Implementation of Sensitive Method for Determination of Benzophenone and Camphor UV Filters in Human Urine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Certified Standards, Chemicals and Other Materials
2.2. Sample Collection
2.3. Description of Tested Methods
2.3.1. “Dilute-and-Shoot”
2.3.2. LLE Followed by a Clean-Up with Dispersive Solid-Phase Extraction (d-SPE)
2.4. Instrumental Analysis
2.5. Quality Assurance/Quality Control, Validation and Matrix Effects
3. Results and Discussion
3.1. UHPLC-MS/MS Method Development
- (i)
- The highest intensity MRM transitions and their values for collision energy, declustering potential, entrance potential and cell exit potential for each target compound were obtained by infusing a standard solution of the target analytes of 100 ng/mL in methanol directly into the ESI in positive and negative mode followed by automatic tuning (see Table S2 in the Supplementary Data). To obtain the optimal value for the ionisation parameters, capillary voltage and desolvation temperature, the responses of a standard solution of the target analytes 10 ng/mL in methanol (injected six times) were evaluated for several adjusted values of these parameters. As Figure 1 and Figure 2 show, the peaks with the highest intensity were obtained when the capillary voltage and desolvation temperature were set to ±4500 V and 500 °C, respectively.
- (ii)
- The influence of the mobile phase composition on the ionisation efficiency and peak shape of the target analytes were also investigated (see Figure 3).
- (iii)
- Based on the literature review, an HSS T3 C18 (100 mm × 2.1 mm × 1.8 µm) reversed-phase column from Waters (Milford, MA, USA) was selected for the separation of the target analytes. The tested settings for the gradient elution programme are listed in Table 1.
3.2. Extraction Method Development
3.2.1. “Dilute-and-Shoot”
3.2.2. LLE with d-SPE
3.3. Method Validation
3.4. Method Applicability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- HBM4EU Priority Substances [Internet]. HBM4EU. Available online: https://www.hbm4eu.eu/hbm4eu-substances/hbm4eu-priority-substances/ (accessed on 20 May 2022).
- Berman, T.; Barnett-Itzhaki, Z. Prioritised Substance Group: UV Filers [Internet]. HBM4EU. 2021. Available online: https://www.hbm4eu.eu/wp-content/uploads/2021/02/HBM4EU_D4.9_Scoping_Documents_HBM4EU_priority_substances_v1.0-UF-filters.pdf (accessed on 20 May 2022).
- Giokas, D.L.; Salvador, A.; Chisvert, A. UV filters: From sunscreens to human body and the environment. Trends Anal. Chem. 2007, 26, 360–374. [Google Scholar] [CrossRef]
- Bradley, E.L.; Stratton, J.S.; Leak, J.; Lister, L.; Castle, L. Printing ink compounds in foods: UK survey results. Food Addit. Contam. Part B 2013, 6, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Tian, M.; Feng, W.; He, H.; Wang, Y.; Yang, L. Sensitive detection of benzophenone-type ultraviolet filters in plastic food packaging materials by sheathless capillary electrophoresis–electrospray ionization–tandem mass spectrometry. J. Chromatogr. A 2019, 1604, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, S.H.; Lassen, C.; Warming, M.; Hansen, E.; Brinch, A.; Brooke, D.; Crookes, M.; Nielsen, E.; Bredsdorff, L.; Food, D.T.U. The Danish Environmental Protection Agency: Denmark. Surv. Health Assess. UV Filters 2015, 142, 81–113. [Google Scholar]
- Morrison, G.C.; Bekö, G.; Weschler, C.J.; Schripp, T.; Salthammer, T.; Hill, J.; Andersson, A.-M.; Toftum, J.; Clausen, G.; Frederiksen, H. Dermal Uptake of Benzophenone-3 from Clothing. Environ. Sci. Technol. 2017, 51, 11371–11379. [Google Scholar] [CrossRef]
- Ko, A.; Kang, H.-S.; Park, J.-H.; Kwon, J.-E.; Moon, G.I.; Hwang, M.-S.; Hwang, I.G. The Association Between Urinary Benzophenone Concentrations and Personal Care Product Use in Korean Adults. Arch. Environ. Contam. Toxicol. 2016, 70, 640–646. [Google Scholar] [CrossRef]
- Lu, S.; Long, F.; Lu, P.; Lei, B.; Jiang, Z.; Liu, G.; Zhang, J.; Ma, S.; Yu, Y. Benzophenone-UV filters in personal care products and urine of schoolchildren from Shenzhen, China: Exposure assessment and possible source. Sci. Total Environ. 2018, 640–641, 1214–1220. [Google Scholar] [CrossRef]
- Kim, B.; Kwon, B.; Jang, S.; Kim, P.G.; Kyunghee, J. Major benzophenone concentrations and influence of food consumption among the general population in Korea, and the association with oxidative stress biomarker. Sci. Total Environ. 2016, 565, 649–655. [Google Scholar] [CrossRef]
- Li, N.; Ho, W.; Wu, R.S.S.; Tsang, E.P.K.; Ying, G.G.; Deng, W.J. Ultraviolet filters in the urine of preschool children and drinking water. Environ. Int. 2019, 133, 105246. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Chen, Y.; Wang, D.; Xu, W.; Gao, Y. Profiles of parabens, benzophenone-type ultraviolet filters, triclosan, and triclocarban in paired urine and indoor dust samples from Chinese university students: Implications for human exposure. Sci. Total Environ. 2021, 798, 149275. [Google Scholar] [CrossRef]
- Maerkel, K.; Durre, S.; Henseler, M.; Schlumpf, M.; Lichtensteiger, W. Sexually dimorphic gene regulation in brain as a target for endocrine disrupters: Developmental exposure of rats to 4-methylbenzylidene camphor. Toxicol. Appl. Pharmacol. 2007, 218, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Kitamura, S.; Khota, R.; Sugihara, K.; Fujimoto, N.; Ohta, S. Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicol. Appl. Pharmacol. 2005, 203, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Kojima, H.; Takeuchi, S.; Uramaru, N.; Sanoh, S.; Sugihara, K.; Kitamura, S.; Ohta, S. Metabolism of UV filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity. Toxicol. Appl. Pharmacol. 2015, 282, 119–128. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group. Benzophenone. IARC Monogr. Eval. Carcinog. Risk Hum. 2013, 101, 285–304. [Google Scholar]
- Jeon, H.K.; Sarma, S.N.; Kim, Y.J.; Ryu, J.C. Toxicokinetics and metabolisms of benzophenone-type UV filters in rats. Toxicology 2008, 248, 89–95. [Google Scholar] [CrossRef]
- Schlecht, C.; Klammer, H.; Frauendorf, H.; Wuttke, W.; Jarry, H. Pharmacokinetics and metabolism of benzophenone 2 in the rat. Toxicology 2008, 245, 11–17. [Google Scholar] [CrossRef]
- Schauer, U.M.; Völkel, W.; Heusener, A.; Colnot, T.; Broschard, T.H.; von Landenberg, F.; Dekant, W. Kinetics of 3-(4-methylbenzylidene) camphor in rats and humans after dermal application. Toxicol. Appl. Pharmacol. 2006, 216, 339–346. [Google Scholar] [CrossRef]
- Chisvert, A.; León-González, Z.; Tarazona, I.; Salvador, A.; Giokas, D. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues. Anal. Chim. Acta 2012, 752, 11–29. [Google Scholar] [CrossRef]
- Lopardo, L.; Adams, D.; Cummins, A.; Kasprzyk-Hordern, B. Verifying community-wide exposure to endocrine disruptors in personal care products—In quest for metabolic biomarkers of exposure via in vitro studies and wastewater-based epidemiology. Water Res. 2018, 143, 117–126. [Google Scholar] [CrossRef]
- Kadry, A.M.; Okereke, C.S.; Abdel-Rahman, M.S.; Friedman, M.A.; Davis, R.A. Pharmacokinetics of benzophenone-3 after oral exposure in male rats. J. Appl. Toxicol. 1995, 15, 97–102. [Google Scholar] [CrossRef]
- Völkel, W.; Colnot, T.; Schauer, U.M.D.; Broschard, T.H.; Dekant, W. Toxicokinetics and biotransformation of 3-(4-methylbenzylidene)camphor in rats after oral administration. Toxicol. Appl. Pharmacol. 2006, 216, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Kannan, K. Characteristic Profiles of Benzonphenone-3 and its Derivatives in Urine of Children and Adults from the United States and China. Environ. Sci. Technol. 2013, 47, 12532–12538. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Kuklenyik, Z.; Needham, L.L.; Calafat, A.M. Quantification of urinary conjugates of bisphenol A, 2,5-dichlorophenol, and 2-hydroxy-4-methoxybenzophenone in humans by online solid phase extraction–high performance liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2005, 383, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Asimakopoulos, A.G.; Wang, L.; Thomaidis, N.S.; Kannan, K. A multi-class bioanalytical methodology for the determination of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters, benzophenone-type ultraviolet filters, triclosan, and triclocarban in human urine by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2014, 1324, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; He, Y.; Huang, Y.; Huang, X.; Guo, Y.; Zhu, H.; Kannan, K.; Zhang, T. Occurrence and transfer of benzophenone-type ultraviolet filters from the pregnant women to fetuses. Sci. Total Environ. 2020, 726, 138503. [Google Scholar] [CrossRef]
- Wang, S.; Huo, Z.; Shi, W.; Wang, H.; Xu, G. Urinary benzophenones and synthetic progestin in Chinese adults and children: Concentration, source and exposure. Environ. Sci. Pollut. Res. 2021, 28, 50245–50254. [Google Scholar] [CrossRef]
- Kunisue, T.; Wu, Q.; Tanabe, S.; Aldous, K.M.; Kannan, K. Analysis of five benzophenone-type UV filters in human urine by liquid chromatography-tandem mass spectrometry. Anal. Methods 2010, 2, 707–713. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; Ma, X.; Huo, W.; Xu, S.; Cai, Z. Simultaneous determination of bisphenols, benzophenones and parabens in human urine by using UHPLC-TQMS. Chin. Chem. Lett. 2018, 29, 102–106. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, P.; Xu, B.; Zhao, R.; Qiao, S.; Chen, X.; Tang, R.; Wu, D.; Song, L.; Wang, S.; et al. Determination of Nine Environmental Phenols in Urine by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Anal. Toxicol. 2012, 36, 608–615. [Google Scholar] [CrossRef]
- Gavin, Q.W.; Ramage, R.T.; Waldman, J.M.; She, J. Development of HPLC-MS/MS method for the simultaneous determination of environmental phenols in human urine. Int. J. Environ. Anal. Chem. 2014, 94, 168–182. [Google Scholar] [CrossRef]
- Gu, J.; Yuan, T.; Ni, N.; Ma, Y.; Shen, Z.; Yu, X.; Shi, R.; Tian, Y.; Zhou, W.; Zhang, J. Urinary concentration of personal care products and polycystic ovary syndrome: A case-control study. Environ. Res. 2019, 168, 48–53. [Google Scholar] [CrossRef]
- Dewalque, L.; Pirard, C.; Dubois, N.; Charlier, C. Simultaneous determination of some phthalate metabolites, parabens and benzophenone-3 in urine by ultra-high pressure liquid chromatography tandem mass spectrometry. J. Chromatogr. B. 2014, 949–950, 37–47. [Google Scholar] [CrossRef]
- Moos, R.K.; Angerer, J.; Wittsiepe, J.; Wilhelm, M.; Brüning, T.; Koch, H.M. Rapid determination of nine parabens and seven other environmental phenols in urine samples of German children and adults. Int. J. Hyg. Environ. Health 2014, 217, 845–853. [Google Scholar] [CrossRef]
- Vela-Soria, F.; Ballesteros, O.; Zafra-Gómez, A.; Ballesteros, L.; Navalón, A. UHPLC–MS/MS method for the determination of bisphenol A and its chlorinated derivatives, bisphenol S, parabens, and benzophenones in human urine samples. Anal. Bioanal. Chem. 2014, 406, 3773–3785. [Google Scholar] [CrossRef]
- Frederiksen, H.; Nielsen, O.; Skakkebaek, N.; Juul, A.; Andersson, A.M. UV filters analyzed by isotope diluted TurboFlow-LC–MS/MS in urine from Danish children and adolescents. Int. J. Hyg. Environ. Health 2017, 220, 244–253. [Google Scholar] [CrossRef]
- Adoamnei, E.; Mendiola, J.; Moñino-García, M.; Vela-Soria, F.; Iribarne-Durán, L.M.; Fernández, M.F.; Olea, N.; Jørgensen, N.; Swan, S.H.; Torres-Cantero, A.M. Urinary concentrations of benzophenone-type ultraviolet light filters and reproductive parameters in young men. Int. J. Hyg. Environ. Health 2018, 221, 531–540. [Google Scholar] [CrossRef]
- Gao, C.-J.; Liu, L.-Y.; Ma, W.-L.; Zhu, N.-Z.; Jiang, L.; Li, Y.-F.; Kannan, K. Benzonphenone-type UV filters in urine of Chinese young adults: Concentration, source and exposure. Environ. Pollut. 2015, 203, 1–6. [Google Scholar] [CrossRef]
- Kang, H.-S.; Ko, A.; Kwon, J.-E.; Kyung, M.-S.; Moon, G.I.; Park, J.-H.; Lee, H.-S.; Suh, J.-H.; Lee, J.-M.; Hwang, M.-S.; et al. Urinary benzophenone concentrations and their association with demographic factors in a South Korean population. Environ. Res. 2016, 149, 1–7. [Google Scholar] [CrossRef]
- Rocha, B.A.; Moraes de Oliveira, A.R.; Barbosa, F., Jr. A fast and simple air-assisted liquid-liquid microextraction procedure for the simultaneous determination of bisphenols, parabens, benzophenones, triclosan, and triclocarban in human urine by liquid chromatography tandem mass spectrometry. Talanta 2018, 183, 94–101. [Google Scholar] [CrossRef]
- Silveira, R.S.; Rocha, B.A.; Rodrigues, J.L.; Barbosa, F., Jr. Rapid, sensitive and simultaneous determination of 16 endocrine disrupting chemicals (parabens, benzophenones, bisphenols, and triclocarban) in human urine based on microextraction by packed sorbent combined with liquid chromatography tandem mass spectrometry (MEPS-LC-MS/MS). Chemosphere 2020, 240, 124951. [Google Scholar] [CrossRef]
- Jiménez-Díaz, I.; Artacho-Cordón, F.; Vela-Soria, F.; Belhassen, H.; Arrebola, J.; Fernández, M.; Ghali, R.; Hedhili, A.; Olea, N. Urinary levels of bisphenol A, benzophenones and parabens in Tunisian women: A pilot study. Sci. Total Environ. 2016, 562, 81–88. [Google Scholar] [CrossRef]
- Krause, M.; Andersson, A.M.; Skakkebaek, N.E.; Frederiksen, H. Exposure to UV filters during summer and winter in Danish kindergarten children. Environ. Int. 2017, 99, 177–184. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, P.; Law, J.C.-F.; Zhao, Y.; Wei, Q.; Zhou, Y.; Zhang, Y.; Shi, H.; Leung, K.S.-Y. Organic UV filter exposure and pubertal development: A prospective follow up study of urban Chinese adolescents. Environ. Int. 2020, 143, 105961. [Google Scholar] [CrossRef]
- Lankova, D.; Urbancova, K.; Sram, R.J.; Hajslova, J.; Pulkrabova, J. A novel strategy for the determination of polycyclic aromatic hydrocarbon monohydroxylated metabolites in urine using ultra-high-performance liquid chromatography with tandem mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 2515–2525. [Google Scholar] [CrossRef]
- Urbancova, K.; Lankova, D.; Sram, R.J.; Hajslova, J.; Pulkrabova, J. Urinary metabolites of phthalates and di-iso-nonyl cyclohexane-1, 2-dicarboxylate (DINCH)–Czech mothers’ and newborns’ exposure biomarkers. Environ. Res. 2019, 173, 342–348. [Google Scholar] [CrossRef]
- SANTE Document. SANTE/11312/2021. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed [Internet]. 2022. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf (accessed on 25 May 2022).
- Casas, L.; Fernández, M.F.; Llop, S.; Guxens, M.; Ballester, F.; Olea, N.; Irurzun, M.B.; Rodríguez, L.S.M.; Riaño, I.; Tardón, A.; et al. Urinary concentrations of phthalates and phenols in a population of Spanish pregnant women and children. Environ. Int. 2011, 37, 858–866. [Google Scholar] [CrossRef]
- Frederiksen, H.; Nielsen, J.K.S.; Mørck, T.A.; Hansen, P.W.; Jensen, J.F.; Nielsen, O.; Andersson, A.-M.; Knudsen, L.E. Urinary excretion of phthalate metabolites, phenols and parabens in rural and urban Danish mother–child pairs. Int. J. Hyg. Environ. Health 2013, 216, 772–783. [Google Scholar] [CrossRef]
- Krause, M.; Frederiksen, H.; Sundberg, K.; Jørgensen, F.; Jensen, L.; Nørgaard, P.; Jørgensen, C.; Ertberg, P.; Juul, A.; Drzewiecki, K.; et al. Presence of benzophenones commonly used as UV filters and absorbers in paired maternal and fetal samples. Environ. Int. 2018, 110, 51–60. [Google Scholar] [CrossRef]
Name | Time (Min) | Flow (mL/min) | Composition of Mobile Phase (%) | |
---|---|---|---|---|
Water (A) | Methanol (B) | |||
Gradient elution programme I | 0.0 | 0.30 | 90 | 10 |
0.5 | 0.35 | 60 | 40 | |
10.0 | 0.40 | 0 | 100 | |
14.0 | 0.40 | 0 | 100 | |
14.1 | 0.40 | 90 | 10 | |
16.0 | 0.50 | 90 | 10 | |
Gradient elution programme II | 0.0 | 0.30 | 90 | 10 |
0.5 | 0.35 | 60 | 40 | |
10.0 | 0.40 | 0 | 100 | |
12.0 | 0.40 | 0 | 100 | |
12.1 | 0.40 | 90 | 10 | |
14.0 | 0.50 | 90 | 10 | |
Gradient elution programme III (final) | 0.0 | 0.30 | 90 | 10 |
0.5 | 0.35 | 60 | 40 | |
11.0 | 0.40 | 0 | 100 | |
12.0 | 0.45 | 0 | 100 | |
12.2 | 0.50 | 90 | 10 | |
13.0 | 0.50 | 90 | 10 |
Analyte | ISTD | “Dilute-and-Shoot” | LLE with d-SPE | ||||
---|---|---|---|---|---|---|---|
LOQ | Recovery | RSD | LOQ | Recovery | RSD | ||
(ng/mL in urine) | (%) | (%) | (ng/mL in urine) | (%) | (%) | ||
BP-1 | 4-OH-BP-d4 | 0.03 | 175 | 16 | 0.002 | 97 | 4 |
BP-2 | BP-8-d4 | 0.03 | 79 | 5 | 0.002 | 90 | 10 |
BP-3 | BP-3-d3 | 0.07 | 96 | 4 | 0.005 | 113 | 9 |
BP-6 | BP-8-d3 | 0.01 | 66 | 5 | 0.001 | 98 | 11 |
BP-7 | BP-8-d3 | 0.03 | 131 | 4 | 0.002 | 127 | 8 |
BP-8 | BP-8-d3 | 0.07 | 120 | 2 | 0.005 | 116 | 3 |
4-OH-BP | 4-OH-BP-d4 | 0.01 | 85 | 3 | 0.001 | 99 | 4 |
4-MBC | 4-MBC-d4 | 0.07 | 94 | 2 | 0.005 | 102 | 5 |
3-BC | 4-MBC-d4 | 0.07 | 72 | 5 | 0.005 | 97 | 3 |
ISTD | BP-3-d3 |
---|---|
LOQ ng/mL in urine | 0.100 |
SRM 3673 | |
Certified value (ng/mL in urine) | 279 ± 7 |
Measured value (ng/mL in urine) | 263 ± 13 a |
Recovery (%) | 92 |
RSD (%) | 2 |
BP-1 | BP-2 | BP-6 | BP-7 | BP-8 | 4-OH-BP | 4-MBC | 3-BC | |
---|---|---|---|---|---|---|---|---|
ISTD | 4-OH-BP-d4 | BP-8-d4 | BP-8-d3 | BP-8-d3 | BP-8-d3 | 4-OH-BP-d4 | 4-MBC-d4 | 4-MBC-d4 |
LOQ ng/mL in urine | 0.002 | 0.002 | 0.001 | 0.002 | 0.005 | 0.001 | 0.100 | 0.100 |
Level 0.005 ng/mL in urine | ||||||||
Recovery (%) | 91 | 79 | 97 | 95 | 101 | 111 | - | - |
RSD (%) | 4 | 9 | 8 | 4 | 8 | 9 | - | - |
Level 0.05 ng/mL in urine | ||||||||
Recovery (%) | 101 | 85 | 102 | 105 | 107 | 110 | - | - |
RSD (%) | 8 | 15 | 12 | 9 | 10 | 13 | - | - |
Level 0.5 ng/mL in urine | ||||||||
Recovery (%) | 99 | 95 | 100 | 101 | 98 | 106 | 113 | 101 |
RSD (%) | 3 | 5 | 2 | 5 | 2 | 6 | 3 | 3 |
Analytes | Volume of Sample | Preparation Step | Instrumental Method | LOD (ng/mL) | LOQ (ng/mL) | Ref. |
---|---|---|---|---|---|---|
BP | 0.1 mL | Enzymatic hydrolysis | 2.4 | 7.2 | [37] | |
BP-1 | β-glucuronidase/sulfatase | HPLC-APCI (+/−)-MS/MS | 0.3 | 0.9 | ||
BP-2 | 1 M acetate buffer (pH 5.5) | column Hypersil Gold aQ | 0.4 | 1.2 | ||
BP-3 | incubation 37 °C, 1.5 h | (50 mm × 4 mm × 3.0 µm) | 0.3 | 0.9 | ||
BP-7 | 0.4 | 1.2 | ||||
4-OH-BP | online-Turbo-Flow column | 0.2 | 0.6 | |||
4-MBP | TurboFlow Cyclone P | 0.5 | 1.5 | |||
4-MBC | (50 mm × 0.5 mm) | 0.9 | 2.7 | |||
3-BC | 1.0 | 3.0 | ||||
BP-1 | 2 mL | Enzymatic hydrolysis | 0.5 | 1.5 | [45] | |
BP-2 | β-glucuronidase-Helix pomatia | UHPLC-ESI(+)-MS/MS | 0.95 | 2.9 | ||
BP-3 | 1 M acetate buffer (pH 5.5) | column UPLC BEH 18 | 0.08 | 0.24 | ||
4-OH-BP | incubation 37 °C, overnight | (100 mm × 2.1 mm × 1.7 µm) | 0.28 | 0.84 | ||
BP-8 | SPE | 0.31 | 0.93 | |||
4-MBC | cartridge ABS ELUT-Nexus | 0.55 | 1.7 | |||
3-BC | (60 mg/3 mL, Agilent Technologies) | 0.26 | 0.78 | |||
BP-1 | 2 mL | Enzymatic hydrolysis | 0.01 | 0.03 | [11] | |
BP-2 | β-glucuronidase/sulfatase | HPLC-ESI(+)-MS/MS | 0.01 | 0.03 | ||
BP-3 | 1 M acetate buffer (pH 5.0) | column Eclipse plus C18 | 0.01 | 0.03 | ||
BP-4 | incubation 37 °C, 12 h | (n.s.) | 0.005 | 0.02 | ||
BP-8 | LLE | 0.01 | 0.03 | |||
4-MBC | acetone:trichlormethane (1:1, v/v) | 2.5 | 7.5 | |||
BP-1 | 2 mL urine | Enzymatic hydrolysis | 0.02 | [27] | ||
BP-3 | β-glucuronidase/sulfatase | HPLC-ESI(-)-MS/MS | 0.01 | |||
BP-4 | 1 M acetate buffer (pH n.s.) | column Betasil C18 | 0.02 | |||
BP-6 | incubation 37 °C, 12 h | (150 mm × 2.1 mm × 3.5 µm) | 0.02 | |||
BP-7 | Javelin guard column Betasil C18 | 0.20 | ||||
BP-8 | LLE | (20 mm × 2.1 mm × 5 µm) | 0.01 | |||
BP-9 | ethyl acetate | 0.01 | ||||
4-OH-BP | 0.02 | |||||
BP-1 | 2 mL urine | Enzymatic hydrolysis | 0.002 | [9] | ||
BP-2 | β-glucuronidase/sulfatase | HPLC-ESI(-)-MS/MS | 0.014 | |||
BP-3 | 1 M acetate buffer (pH 5.0) | column Atlantis C18 | 0.197 | |||
BP-8 | incubation 37 °C, 8 h | (150 mm × 2.1 mm × 5 µm) | 0.044 | |||
4-OH-BP | LLE ethyl acetate | 0.047 | ||||
BP-1 | 5 mL urine | Enzymatic hydrolysis | 0.002 | present study | ||
BP-2 | β-glucuronidase-Helix pomatia | 0.002 | ||||
BP-3 | 1 M acetate buffer (pH 5.0) | UHPLC-ESI (+/−)-MS/MS | 0.100 | |||
BP-6 | incubation 37 °C, overnight | column PFP Kinetex | 0.002 | |||
BP-7 | (100 mm × 2.1 mm × 1.7 µm) | 0.002 | ||||
BP-8 | LLE ethyl acetate | 0.005 | ||||
4-OH-BP | d-SPE Z-Sep | 0.001 | ||||
4-MBC | 0.050 | |||||
3-BC | 0.050 |
BP-1 | BP-2 | BP-3 | BP-6 | BP-7 | BP-8 | 4-OH-BP | 4-MBC | 3-BC | |
---|---|---|---|---|---|---|---|---|---|
Positive samples (%) | 100 | 20 | 90 | 7 | 33 | 20 | 100 | 0 | 0 |
Arithmetic mean * | 19.5 | <0.002 | 162 | <0.001 | <0.002 | <0.005 | 0.711 | - | - |
Median * | 2.24 | <0.002 | 18.0 | <0.001 | <0.002 | <0.005 | 0.351 | - | - |
5th percentile * | 0.217 | <0.002 | 0.661 | <0.001 | <0.002 | <0.005 | 0.111 | <0.100 | <0.100 |
95th percentile * | 112 | <0.002 | 904 | <0.001 | <0.002 | <0.005 | 2.21 | <0.100 | <0.100 |
Minimum value | 0.083 | 0.019 | 1.58 | 0.031 | 0.015 | 0.010 | 0.060 | <0.100 | <0.100 |
Maximum value | 150 | 1.13 | 1340 | 0.037 | 0.726 | 2.02 | 6.15 | <0.100 | <0.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomersall, V.; Ciglova, K.; Pulkrabova, J. Implementation of Sensitive Method for Determination of Benzophenone and Camphor UV Filters in Human Urine. Toxics 2024, 12, 837. https://doi.org/10.3390/toxics12120837
Gomersall V, Ciglova K, Pulkrabova J. Implementation of Sensitive Method for Determination of Benzophenone and Camphor UV Filters in Human Urine. Toxics. 2024; 12(12):837. https://doi.org/10.3390/toxics12120837
Chicago/Turabian StyleGomersall, Veronika, Katerina Ciglova, and Jana Pulkrabova. 2024. "Implementation of Sensitive Method for Determination of Benzophenone and Camphor UV Filters in Human Urine" Toxics 12, no. 12: 837. https://doi.org/10.3390/toxics12120837
APA StyleGomersall, V., Ciglova, K., & Pulkrabova, J. (2024). Implementation of Sensitive Method for Determination of Benzophenone and Camphor UV Filters in Human Urine. Toxics, 12(12), 837. https://doi.org/10.3390/toxics12120837