Exposure to Per- and Polyfluoroalkyl Substances and Risk of Psoriasis: A Population-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Exposure Assessment
2.3. Outcome Assessment
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Study Participants
3.2. Associations Between Individual PFAS and Psoriasis Risk
3.3. Associations Between PFAS Mixture and Psoriasis Risk
3.3.1. Sex-Specific Analysis of PFAS Mixture and Psoriasis Using Quantile G-Computation
3.3.2. Sex-Specific Analysis of PFAS Mixture and Psoriasis Using WQS
3.3.3. Sex-Specific Analysis of PFAS Mixture and Psoriasis Using BKMR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herzke, D.; Olsson, E.; Posner, S. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway–A pilot study. Chemosphere 2012, 88, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, K.T.; Sørensen, M.; McLaughlin, J.K.; Lipworth, L.; Tjønneland, A.; Overvad, K.; Raaschou-Nielsen, O. Perfluorooctanoate and perfluorooctanesulfonate plasma levels and risk of cancer in the general Danish population. J. Natl. Cancer Inst. 2009, 101, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Gaines, L.G. Historical and current usage of per-and polyfluoroalkyl substances (PFAS): A literature review. Am. J. Ind. Med. 2023, 66, 353–378. [Google Scholar] [CrossRef] [PubMed]
- Olsen, G.W.; Mair, D.C.; Lange, C.C.; Harrington, L.M.; Church, T.R.; Goldberg, C.L.; Herron, R.M.; Hanna, H.; Nobiletti, J.B.; Rios, J.A. Per-and polyfluoroalkyl substances (PFAS) in American Red Cross adult blood donors, 2000–2015. Environ. Res. 2017, 157, 87–95. [Google Scholar] [CrossRef]
- Kotlarz, N.; McCord, J.; Collier, D.; Lea, C.S.; Strynar, M.; Lindstrom, A.B.; Wilkie, A.A.; Islam, J.Y.; Matney, K.; Tarte, P. Measurement of novel, drinking water-associated PFAS in blood from adults and children in Wilmington, North Carolina. Environ. Health Perspect. 2020, 128, 077005. [Google Scholar] [CrossRef]
- Göckener, B.; Weber, T.; Rüdel, H.; Bücking, M.; Kolossa-Gehring, M. Human biomonitoring of per-and polyfluoroalkyl substances in German blood plasma samples from 1982 to 2019. Environ. Int. 2020, 145, 106123. [Google Scholar] [CrossRef]
- Poothong, S.; Thomsen, C.; Padilla-Sanchez, J.A.; Papadopoulou, E.; Haug, L.S. Distribution of novel and well-known poly-and perfluoroalkyl substances (PFASs) in human serum, plasma, and whole blood. Environ. Sci. Technol. 2017, 51, 13388–13396. [Google Scholar] [CrossRef]
- Domingo, J.L.; Nadal, M. Human exposure to per-and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. Environ. Res. 2019, 177, 108648. [Google Scholar] [CrossRef]
- Grandjean, P.; Andersen, E.W.; Budtz-Jørgensen, E.; Nielsen, F.; Mølbak, K.; Weihe, P.; Heilmann, C. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. Jama 2012, 307, 391–397. [Google Scholar] [CrossRef]
- Wright, J.; Lee, A.; Rappazzo, K.; Ru, H.; Radke, E.; Bateson, T. Systematic review and meta-analysis of birth weight and PFNA exposures. Environ. Res. 2023, 222, 115357. [Google Scholar] [CrossRef]
- Gao, X.; Ni, W.; Zhu, S.; Wu, Y.; Cui, Y.; Ma, J.; Liu, Y.; Qiao, J.; Ye, Y.; Yang, P. Per-and polyfluoroalkyl substances exposure during pregnancy and adverse pregnancy and birth outcomes: A systematic review and meta-analysis. Environ. Res. 2021, 201, 111632. [Google Scholar] [CrossRef] [PubMed]
- Gui, S.-Y.; Chen, Y.-N.; Wu, K.-J.; Hu, C.-Y. Association between exposure to per-and polyfluoroalkyl substances and birth outcomes: A systematic review and meta-analysis. Front. Public Health 2022, 10, 855348. [Google Scholar] [CrossRef] [PubMed]
- Steenland, K.; Winquist, A. PFAS and cancer, a scoping review of the epidemiologic evidence. Environ. Res. 2021, 194, 110690. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly-and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef]
- DeWitt, J.C.; Peden-Adams, M.M.; Keller, J.M.; Germolec, D.R. Immunotoxicity of perfluorinated compounds: Recent developments. Toxicol. Pathol. 2012, 40, 300–311. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, X.-M.; Wan, B.; Guo, L.-H. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ. Toxicol. Appl. Pharmacol. 2014, 279, 275–283. [Google Scholar] [CrossRef]
- Vanden Heuvel, J.P.; Thompson, J.T.; Frame, S.R.; Gillies, P.J. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: A comparison of human, mouse, and rat peroxisome proliferator-activated receptor-α, -β, and -γ, liver X receptor-β, and retinoid X receptor-α. Toxicol. Sci. 2006, 92, 476–489. [Google Scholar] [CrossRef]
- Gao, K.; Zhuang, T.; Liu, X.; Fu, J.; Zhang, J.; Fu, J.; Wang, L.; Zhang, A.; Liang, Y.; Song, M. Prenatal exposure to per-and polyfluoroalkyl substances (PFASs) and association between the placental transfer efficiencies and dissociation constant of serum proteins–PFAS complexes. Environ. Sci. Technol. 2019, 53, 6529–6538. [Google Scholar] [CrossRef]
- Høyer, B.B.; Bonde, J.P.; Tøttenborg, S.S.; Ramlau-Hansen, C.H.; Lindh, C.; Pedersen, H.S.; Toft, G. Exposure to perfluoroalkyl substances during pregnancy and child behaviour at 5 to 9 years of age. Horm. Behav. 2018, 101, 105–112. [Google Scholar] [CrossRef]
- Michalek, I.; Loring, B.; John, S. A systematic review of worldwide epidemiology of psoriasis. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 205–212. [Google Scholar] [CrossRef]
- Parisi, R.; Symmons, D.P.; Griffiths, C.E.; Ashcroft, D.M. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J. Investig. Dermatol. 2013, 133, 377–385. [Google Scholar] [CrossRef]
- Boehncke, W.-H. Etiology and pathogenesis of psoriasis. Rheum. Dis. Clin. 2015, 41, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Branisteanu, D.E.; Cojocaru, C.; Diaconu, R.; Porumb, E.A.; Alexa, A.I.; Nicolescu, A.C.; Brihan, I.; Bogdanici, C.M.; Branisteanu, G.; Dimitriu, A. Update on the etiopathogenesis of psoriasis. Exp. Ther. Med. 2022, 23, 201. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, S.-R.; Tampa, M.; Caruntu, C.; Sarbu, M.-I.; Mitran, C.-I.; Mitran, M.-I.; Matei, C.; Constantin, C.; Neagu, M. Advances in understanding the immunological pathways in psoriasis. Int. J. Mol. Sci. 2019, 20, 739. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, L.; Barouki, R.; Blanc, E.; Coumoul, X.; Andréau, K. Per-and polyfluoroalkyl substances as persistent pollutants with metabolic and endocrine-disrupting impacts. Trends Endocrinol. Metab. 2024, S1043-2760(24)00202-9. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, E.; Colnot, T.; Zeegers, M.; Dekant, W. Immunomodulation and exposure to per-and polyfluoroalkyl substances: An overview of the current evidence from animal and human studies. Arch. Toxicol. 2022, 96, 2261–2285. [Google Scholar] [CrossRef]
- Woodlief, T.; Vance, S.; Hu, Q.; DeWitt, J. Immunotoxicity of per-and polyfluoroalkyl substances: Insights into short-chain PFAS exposure. Toxics 2021, 9, 100. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Ning, H.; Labarthe, D.; Brewer, L.; Sharma, G.; Rosamond, W.; Foraker, R.E.; Black, T.; Grandner, M.A.; Allen, N.B. Status of cardiovascular health in US adults and children using the American Heart Association’s new “Life’s Essential 8” metrics: Prevalence estimates from the National Health and Nutrition Examination Survey (NHANES), 2013 through 2018. Circulation 2022, 146, 822–835. [Google Scholar] [CrossRef]
- Kato, K.; Wong, L.-Y.; Jia, L.T.; Kuklenyik, Z.; Calafat, A.M. Trends in exposure to polyfluoroalkyl chemicals in the US population: 1999− 2008. Environ. Sci. Technol. 2011, 45, 8037–8045. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Ruan, Z.; Lu, T.; Chen, Y.; Yuan, M.; Yu, H.; Liu, R.; Xie, X. Association between psoriasis and nonalcoholic fatty liver disease among outpatient US adults. JAMA Dermatol. 2022, 158, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pan, Z.; Shen, J.; Wu, Y.; Fang, L.; Xu, S.; Ma, Y.; Zhao, H.; Pan, F. Associations of exposure to blood and urinary heavy metal mixtures with psoriasis risk among US adults: A cross-sectional study. Sci. Total Environ. 2023, 887, 164133. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Liu, Y.; Liu, J.; Liu, Z.; Shi, R. Associations of individual and mixture exposure to volatile organic compounds with metabolic syndrome and its components among US adults. Chemosphere 2024, 347, 140683. [Google Scholar] [CrossRef] [PubMed]
- Keil, A.P.; Buckley, J.P.; O’Brien, K.M.; Ferguson, K.K.; Zhao, S.; White, A.J. A quantile-based g-computation approach to addressing the effects of exposure mixtures. Environ. Health Perspect. 2020, 128, 047004. [Google Scholar] [CrossRef]
- Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J. Agric. Biol. Environ. Stat. 2015, 20, 100–120. [Google Scholar] [CrossRef]
- Renzetti, S. The Weighted Quantile Sum Regression: Extensions and Applications. Doctoral Thesis, Università degli Studi di Milano, Milan, Italy, 2021. Available online: https://air.unimi.it/bitstream/2434/818694/2/phd_unimi_R11883.pdf (accessed on 13 November 2024).
- Kupsco, A.; Wu, H.; Calafat, A.M.; Kioumourtzoglou, M.-A.; Tamayo-Ortiz, M.; Pantic, I.; Cantoral, A.; Tolentino, M.; Oken, E.; Braun, J.M. Prenatal maternal phthalate exposures and child lipid and adipokine levels at age six: A study from the PROGRESS cohort of Mexico City. Environ. Res. 2021, 192, 110341. [Google Scholar] [CrossRef]
- Tanner, E.M.; Bornehag, C.-G.; Gennings, C. Repeated holdout validation for weighted quantile sum regression. MethodsX 2019, 6, 2855–2860. [Google Scholar] [CrossRef]
- Bobb, J.F.; Valeri, L.; Claus Henn, B.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2015, 16, 493–508. [Google Scholar] [CrossRef]
- Cathey, A.L.; Eaton, J.L.; Ashrap, P.; Watkins, D.J.; Rosario, Z.Y.; Vega, C.V.; Alshawabkeh, A.N.; Cordero, J.F.; Mukherjee, B.; Meeker, J.D. Individual and joint effects of phthalate metabolites on biomarkers of oxidative stress among pregnant women in Puerto Rico. Environ. Int. 2021, 154, 106565. [Google Scholar] [CrossRef]
- Bobb, J.F.; Claus Henn, B.; Valeri, L.; Coull, B.A. Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ. Health 2018, 17, 67. [Google Scholar] [CrossRef]
- Lumley, T. Analysis of complex survey samples. J. Stat. Softw. 2004, 9, 1–19. [Google Scholar] [CrossRef]
- Rappazzo, K.M.; Coffman, E.; Hines, E.P. Exposure to perfluorinated alkyl substances and health outcomes in children: A systematic review of the epidemiologic literature. Int. J. Environ. Res. Public Health 2017, 14, 691. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Zhao, Y.; Zhang, L.; Hu, S.; Liao, K.; Zhao, M.; Wu, P.; Jin, H. Evaluated serum perfluoroalkyl acids and their relationships with the incidence of rheumatoid arthritis in the general population in Hangzhou, China. Environ. Pollut. 2022, 307, 119505. [Google Scholar] [CrossRef] [PubMed]
- Vena, G.A.; Altomare, G.; Ayala, F.; Berardesca, E.; Calzavara-Pinton, P.; Chimenti, S.; Giannetti, A.; Girolomoni, G.; Lotti, T.; Martini, P. Incidence of psoriasis and association with comorbidities in Italy: A 5-year observational study from a national primary care database. Eur. J. Dermatol. 2010, 20, 593–598. [Google Scholar]
- Lee, E.B.; Wu, K.K.; Lee, M.P.; Bhutani, T.; Wu, J.J. Psoriasis risk factors and triggers. Cutis 2018, 102, 18–20. [Google Scholar]
- Kamiya, K.; Kishimoto, M.; Sugai, J.; Komine, M.; Ohtsuki, M. Risk factors for the development of psoriasis. Int. J. Mol. Sci. 2019, 20, 4347. [Google Scholar] [CrossRef]
- Villeneuve, D.L.; Blackwell, B.R.; Cavallin, J.E.; Collins, J.; Hoang, J.X.; Hofer, R.N.; Houck, K.A.; Jensen, K.M.; Kahl, M.D.; Kutsi, R.N. Verification of in vivo estrogenic activity for four per-and polyfluoroalkyl substances (PFAS) identified as estrogen receptor agonists via new approach methodologies. Environ. Sci. Technol. 2023, 57, 3794–3803. [Google Scholar] [CrossRef]
- Rickard, B.P.; Rizvi, I.; Fenton, S.E. Per-and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology 2022, 465, 153031. [Google Scholar] [CrossRef]
- Li, J.; Cao, H.; Feng, H.; Xue, Q.; Zhang, A.; Fu, J. Evaluation of the estrogenic/antiestrogenic activities of perfluoroalkyl substances and their interactions with the human estrogen receptor by combining in vitro assays and in silico modeling. Environ. Sci. Technol. 2020, 54, 14514–14524. [Google Scholar] [CrossRef]
- Wang, Y.; Aimuzi, R.; Nian, M.; Zhang, Y.; Luo, K.; Zhang, J. Perfluoroalkyl substances and sex hormones in postmenopausal women: NHANES 2013–2016. Environ. Int. 2021, 149, 106408. [Google Scholar] [CrossRef]
- Straub, R.H. The complex role of estrogens in inflammation. Endocr. Rev. 2007, 28, 521–574. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Che, H.; Yang, S.; Chen, C. Estrogen and estrogen receptor signaling promotes allergic immune responses: Effects on immune cells, cytokines, and inflammatory factors involved in allergy. Allergol. Et Immunopathol. 2019, 47, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Sulli, A.; Seriolo, B.; Accardo, S.; Masi, A. Estrogens, the immune response and autoimmunity. Clin. Exp. Rheumatol. 1995, 13, 217–226. [Google Scholar]
- Kovats, S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell. Immunol. 2015, 294, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Wielsøe, M.; Long, M.; Ghisari, M.; Bonefeld-Jørgensen, E.C. Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro. Chemosphere 2015, 129, 239–245. [Google Scholar] [CrossRef]
- Omoike, O.E.; Pack, R.P.; Mamudu, H.M.; Liu, Y.; Strasser, S.; Zheng, S.; Okoro, J.; Wang, L. Association between per and polyfluoroalkyl substances and markers of inflammation and oxidative stress. Environ. Res. 2021, 196, 110361. [Google Scholar] [CrossRef]
- Solan, M.E.; Koperski, C.P.; Senthilkumar, S.; Lavado, R. Short-chain per-and polyfluoralkyl substances (PFAS) effects on oxidative stress biomarkers in human liver, kidney, muscle, and microglia cell lines. Environ. Res. 2023, 223, 115424. [Google Scholar] [CrossRef]
- Kadam, D.P.; Suryakar, A.N.; Ankush, R.D.; Kadam, C.Y.; Deshpande, K.H. Role of oxidative stress in various stages of psoriasis. Indian J. Clin. Biochem. 2010, 25, 388–392. [Google Scholar] [CrossRef]
- Pleńkowska, J.; Gabig-Cimińska, M.; Mozolewski, P. Oxidative stress as an important contributor to the pathogenesis of psoriasis. Int. J. Mol. Sci. 2020, 21, 6206. [Google Scholar] [CrossRef]
- Dobrică, E.-C.; Cozma, M.-A.; Găman, M.-A.; Voiculescu, V.-M.; Găman, A.M. The involvement of oxidative stress in psoriasis: A systematic review. Antioxidants 2022, 11, 282. [Google Scholar] [CrossRef]
- Laue, H.E.; Moroishi, Y.; Palys, T.J.; Christensen, B.C.; Criswell, R.L.; Peterson, L.A.; Huset, C.A.; Baker, E.R.; Karagas, M.R.; Madan, J.C. Early-life exposure to per-and polyfluoroalkyl substances and infant gut microbial composition. Environ. Epidemiol. 2023, 7, e238. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, S.; Härkönen, T.; Vatanen, T.; Hyötyläinen, T.; Knip, M.; Orešič, M. Impact of exposure to per-and polyfluoroalkyl substances on fecal microbiota composition in mother-infant dyads. Environ. Int. 2023, 176, 107965. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Issa, N.; Afifi, L.; Jeon, C.; Chang, H.-W.; Liao, W. The role of the skin and gut microbiome in psoriatic disease. Curr. Dermatol. Rep. 2017, 6, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Sikora, M.; Stec, A.; Chrabaszcz, M.; Knot, A.; Waskiel-Burnat, A.; Rakowska, A.; Olszewska, M.; Rudnicka, L. Gut microbiome in psoriasis: An updated review. Pathogens 2020, 9, 463. [Google Scholar] [CrossRef]
- Thye, A.Y.-K.; Bah, Y.-R.; Law, J.W.-F.; Tan, L.T.-H.; He, Y.-W.; Wong, S.-H.; Thurairajasingam, S.; Chan, K.-G.; Lee, L.-H.; Letchumanan, V. Gut–skin axis: Unravelling the connection between the gut microbiome and psoriasis. Biomedicines 2022, 10, 1037. [Google Scholar] [CrossRef]
- Myers, B.; Brownstone, N.; Reddy, V.; Chan, S.; Thibodeaux, Q.; Truong, A.; Bhutani, T.; Chang, H.-W.; Liao, W. The gut microbiome in psoriasis and psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 2019, 33, 101494. [Google Scholar] [CrossRef]
- Corsini, E.; Sangiovanni, E.; Avogadro, A.; Galbiati, V.; Viviani, B.; Marinovich, M.; Galli, C.L.; Dell’Agli, M.; Germolec, D.R. In vitro characterization of the immunotoxic potential of several perfluorinated compounds (PFCs). Toxicol. Appl. Pharmacol. 2012, 258, 248–255. [Google Scholar] [CrossRef]
- Ehrlich, V.; Bil, W.; Vandebriel, R.; Granum, B.; Luijten, M.; Lindeman, B.; Grandjean, P.; Kaiser, A.-M.; Hauzenberger, I.; Hartmann, C. Consideration of pathways for immunotoxicity of per-and polyfluoroalkyl substances (PFAS). Environ. Health 2023, 22, 19. [Google Scholar] [CrossRef]
- Maddalon, A.; Pierzchalski, A.; Kretschmer, T.; Bauer, M.; Zenclussen, A.C.; Marinovich, M.; Corsini, E.; Herberth, G. Mixtures of per-and poly-fluoroalkyl substances (PFAS) reduce the in vitro activation of human T cells and basophils. Chemosphere 2023, 336, 139204. [Google Scholar] [CrossRef]
- Lowes, M.A.; Suarez-Farinas, M.; Krueger, J.G. Immunology of psoriasis. Annu. Rev. Immunol. 2014, 32, 227–255. [Google Scholar] [CrossRef]
- Dévier, M.-H.; Mazellier, P.; Aït-Aïssa, S.; Budzinski, H. New challenges in environmental analytical chemistry: Identification of toxic compounds in complex mixtures. Comptes Rendus Chim. 2011, 14, 766–779. [Google Scholar] [CrossRef]
- Carpenter, D.O.; Arcaro, K.; Spink, D.C. Understanding the human health effects of chemical mixtures. Environ. Health Perspect. 2002, 110, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Abunada, Z.; Alazaiza, M.Y.; Bashir, M.J. An overview of per-and polyfluoroalkyl substances (PFAS) in the environment: Source, fate, risk and regulations. Water 2020, 12, 3590. [Google Scholar] [CrossRef]
- O’Connor, J.; Bolan, N.S.; Kumar, M.; Nitai, A.S.; Ahmed, M.B.; Bolan, S.S.; Vithanage, M.; Rinklebe, J.; Mukhopadhyay, R.; Srivastava, P. Distribution, transformation and remediation of poly-and per-fluoroalkyl substances (PFAS) in wastewater sources. Process Saf. Environ. Prot. 2022, 164, 91–108. [Google Scholar] [CrossRef]
- Verma, S.; Lee, T.; Sahle-Demessie, E.; Ateia, M.; Nadagouda, M.N. Recent advances on PFAS degradation via thermal and nonthermal methods. Chem. Eng. J. Adv. 2023, 13, 100421. [Google Scholar] [CrossRef]
Characteristics | Overall (N = 5370) | Non-Psoriasis (N = 5222) | Psoriasis (N = 148) | p-Value |
---|---|---|---|---|
Age, years (mean ± SD) | 46.50 ± 16.83 | 46.43 ± 16.86 | 49.14 ± 15.79 | 0.05 |
BMI, kg/m2 (mean ± SD) | 29.13 ± 6.98 | 29.05 ± 6.94 | 32.01 ± 8.05 | <0.001 |
PIR, (mean ± SD) | 2.61 ± 1.64 | 2.60 ± 1.64 | 2.73 ± 1.61 | 0.36 |
HEI, (mean ± SD) | 50.53 ± 13.55 | 50.57 ± 13.59 | 49.11 ± 11.96 | 0.20 |
Urinary creatinine, μmol/L (mean ± SD) | 11,285.82 ± 7166.17 | 11,324.60 ± 7187.50 | 9913.96 ± 6547.51 | 0.02 |
Sex, n (%) | 0.50 | |||
Male | 2666 (49.6) | 2588 (49.6) | 78 (52.7) | |
Female | 2704 (50.4) | 2634 (50.4) | 70 (47.3) | |
Race/Ethnicity, n (%) | < 0.001 | |||
Non-Hispanic White | 2580 (48.0) | 2487 (47.6) | 93 (62.8) | |
Non-Hispanic Black | 1111 (20.7) | 1088 (20.8) | 23 (15.5) | |
Mexican American | 808 (15.0) | 800 (15.3) | 8 (5.4) | |
Other | 871 (16.2) | 847 (16.2) | 24 (16.2) | |
Marital status, n (%) | ||||
Unmarried or other | 2098 (39.1) | 2047 (39.2) | 51 (34.5) | 0.28 |
Married or living with a partner | 3272 (60.9) | 3175 (60.8) | 97 (65.5) | |
Educational attainment, n (%) | 0.84 | |||
<High school | 1217 (22.7) | 1185 (22.7) | 32 (21.6) | |
≥High school | 4153 (77.3) | 4037 (77.3) | 116 (78.4) | |
Alcohol consumption, n (%) | 0.23 | |||
Never | 698 (13.0) | 684 (13.1) | 14 (9.5) | |
Former | 942 (17.5) | 909 (17.4) | 33 (22.3) | |
Mild | 1750 (32.6) | 1702 (32.6) | 48 (32.4) | |
Moderate | 851 (15.8) | 823 (15.8) | 28 (18.9) | |
Heavy | 1129 (21.0) | 1104 (21.1) | 25 (16.9) | |
Smoking status, n (%) | 0.001 | |||
Never | 2977 (55.4) | 2910 (55.7) | 67 (45.3) | |
Former | 1230 (22.9) | 1178 (22.6) | 52 (35.1) | |
Current | 1163 (21.7) | 1134 (21.7) | 29 (19.6) | |
Physical activity, n (%) | 0.37 | |||
No | 2436 (45.4) | 2363 (45.3) | 73 (49.3) | |
Yes | 2934 (54.6) | 2859 (54.7) | 75 (50.7) |
PFAS (ng/mL) | Unadjusted | Model 1 | Model 2 | |||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
PFOA | ||||||
Per doubling of exposure | 1.26 (1.03, 1.54) | 0.03 | 1.19 (0.95, 1.50) | 0.13 | 1.22 (0.97, 1.52) | 0.09 |
T1 | Ref | - | Ref | - | Ref | - |
T2 | 1.40 (0.79, 2.46) | 0.20 | 1.30 (0.73, 2.32) | 0.40 | 1.44 (0.80, 2.58) | 0.20 |
T3 | 1.99 (1.08, 3.65) | 0.03 | 1.78 (0.90, 3.51) | 0.10 | 1.91 (0.98, 3.72) | 0.06 |
PFOS | ||||||
Per doubling of exposure | 1.20 (1.04, 1.39) | 0.02 | 1.16 (0.99, 1.37) | 0.07 | 1.19 (1.01, 1.41) | 0.04 |
T1 | Ref | - | Ref | - | Ref | - |
T2 | 1.41 (0.76, 2.59) | 0.30 | 1.30 (0.70, 2.42) | 0.40 | 1.35 (0.72, 2.56) | 0.30 |
T3 | 1.78 (1.06, 2.97) | 0.03 | 1.60 (0.92, 2.77) | 0.10 | 1.74 (1.00, 3.02) | 0.05 |
PFHxS | ||||||
Per doubling of exposure | 1.15 (0.97, 1.36) | 0.11 | 1.09 (0.91, 1.31) | 0.30 | 1.11 (0.92, 1.33) | 0.30 |
T1 | Ref | - | Ref | - | Ref | - |
T2 | 1.37 (0.87, 2.18) | 0.20 | 1.24 (0.79, 1.97) | 0.30 | 1.32 (0.84, 2.07) | 0.20 |
T3 | 1.73 (1.09, 2.77) | 0.02 | 1.50 (0.91, 2.49) | 0.11 | 1.64 (0.98, 2.75) | 0.06 |
PFDA | ||||||
Per doubling of exposure | 1.00 (0.85, 1.18) | 0.99 | 0.99 (0.83, 1.19) | 0.93 | 1.03 (0.85, 1.23) | 0.80 |
T1 | Ref | - | Ref | - | Ref | - |
T2 | 0.49 (0.30, 0.81) | 0.01 | 0.48 (0.29, 0.80) | 0.01 | 0.49 (0.30, 0.82) | 0.01 |
T3 | 0.84 (0.54, 1.31) | 0.40 | 0.80 (0.50, 1.30) | 0.40 | 0.85 (0.51, 1.41) | 0.50 |
PFNA | ||||||
Per doubling of exposure | 1.14 (0.97, 1.35) | 0.12 | 1.11 (0.92, 1.33) | 0.30 | 1.13 (0.95, 1.35) | 0.20 |
T1 | Ref | - | Ref | - | Ref | - |
T2 | 0.84 (0.49, 1.43) | 0.50 | 0.80 (0.47, 1.37) | 0.40 | 0.88 (0.52, 1.48) | 0.60 |
T3 | 1.35 (0.87, 2.10) | 0.20 | 1.25 (0.76, 2.06) | 0.40 | 1.32 (0.80, 2.18) | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Zhang, M.; Zhao, C. Exposure to Per- and Polyfluoroalkyl Substances and Risk of Psoriasis: A Population-Based Study. Toxics 2024, 12, 828. https://doi.org/10.3390/toxics12110828
Zhang Q, Zhang M, Zhao C. Exposure to Per- and Polyfluoroalkyl Substances and Risk of Psoriasis: A Population-Based Study. Toxics. 2024; 12(11):828. https://doi.org/10.3390/toxics12110828
Chicago/Turabian StyleZhang, Qing, Mengyue Zhang, and Cunxi Zhao. 2024. "Exposure to Per- and Polyfluoroalkyl Substances and Risk of Psoriasis: A Population-Based Study" Toxics 12, no. 11: 828. https://doi.org/10.3390/toxics12110828
APA StyleZhang, Q., Zhang, M., & Zhao, C. (2024). Exposure to Per- and Polyfluoroalkyl Substances and Risk of Psoriasis: A Population-Based Study. Toxics, 12(11), 828. https://doi.org/10.3390/toxics12110828