol. 2024, 413, 131538. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Zhang, R.; Liao, C.; Liang, D.; Wang, F.; Wang, Q.; Sun, D.; Lei, X. Efficacy and mechanism of Microcystis aeruginosa removal by activated carbon fiber/nanoscale zero-valent iron/nickel foam cathodic electrochemical system. Environ. Pollut. Bioavail. 2024, 36, 2302499. [Google Scholar] [CrossRef]
- Zeng, G.; Ma, Z.; Zhang, R.; He, Y.; Fan, X.; Lei, X.; Xiao, Y.; Zhang, M.; Sun, D. The Application of Nano Zero-Valent Iron in Synergy with White Rot Fungi in Environmental Pollution Control. Toxics 2024, 12, 721. [Google Scholar] [CrossRef]
- Zeng, G.; He, Y.; Wang, F.; Luo, H.; Liang, D.; Wang, J.; Huang, J.; Yu, C.; Jin, L.; Sun, D. Toxicity of nanoscale zero-valent iron to soil microorganisms and related defense mechanisms: A Review. Toxics 2023, 11, 514. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, T.; White, J.C.; Lin, D. A new strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil. Nat. Nanotechnol. 2021, 16, 197–205. [Google Scholar] [CrossRef]
- Liu, M.; Chen, G.; Xu, L.; He, Z.; Ye, Y. Environmental remediation approaches by nanoscale zero valent iron (nZVI) based on its reductivity: A review. RSC Adv. 2024, 14, 21118–21138. [Google Scholar] [CrossRef]
- Tang, H.; Wang, J.; Zhang, S.; Pang, H.; Wang, X.; Chen, Z.; Li, M.; Song, G.; Qiu, M.; Yu, S. Recent advances in nanoscale zero-valent iron-based materials: Characteristics, environmental remediation and challenges. J. Clean. Prod. 2021, 319, 128641. [Google Scholar] [CrossRef]
- Chen, H.; Luo, H.; Lan, Y.; Dong, T.; Hu, B.; Wang, Y. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron. J. Hazard. Mater. 2011, 192, 44–53. [Google Scholar] [CrossRef]
- Qiu, Y.; Xu, M.; Sun, Z.; Li, H. Remediation of PAH-contaminated soil by combining surfactant enhanced soil washing and iron-activated persulfate oxidation process. Int. J. Environ. Res. Public Health 2019, 16, 441. [Google Scholar] [CrossRef] [PubMed]
- Diao, Z.-H.; Yan, L.; Dong, F.-X.; Qian, W.; Deng, Q.-H.; Kong, L.-J.; Yang, J.-W.; Lei, Z.-X.; Du, J.-J.; Chu, W. Degradation of 2, 4-dichlorophenol by a novel iron based system and its synergism with Cd (II) immobilization in a contaminated soil. Chem. Eng. J. 2020, 379, 122313. [Google Scholar] [CrossRef]
- Li, H.; Zhu, F.; He, S. The degradation of decabromodiphenyl ether in the e-waste site by biochar supported nanoscale zero-valent iron/persulfate. Ecotox. Environ. Saf. 2019, 183, 109540. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Diao, Z.-H.; Huo, W.-Y.; Kong, L.-J.; Du, J.-J. Simultaneous removal of Cu2+ and bisphenol A by a novel biochar-supported zero valent iron from aqueous solution: Synthesis, reactivity and mechanism. Environ. Pollut. 2018, 239, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Diao, Z.-H.; Zhang, W.-X.; Liang, J.-Y.; Huang, S.-T.; Dong, F.-X.; Yan, L.; Qian, W.; Chu, W. Removal of herbicide atrazine by a novel biochar based iron composite coupling with peroxymonosulfate process from soil: Synergistic effect and mechanism. Chem. Eng. J. 2021, 409, 127684. [Google Scholar] [CrossRef]
- Fang, Z.; Qiu, X.; Chen, J.; Qiu, X. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics, and mechanism. J. Hazard. Mater. 2011, 185, 958–969. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Zeng, W.; Liu, K.; Ma, Y.; Fang, L.; Shi, C. Surfactant-assisted removal of 2, 4-dichlorophenol from soil by zero-valent Fe/Cu activated persulfate. Chin. J. Chem. Eng. 2022, 44, 447–455. [Google Scholar] [CrossRef]
- Fang, L.; Liu, K.; Li, F.; Zeng, W.; Hong, Z.; Xu, L.; Shi, Q.; Ma, Y. New insights into stoichiometric efficiency and synergistic mechanism of persulfate activation by zero-valent bimetal (Iron/Copper) for organic pollutant degradation. J. Hazard. Mater. 2021, 403, 123669. [Google Scholar] [CrossRef]
- Li, D.; Mao, Z.; Zhong, Y.; Huang, W.; Wu, Y. Reductive transformation of tetrabromobisphenol A by sulfidated nano zerovalent iron. Water Res. 2016, 103, 1–9. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, Y. Enhanced degradation of bisphenol S by persulfate activated with sulfide-modified nanoscale zero-valent iron. Environ. Sci. Pollut. Res. 2022, 29, 8281–8293. [Google Scholar] [CrossRef]
- Jiang, Q.; Jiang, S.; Li, H.; Zhang, R.; Jiang, Z.; Zhang, Y. A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine. Chem. Eng. J. 2022, 431, 133937. [Google Scholar] [CrossRef]
- Pasinszki, T.; Krebsz, M. Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials 2020, 10, 917. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.-W.; Yang, Y.-H.; Xu, W.-W.; Peng, S.-K.; Lu, S.-F.; Xiang, Y. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: Mechanism and kinetics. J. Hazard. Mater. 2014, 278, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ling, Q.; Cai, Y.; Xu, L.; Su, J.; Yu, K.; Wu, X.; Xu, J.; Hu, B.; Wang, X. Synthesis of carbon-based nanomaterials and their application in pollution management. Nanoscale Adv. 2022, 4, 1246–1262. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Xi, F.; Tan, W.; Meng, X.; Hu, B.; Wang, X. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 2021, 3, 255–281. [Google Scholar] [CrossRef]
- Zeng, H.; Chen, Y.; Xu, J.; Li, S.; Wu, J.; Li, D.; Zhang, J. Iron-based materials for activation of periodate in water and wastewater treatment processes: The important role of Fe species. Chem. Eng. J. 2024, 482, 148885. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, J.; Fan, X.; Li, Y.; Peng, W. Synthesis and application of iron sulfide−based materials to activate persulfates for wastewater remediation: A review. Front. Environ. Sci. 2023, 11, 1212355. [Google Scholar] [CrossRef]
- Liu, M.; Ye, Y.; Xu, L.; Gao, T.; Zhong, A.; Song, Z. Recent Advances in Nanoscale Zero-Valent Iron (nZVI)-Based Advanced Oxidation Processes (AOPs): Applications, Mechanisms, and Future Prospects. Nanomaterials 2023, 13, 2830. [Google Scholar] [CrossRef]
- Lv, Y.; Huang, S.; Huang, G.; Liu, Y.; Yang, G.; Lin, C.; Xiao, G.; Wang, Y.; Liu, M. Remediation of organic arsenic contaminants with heterogeneous Fenton process mediated by SiO2-coated nano zero-valent iron. Environ. Sci. Pollut. Res. 2020, 27, 12017–12029. [Google Scholar] [CrossRef]
- Wu, Y.; Guan, C.-Y.; Griswold, N.; Hou, L.-Y.; Fang, X.; Hu, A.; Hu, Z.-Q.; Yu, C.-P. Zero-valent iron-based technologies for removal of heavy metal (loid) s and organic pollutants from the aquatic environment: Recent advances and perspectives. J. Clean. Prod. 2020, 277, 123478. [Google Scholar] [CrossRef]
- Ullah, S.; Faiz, P.; Leng, S. Synthesis, Mechanism, and Performance Assessment of Zero-Valent Iron for Metal-Contaminated Water Remediation: A Review. CLEAN Soil Air Water 2020, 48, 2000080. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Z.; Wang, H.; Yang, H.; Wen, T.; Wang, S.; Hu, B.; Wang, X. Removal of organic compounds by nanoscale zero-valent iron and its composites. Sci. Total Environ. 2021, 792, 148546. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Lynch, I.; Ma, J. High-efficiency removal of tetracycline from water by electrolysis-assisted NZVI: Mechanism of electron transfer and redox of iron. RSC Adv. 2023, 13, 15881–15891. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Song, X.; Ma, G.; Zhao, T.; Meng, K.; Zhang, M.; Ren, J.; Dai, L. A review of recent studies on nano zero-valent iron activated persulfate advanced oxidation technology for the degradation of organic pollutants. New J. Chem. 2023, 47, 14585–14599. [Google Scholar] [CrossRef]
- Ding, Y.; Li, M.; Zhang, Q.; Zhang, Y.; Xia, Z.; Liu, X.; Wu, N.; Peng, J. Sulfidized state and formation: Enhancement of nanoscale zero-valent iron on biochar (S-nZVI/BC) in activating peroxymonosulfate for Acid Red 73 degradation. J. Environ. Chem. Eng. 2023, 11, 110114. [Google Scholar] [CrossRef]
- Qiao, J.; Guo, Y.; Dong, H.; Guan, X.; Zhou, G.; Sun, Y. Activated peroxydisulfate by sulfidated zero-valent iron for enhanced organic micropollutants removal from water. Chem. Eng. J. 2020, 396, 125301. [Google Scholar] [CrossRef]
- Li, X.; Liu, L. Recent advances in nanoscale zero-valent iron/oxidant system as a treatment for contaminated water and soil. J. Environ. Chem. Eng. 2021, 9, 106276. [Google Scholar] [CrossRef]
- Tan, Y.; Zhao, N.; Song, Q.; Ling, H. Alkali synergistic sulfide-modified nZVI activation of persulfate for phenanthrene removal. J. Environ. Chem. Eng. 2023, 11, 109923. [Google Scholar] [CrossRef]
- Wang, P.; Fu, F.; Liu, T. A review of the new multifunctional nano zero-valent iron composites for wastewater treatment: Emergence, preparation, optimization and mechanism. Chemosphere 2021, 285, 131435. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, T.; Ding, Y.; Fang, G.; Wang, X.; Ye, B.; Ge, L.; Gao, J.; Wang, Y.; Zhou, D. Biochar-supported nano-scale zerovalent iron activated persulfate for remediation of aromatic hydrocarbon-contaminated soil: An in-situ pilot-scale study. Biochar 2022, 4, 64. [Google Scholar] [CrossRef]
- Song, Y.; Fang, G.; Zhu, C.; Zhu, F.; Wu, S.; Chen, N.; Wu, T.; Wang, Y.; Gao, J.; Zhou, D. Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: An in situ pilot-scale study. Chem. Eng. J. 2019, 355, 65–75. [Google Scholar] [CrossRef]
- Pourali, P.; Behzad, A.; Ahmadfazeli, A.; Mokhtari, S.A.; Rashtbari, Y.; Poureshgh, Y. Dissociation of acid blue 113 dye from aqueous solutions using activated persulfate by zero iron nanoparticle from green synthesis: The optimization process with RSM-BBD model: Mineralization and reaction kinetic study. Biomass Convers. Biorefin. 2024, 14, 6333–6345. [Google Scholar] [CrossRef]
- Rodríguez-Rasero, C.; Montes-Jimenez, V.; Alexandre-Franco, M.F.; Fernández-González, C.; Píriz-Tercero, J.; Cuerda-Correa, E.M. Use of Zero-Valent Iron Nanoparticles (nZVIs) from Environmentally Friendly Synthesis for the Removal of Dyes from Water—A Review. Water 2024, 16, 1607. [Google Scholar] [CrossRef]
- Ahmad, S.; Liu, X.; Tang, J.; Zhang, S. Biochar-supported nanosized zero-valent iron (nZVI/BC) composites for removal of nitro and chlorinated contaminants. Chem. Eng. J. 2022, 431, 133187. [Google Scholar] [CrossRef]
- Lu, H.; Wang, X.; Cong, Q.; Chen, X.; Li, Q.; Li, X.; Zhong, S.; Deng, H.; Yan, B. Research Progress on the Degradation of Organic Pollutants in Water by Activated Persulfate Using Biochar-Loaded Nano Zero-Valent Iron. Molecules 2024, 29, 1130. [Google Scholar] [CrossRef]
- Xue, W.; Shi, X.; Guo, J.; Wen, S.; Lin, W.; He, Q.; Gao, Y.; Wang, R.; Xu, Y. Affecting factors and mechanism of removing antibiotics and antibiotic resistance genes by nano zero-valent iron (nZVI) and modified nZVI: A critical review. Water Res. 2024, 253, 121309. [Google Scholar] [CrossRef]
- Xie, Y.; Dong, H.; Zeng, G.; Tang, L.; Jiang, Z.; Zhang, C.; Deng, J.; Zhang, L.; Zhang, Y. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. J. Hazard. Mater. 2017, 321, 390–407. [Google Scholar] [CrossRef]
- Pandey, K.; Saha, S. Encapsulation of zero valent iron nanoparticles in biodegradable amphiphilic janus particles for groundwater remediation. J. Hazard. Mater. 2023, 445, 130501. [Google Scholar] [CrossRef]
- Ahmed, N.; Vione, D.; Rivoira, L.; Carena, L.; Castiglioni, M.; Bruzzoniti, M.C. A review on the degradation of pollutants by fenton-like systems based on zero-valent iron and persulfate: Effects of reduction potentials, pH, and anions occurring in waste waters. Molecules 2021, 26, 4584. [Google Scholar] [CrossRef]
Method Categories | Mechanism of Action | Method Advantages | Method Deficiency |
---|---|---|---|
Adsorption method | Utilizes physical or chemical interaction between the adsorbent surface and the EDC molecules | Simple operation, low equipment requirements, can be applied to different water quality | Adsorbents need to be replaced or regenerated periodically and their limited adsorption capacity requires regular monitoring |
Membrane separation method | The EDCs are separated from water by the physical sieving action of the membrane | Can effectively remove small-molecule EDCs without generating secondary pollution | Membrane fouling and failure necessitate regular cleaning or replacement and high initial investment and maintenance costs |
Biodegradation method | Microorganisms or plants metabolize EDCs, converting them into harmless substances | Environmentally friendly, can occur naturally | Treatment rates are slower, and efficiency is influenced by environmental factors, requires specific microbial or plant communities |
Chemical precipitation method | Formation of insoluble precipitates from EDCs by addition of precipitants for easy removal | Simple operation with clear treatment effects | Effective and less versatile only for specific EDCs and may generate solid waste, requiring disposal |
Photocatalytic method | Utilize photocatalysts to generate electrons and holes upon light irradiation, thereby degrading EDCs | Can be carried out at room temperature and pressure, easy to operate, high degradation efficiency, wide range of applications | Dependent on light source, less effective in dark environments |
Number | Oxidizing Agent | Standard Oxidation Electrode Potential (E0/V) |
---|---|---|
1 | OH | 2.8 |
2 | SO4− | 2.5–3.1 |
3 | HO2 | 1.65 |
4 | O3 | 2.08 |
5 | H2O2 | 1.76 |
6 | S2O82− | 2.01 |
Contaminant | Concentration of Pollutant | Modifying Methods | Degradation Rate | Modified nZVI Dosage | PS Dosage | Reaction Condition | Dominant Free Radical | Reaction Product | Reference |
---|---|---|---|---|---|---|---|---|---|
TC | 50–300 mg/L | PVP-nZVI | 100% | 0.1 g/L | pH = 6.5, 25 °C, 150 rpm | OH | C20H23NO7, C20H26O4, C19H26O | [81] | |
PAHs | 100 mg/kg | SiO2/nZVI | 75%–87% | 2 g/L | 10 mL | 25 ± 1 °C | SO4− | [82] | |
2,4-DCP | 40 mg kg−1 | BC-nZVI | 91% | 3.0 g/L | 6 mM | pH = 4.51, 20 °C, 240 min, 200 rpm | SO4− | 2-chlorohydroxyaniline, 3,5-dichlorocatechol, phenol, transbutenoic acid and acetic acid | [83] |
BDE209 | 10 ± 0.5 mg·kg−1 | BC-nZVI | 82.06% | Vary with mole ratio | 0.1 M | pH = 3, 40 °C, 240 min | SO4−, OH | Low brominated diphenyl ethers, phenol substances, CO2, H2O, Br- and short-chain acids | [84] |
BPA | 10 mg/L | BC-nZVI | 98% | 1.0 g/L | 0.75 mM | pH = 3.0 ± 0.03, 25 °C, 150 rpm | SO4−, OH | p-Isopropylphenol, 4-Isopropylphenol, 4-Hydroxyacetylbenzene, hydroquinone, transbutenoic acid and 2-hydroxypropionic acid | [85] |
ATZ | 23.6 mg/kg | BC-nZVI | 96% | 2.0 g/L | 4.0 mM | pH = 6.93, 240 min, 150 rpm | SO4−, OH, 1O2 | De-alkylation, dechlorination, and hydroxylation products | [86] |
BDE209 | 2 mg/L | Fe/Ni | ≈100% | 4 g/L | pH = 6.09, 28 ± 2 °C, 200 rpm | BDE206, BDE207 | [87] | ||
DCP | Fe/Cu | 86% | 0.63 g/L | 6 mmol/L | pH = 3, 25 °C | SO4·−, OH | 2-Chlorohydroxybenzoquinone, 2-chlorobenzoquinone, oxalate ion | [88] | |
DCP | 15 mg/L | Fe/Cu | ≈100% | 0.1 g/L | 2 mM | pH ~3.3, 25 °C, 150rpm | SO4·−, OH | 2-Chlorohydroxybenzoquinone, 2-chlorobenzoquinone, oxalate ion | [89] |
TBBPA | 20 mg/L | S-nZVI | ≥90% | 2.3 g/L | Dark, 25 °C, 300 rpm | BPA, tri-BBPA, di-BBPA, mono-BBPA | [90] | ||
BPS | 20 μM | S-nZVI | 97.7% | 30 mg/L | 1 mM | pH = 5.6 ± 0.2, 25 °C | SO4·−, OH | BPA, tri-BBPA, di-BBPA, mono-BBPA | [91] |
ATR | 10 mg/L | S-nZVI@BC | 100% | 0.1 g/L | 1 mM | pH 2.86–10.53, 25 °C | SO4−, OH, 1O2 | 2-hydroxyatrazine, 2,4-dichlorophenol, 4-amino-2-chlorotriazine, 2-amino-4-chlorotriazine | [92] |
Method | Theory | Advantage | Defect | Range of Application |
---|---|---|---|---|
Acid and Alkaline Washing | Clean the nZVI surface using an acidic or alkaline solution to remove the passivation layer | Effective restoration of surface activity and relatively simple to implement | The complexity of waste liquid treatment may lead to loss of nZVI | Widely used for regeneration of nZVI in the field of water treatment |
Thermal Treatment | Removal of impurities and passivation layers from the nZVI surface by heating | Complete removal of organic and inorganic substances with high recovery rates | May lead to nZVI agglomeration or morphological changes and high energy consumption | Suitable for removing organic/inorganic impurities from various environments |
Chemical Reduction | Oxidized nZVI was restored to a zero-valent state using a reducing agent | Significant restoration of reactivity, allowing for directional operation | Introduction of new chemicals, complex process | Suitable for applications requiring specific restoration of reactivity |
Ultrasonic Treatment | Removal of contaminants and dispersion of agglomerated nZVI particles using high-frequency ultrasound | High cleaning efficiency and effective dispersion of particles | High cost of equipment, ultrasonic intensity and time need to be precisely controlled | Suitable for scenarios where particle dispersion is critical |
Electrochemical Regeneration | Restore the active state of nZVI by electrochemical reaction | High recovery efficiency without the need for additional chemical reagents | Requires complex equipment and high energy consumption | Effective in restoring nZVI reactivity without the addition of external chemicals |
Method | Theory | Advantage | Defect | Range of Application |
---|---|---|---|---|
In situ chemical oxidation method | Activation of persulfate using nZVI generates strong oxidizing radicals that oxidize and degrade pollutants in soil and water | Capable of degrading a wide range of pollutants, fast reaction rate, wide applicability | Reaction conditions are demanding and require controlled reaction environments | Groundwater pollution control, contaminated soil remediation, industrial wastewater treatment |
Injection method | After mixing nZVI with persulfate, the activator is introduced directly into the contaminated area by injection techniques to create an oxidizing environment | Ability to deliver remediation chemicals directly to the source of contamination, suitable for rapid remediation emergencies | Requires specific equipment for injection, limited effectiveness in confined or hard-to-reach areas | Small-scale contaminated site remediation, water pollution management, areas with high groundwater table |
Solid phase reaction method | The solid form of nZVI combined with persulfate is applied to contaminated soils or sediments and activated by a solid-phase reaction | Easy to store and transport for long-term contaminant removal | Solid-phase reactions may have low reaction rates and exposure to contaminants may not be uniform | Solid waste management, soil contamination remediation, sediment treatment |
Microbial assisted remediation method | Combining nZVI and persulfate technologies with bioremediation to utilize microbial metabolic processes to further degrade contaminants | The synergistic effect of microbial and chemical oxidation improves overall remediation efficiency and microbial degradation reduces the risk of secondary contamination | Microbial activity and growth are affected by environmental conditions and bioremediation takes longer to take effect | Treatment of organic pollutants, long-term remediation of contaminated soils, remediation of water bodies with suitable environmental conditions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, D.; Zeng, G.; Lei, X.; Sun, D. Advancements and Challenges in Nanoscale Zero-Valent Iron-Activated Persulfate Technology for the Removal of Endocrine-Disrupting Chemicals. Toxics 2024, 12, 814. https://doi.org/10.3390/toxics12110814
Liang D, Zeng G, Lei X, Sun D. Advancements and Challenges in Nanoscale Zero-Valent Iron-Activated Persulfate Technology for the Removal of Endocrine-Disrupting Chemicals. Toxics. 2024; 12(11):814. https://doi.org/10.3390/toxics12110814
Chicago/Turabian StyleLiang, Dong, Guoming Zeng, Xiaoling Lei, and Da Sun. 2024. "Advancements and Challenges in Nanoscale Zero-Valent Iron-Activated Persulfate Technology for the Removal of Endocrine-Disrupting Chemicals" Toxics 12, no. 11: 814. https://doi.org/10.3390/toxics12110814
APA StyleLiang, D., Zeng, G., Lei, X., & Sun, D. (2024). Advancements and Challenges in Nanoscale Zero-Valent Iron-Activated Persulfate Technology for the Removal of Endocrine-Disrupting Chemicals. Toxics, 12(11), 814. https://doi.org/10.3390/toxics12110814