In Vitro Metabolism and In Vivo Pharmacokinetics Profiles of Hydroxy-α-Sanshool
Abstract
:1. Introduction
2. Results
2.1. In Vitro Plasma Protein Binding (PPB)
2.2. CYP Inhibition in Human Liver Microsomes
2.3. Metabolic Stability in Liver Microsomes
2.4. Metabolic Stability in Hepatocytes
2.5. PK Profiles of HAS in Rats
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Ethical Statement
4.3. Methods
4.3.1. Plasma Protein Binding (PPB)
4.3.2. CYP Inhibition in HLMs
4.3.3. Metabolic Stability in Liver Microsomes
4.3.4. Metabolic Stability in Hepatocytes
4.3.5. PK Experiments in Rats and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, M.; Bai, L.; Peng, S.; Sun, F.; Wang, L.; Liu, H.; Yan, H. Simple quantitative analytical methods for the determination of alkaloids from medicinal and edible plant foods using a homemade chromatographic monolithic column. J. Chromatogr. B 2019, 1128, 121784. [Google Scholar] [CrossRef]
- Li, R.L.; Duan, H.X.; Wang, L.Y.; Liang, Q.; Wu, C.; Peng, W. Amides from Zanthoxylum bungeanum Maxim. (Rutaceae) are promising natural agents with neuroprotective activities. Arab. J. Chem. 2023, 16, 104817. [Google Scholar] [CrossRef]
- Guo, J.; He, C.X.; Zhang, Q.; Li, R.L.; Qian, D.; Wu, C.J.; Chen, W.W.; Hou, S.G.; Peng, W. The pericarp of Zanthoxylum bungeanum Maxim.: An excellent source for the development of alternative drugs for improving glucose and lipid metabolism disorder related diseases. Arab. J. Chem. 2024, 17, 105594. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, R.L.; Wang, L.Y.; Zhang, T.; Qian, D.; Tang, D.D.; He, C.X.; Wu, C.J.; Ai, L. Hydroxy-α-sanshool isolated from Zanthoxylum bungeanum Maxim. has antidiabetic effects on high-fat-fed and streptozotocin-treated mice via increasing glycogen synthesis by regulation of PI3K/Akt/GSK-3β/GS signaling. Front. Pharmacol. 2022, 13, 1089558. [Google Scholar] [CrossRef]
- Mitani, T.; Yawata, Y.; Yamamoto, N.; Okuno, Y.; Sakamoto, H.; Nishide, M.; Kayano, S.I. Stabilization of Hydroxy-α-Sanshool by antioxidants present in the Genus Zanthoxylum. Foods 2023, 12, 3444. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, X.; Sun, L.; Pei, K.; Chen, L.; Zhang, S.; Hu, M. Protective effects of hydroxy-α-sanshool from the pericarp of Zanthoxylum bungeanum Maxim. On D-galactose/AlCl3-induced Alzheimer’s disease-like mice via Nrf2/HO-1 signaling pathways. Eur. J. Pharmacol. 2022, 914, 174691. [Google Scholar] [CrossRef]
- Peng, W.; He, C.X.; Li, R.L.; Qian, D.; Wang, L.Y.; Chen, W.W.; Zhang, Q.; Wu, C.J. Zanthoxylum bungeanum amides ameliorates nonalcoholic fatty liver via regulating gut microbiota and activating AMPK/Nrf2 signaling. J. Ethnopharmacol. 2024, 318, 116848. [Google Scholar] [CrossRef]
- Zhang, Q.; He, C.X.; Wang, L.Y.; Qian, D.; Tang, D.D.; Jiang, S.N.; Chen, W.W.; Wu, C.J.; Peng, W. Hydroxy-α-sanshool from the fruits of Zanthoxylum bungeanum Maxim. promotes browning of white fat by activating TRPV1 to induce PPAR-γ deacetylation. Phytomedicine 2023, 121, 155113. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Zhu, L.; Li, T.; Jiang, W.; Zhou, J.; Peng, W.; Wu, C. Zanthoxylum bungeanum Maxim. (Rutaceae): A systematic review of its traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology. Int. J. Mol. Sci. 2017, 18, 2172. [Google Scholar] [CrossRef]
- Rong, R.; Cui, M.Y.; Zhang, Q.L.; Zhang, M.Y.; Yu, Y.M.; Zhou, X.Y.; Yu, Z.G.; Zhao, Y.L. Anesthetic constituents of Zanthoxylum bungeanum Maxim.: A pharmacokinetic study. J. Sep. Sci. 2016, 39, 2728–2735. [Google Scholar] [CrossRef]
- Yuan, Y.; Meng, G.; Li, Y.; Wu, C. Study on in vitro metabolism and in vivo pharmacokinetics of Beauvericin. Toxins 2022, 14, 477. [Google Scholar] [CrossRef]
- Lahoz, A.; Gombau, L.; Donato, M.T.; Castell, J.V.; Gómez-Lechón, M.J. In vitro ADME medium/high-throughput screening in drug preclinical development. Mini. Rev. Med. Chem. 2006, 6, 1053–1062. [Google Scholar] [CrossRef]
- Fan, G.; Liu, M.; Liu, J.; Huang, Y.; Mu, W. Traditional Chinese medicines treat ischemic stroke and their main bioactive constituents and mechanisms. Phytother Res. 2024, 38, 411–453. [Google Scholar] [CrossRef]
- Luo, M.; Zheng, Y.; Tang, S.; Gu, L.; Zhu, Y.; Ying, R.; Liu, Y.; Ma, J.; Guo, R.; Gao, P.; et al. Radical oxygen species: An important breakthrough point for botanical drugs to regulate oxidative stress and treat the disorder of glycolipid metabolism. Front. Pharmacol. 2023, 14, 1166178. [Google Scholar] [CrossRef]
- Shi, P.; Lin, X.; Yao, H. A comprehensive review of recent studies on pharmacokinetics of traditional Chinese medicines (2014–2017) and perspectives. Drug Metab. Rev. 2018, 50, 161–192. [Google Scholar] [CrossRef]
- Lai, Y.; Chu, X.; Di, L.; Gao, W.; Guo, Y.; Liu, X.; Lu, C.; Mao, J.; Shen, H.; Tang, H.; et al. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm. Sin. B 2022, 12, 2751–2777. [Google Scholar] [CrossRef]
- Almazroo, O.A.; Miah, M.K.; Venkataramanan, R. Drug metabolism in the liver. Clin. Liver. Dis. 2017, 21, 1–20. [Google Scholar] [CrossRef]
- Manikandan, P.; Nagini, S. Cytochrome P450 structure, function and clinical significance: A review. Curr. Drug Targets 2018, 19, 38–54. [Google Scholar] [CrossRef]
- Achour, B.; Barber, J.; Rostami-Hodjegan, A. Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: A meta-analysis. Drug Metab. Dispos. 2014, 42, 1349–1356. [Google Scholar] [CrossRef]
- Lynch, T.; Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Phys. 2007, 76, 391–396. [Google Scholar]
- Roy, K.S.; Nazdrajić, E.; Shimelis, O.I.; Ross, M.J.; Chen, Y.; Cramer, H.; Pawliszyn, J. Optimizing a high-throughput solid-phase microextraction system to determine the plasma protein binding of drugs in human plasma. Anal. Chem. 2021, 93, 11061–11065. [Google Scholar] [CrossRef]
- Nation, R.L.; Theuretzbacher, U.; Tsuji, B.T. International society of anti-infective pharmacology (ISAP). Concentration-dependent plasma protein binding: Expect the unexpected. Eur. J. Pharm. Sci. 2018, 122, 341–346. [Google Scholar] [CrossRef]
- Seyfinejad, B.; Ozkan, S.A.; Jouyban, A. Recent advances in the determination of unbound concentration and plasma protein binding of drugs: Analytical methods. Talanta 2021, 225, 122052. [Google Scholar] [CrossRef]
- Nair, J.K.; Attarwala, H.; Sehgal, A.; Wang, Q.; Aluri, K.; Zhang, X.; Gao, M.; Liu, J.; Indrakanti, R.; Schofield, S.; et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res. 2017, 45, 10969–10977. [Google Scholar] [CrossRef]
- Zhu, J.; Lei, S.; Lu, J.; Hao, Y.; Qian, Q.; Devanathan, A.S.; Feng, Z.; Xie, X.Q.; Wipf, P.; Ma, X. Metabolism-guided development of Ko143 analogs as ABCG2 inhibitors. Eur. J. Med. Chem. 2023, 259, 115666. [Google Scholar] [CrossRef]
- Bradshaw, P.R.; Wilson, I.D.; Gill, R.U.; Butler, P.J.; Dilworth, C.; Athersuch, T.J. Metabolic Hydrolysis of Aromatic Amides in Selected Rat, Minipig, and Human In Vitro Systems. Sci. Rep. 2018, 8, 2405. [Google Scholar] [CrossRef]
- Kasprzyk, P.G.; Tremaine, L.; Fahmi, O.A.; Weng, J.K. In vitro evaluation of the potential for drug interactions by salidroside. Nutrients 2023, 15, 3723. [Google Scholar] [CrossRef]
Compound | Bound (%) | Recovery (%) | Remaining at 6 h (%) | Fu (%) |
---|---|---|---|---|
Ketoconazole | 98.53 ± 4.76 | 92.61 ± 7.48 | 110.91 ± 6.04 | 1.47 ± 0.68 |
HAS | NA | 6.76 ± 1.87 | 99.92 ± 8.75 | NA |
Compound | CYP Types | Concentration | T1/2 (min) | CLint (μL/min/pmoL CYP450) |
---|---|---|---|---|
HAS | CYP1A2 | 2 μM | 12.76 ± 2.48 | 0.540 ± 0.15 |
HAS | CYP2C9 | 2 μM | 185.67 ± 19.54 | 0.037 ± 0.01 |
HAS | CYP2C19 | 2 μM | 16.32 ± 5.39 | 0.420 ± 0.12 |
HAS | CYP2D6 | 2 μM | 36.65 ± 7.25 | 0.190 ± 0.07 |
HAS | CYP3A4 | 2 μM | 15.66 ± 3.13 | 0.440 ± 0.16 |
Species | Human | Monkey | Dog | |||
---|---|---|---|---|---|---|
VRP | HAS | VRP | HAS | VRP | HAS | |
T1/2 (min) | 9.53 ± 1.87 | 42.92 ± 5.53 | 2.60 ± 0.46 | 28.81 ± 8.02 | 8.18 ± 2.67 | 26.38 ± 3.31 |
CLint (μL/min/mg protein) | 145.48 ± 7.04 | 32.29 ± 4.91 | 532.65 ± 82.79 | 48.10 ± 6.27 | 169.44 ± 43.07 | 52.55 ± 8.85 |
CLint (mL/min/kg) | 182.46 ± 23.18 | 40.50 ± 8.02 | 798.97 ± 159.48 | 72.15 ± 5.03 | 422.38 ± 98.49 | 130.99 ± 7.69 |
Species | Rat | Mouse | ||||
VRP | HAS | VRP | HAS | |||
T1/2 (min) | 7.36 ± 1.22 | 51.38 ± 7.49 | 3.12 ± 0.87 | 36.94 ± 4.23 | ||
CLint (μL/min/mg protein) | 188.23 ± 14.64 | 26.97 ± 4.27 | 444.22 ± 84.25 | 37.52 ± 5.04 | ||
CLint (mL/min/kg) | 337.31 ± 79.62 | 48.34 ± 6.59 | 1954.57 ± 379.01 | 165.07 ± 6.38 |
Species | Human | Monkey | Dog | |||
---|---|---|---|---|---|---|
VRP | HAS | VRP | HAS | VRP | HAS | |
T1/2 (min) | 32.43 ± 9.43 | 69.59 ± 11.46 | 5.19 ± 1.75 | 47.78 ± 8.39 | 42.01 ± 7.42 | 63.74 ± 7.05 |
CLint (μL/min/106 cells) | 42.73 ± 4.97 | 19.92 ± 3.28 | 266.98 ± 31.61 | 29.01 ± 4.22 | 32.99 ± 6.44 | 21.74 ± 4.29 |
CLint (mL/min/kg) | 108.72 ± 8.93 | 50.67 ± 9.37 | 961.13 ± 143.29 | 104.43 ± 13.16 | 227.00 ± 32.94 | 149.6 ± 21.05 |
Species | Rat | Mouse | ||||
VRP | HAS | VRP | HAS | |||
T1/2 (min) | 9.38 ± 2.15 | 17.52 ± 4.13 | 9.62 ± 1.91 | 15.83 ± 3.28 | ||
CLint (μL/min/106 cells) | 147.79 ± 22.19 | 79.10 ± 6.48 | 144.15 ± 8.02 | 87.53 ± 6.29 | ||
CLint (mL/min/kg) | 691.68 ± 98.43 | 370.20 ± 65.66 | 1702.72 ± 269.47 | 1033.92 ± 147.27 |
Dose | T1/2 (h) | Tmax (h) | TvKa (1/h) | Cmax (ng/mL) | AUClast (h×ng/mL) | AUClnf (h×ng/mL) | AUC_%Extrap_obs (%) | MRTInf_obs (h) | AUClast/D (h×ng/mL) | F (%) |
---|---|---|---|---|---|---|---|---|---|---|
10 mg/kg (p.o.) | 1.02 ± 0.16 | 0.75 ± 0.43 | 1.816 ± 2.261 | 1253 ± 1075 | 2714 ± 1637 | 2726 ± 1642 | 0.517 ± 0.347 | 1.92 ± 0.17 | 271 ± 164 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, J.; Qian, D.; Li, R.-L.; Peng, W.; Ai, L. In Vitro Metabolism and In Vivo Pharmacokinetics Profiles of Hydroxy-α-Sanshool. Toxics 2024, 12, 100. https://doi.org/10.3390/toxics12020100
Meng J, Qian D, Li R-L, Peng W, Ai L. In Vitro Metabolism and In Vivo Pharmacokinetics Profiles of Hydroxy-α-Sanshool. Toxics. 2024; 12(2):100. https://doi.org/10.3390/toxics12020100
Chicago/Turabian StyleMeng, Jie, Die Qian, Ruo-Lan Li, Wei Peng, and Li Ai. 2024. "In Vitro Metabolism and In Vivo Pharmacokinetics Profiles of Hydroxy-α-Sanshool" Toxics 12, no. 2: 100. https://doi.org/10.3390/toxics12020100
APA StyleMeng, J., Qian, D., Li, R.-L., Peng, W., & Ai, L. (2024). In Vitro Metabolism and In Vivo Pharmacokinetics Profiles of Hydroxy-α-Sanshool. Toxics, 12(2), 100. https://doi.org/10.3390/toxics12020100