Impact of Brood Cell Cocoons on Metal Accumulation and CYP450 Detoxification Gene Expression in Apis cerana cerana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information on the Sampling Site
2.2. Colonies Establishment and Test Sample Collection
2.3. Measurement of Cocoon Structural Characteristics
2.4. Metal Content Analysis: Sample Preparation and Measurement
2.5. Total RNA Extraction, cDNA Synthesis, and RT-qPCR Analysis
2.6. Statistical Analysis
3. Results
3.1. Paraffin Sections of the Accumulated Cocoons in Comb Cells
3.2. Comparison of Cocoon Weight and Base Thickness
3.3. Comparison of Metal Contents in Cocoons and Workers
3.3.1. Comparison of Metal Contents in Accumulated Cocoons from Comb Cells
3.3.2. Comparison of Metal Contents in Six-Day-Old Larvae
3.3.3. Comparison of Metal Contents in Newly Emerged Workers
3.4. Comparison of the Expression Levels of CYP450 Genes in Workers
3.5. Correlation Analysis between Cocoon Structure Characteristics, Metal Content, and Detoxification Gene Expression Level
4. Discussion
4.1. Structural Characterization of the Cocoon and its Enrichment of Metals
4.2. Metal Enrichment in Workers of A. c. cerana
4.3. Expression of CYP450 Detoxification Genes in Workers of A. c. cerana
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of bee pollination and its economic value for crop production. Insects 2021, 12, 688. [Google Scholar] [CrossRef] [PubMed]
- Feldhaar, H.; Otti, O. Pollutants and their interaction with diseases of social Hymenoptera. Insects 2020, 11, 153. [Google Scholar] [CrossRef]
- vanEngelsdorp, D.; Hayes, J., Jr.; Underwood, R.M.; Pettis, J. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE 2009, 3, e4071. [Google Scholar] [CrossRef] [PubMed]
- Hristov, P.; Shumkova, R.; Palova, N.; Neov, B. Factors associated with honey bee colony losses: A mini-review. Vet. Sci. 2020, 7, 166. [Google Scholar] [CrossRef]
- Nikolić, T.V.; Kojić, D.; Orčić, S.; Vukašinović, E.L.; Blagojević, D.P.; Purać, J. Laboratory bioassays on the response of honey bee (Apis mellifera L.) glutathione S-transferase and acetylcholinesterase to the oral exposure to copper, cadmium, and lead. Environ. Sci. Pollut. Res. 2019, 26, 6890–6897. [Google Scholar] [CrossRef]
- Cunningham, M.M.; Tran, L.; McKee, C.G.; Ortega Polo, R.; Newman, T.; Lansing, L.; Griffiths, J.S.; Bilodeau, G.J.; Rott, M.; Marta Guarna, M. Honey bees as biomonitors of environmental contaminants, pathogens, and climate change. Ecol. Indic. 2022, 134, 108457. [Google Scholar] [CrossRef]
- Ponce-Vejar, G.; Ramos de Robles, S.L.; Macias-Macias, J.O.; Petukhova, T.; Guzman-Novoa, E. Detection and concentration of neonicotinoids and other pesticides in honey from honey bee colonies located in regions that differ in agricultural practices: Implications for human and bee health. Int. J. Environ. Res. Public Health 2022, 19, 8199. [Google Scholar] [CrossRef]
- Taha, E.-K.A.; Al-Kahtani, S.N. The relationship between comb age and performance of honey bee (Apis mellifera) colonies. Saudi J. Biol. Sci. 2020, 27, 30–34. [Google Scholar] [CrossRef]
- Berry, J.A.; Delaplane, K.S. Effects of comb age on honey bee colony growth and brood survivorship. J. Apic. Res. 2001, 40, 3–8. [Google Scholar] [CrossRef]
- Shawer, M.B.; Elnabawy, E.M.; Mousa, K.M.; Gaber, S.; Ueno, T. Impact of different comb age on morphological and biological characteristics of honeybee workers (Apis mellifera L.). Fac. Agric. Kyushu Univ. 2020, 65, 277–282. [Google Scholar] [CrossRef]
- Meng, Q.; Yang, S.; Huang, R.; Yang, L.; Xun, L.; Tian, Y.; Gong, X.; Wang, J.; Kuang, H.; Zhao, W.; et al. The significance of Apis cerana cerana (hymenoptera: Apidae) gnawing off the old brood cells. Apidologie 2023, 54, 6. [Google Scholar] [CrossRef]
- Al-Kahtani, S.N. Morphometric characteristics of Carniolan honeybee workers in relation to age of comb. Sci. J. King Faisal Univ. (Basic Appl. Sci.) 2018, 19, 47–54. [Google Scholar]
- Al-Fattah, M.A.A.-W.A.; Ibrahim, Y.Y.; Haggag, M.I. Some biological aspects of honey bee colonies in relation to the age of beeswax combs. J. Apic. Res. 2021, 60, 405–413. [Google Scholar] [CrossRef]
- Taha, E.-K.A.; Rakha, O.M.; Elnabawy, E.-S.M.; Hassan, M.M.; Shawer, D.M.B. Comb age significantly influences the productivity of the honeybee (Apis mellifera) colony. J. King Saud Univ. 2021, 33, 101436. [Google Scholar] [CrossRef]
- Zhang, K.; Duan, H.; Karihaloo, B.L.; Wang, J. Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs. Proc. Natl. Acad. Sci. USA 2010, 107, 9502–9506. [Google Scholar] [CrossRef] [PubMed]
- Jay, S.C. The development of honeybees in their cells. J. Apic. Res. 1963, 2, 117–134. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’—Proposal of a comprehensive definition. Toxicol. Environ. Chem. 2018, 100, 6–19. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef]
- Nkwunonwo, U.C.; Odika, P.O.; Onyia, N.I. A review of the health implications of heavy metals in food chain in Nigeria. Sci. World J. 2020, 2020, 6594109. [Google Scholar] [CrossRef]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef]
- Monchanin, C.; Drujont, E.; Devaud, J.M.; Lihoreau, M.; Barron, A.B. Metal pollutants have additive negative effects on honey bee cognition. J. Exp. Biol. 2021, 224, jeb241869. [Google Scholar] [CrossRef] [PubMed]
- Gizaw, G.; Kim, Y.; Moon, K.; Choi, J.B.; Kim, Y.H.; Park, J.K. Effect of environmental heavy metals on the expression of detoxification-related genes in honey bee Apis mellifera. Apidologie 2020, 51, 664–674. [Google Scholar] [CrossRef]
- Li, Z.; Guo, D.; Wang, C.; Chi, X.; Liu, Z.; Wang, Y.; Wang, H.; Guo, X.; Wang, N.; Xu, B.; et al. Toxic effects of the heavy metal Cd on Apis cerana cerana (Hymenoptera: Apidae): Oxidative stress, immune disorders and disturbance of gut microbiota. Sci. Total Environ. 2024, 912, 169318. [Google Scholar] [CrossRef] [PubMed]
- Scivicco, M.; Nolasco, A.; Esposito, L.; Ariano, A.; Squillante, J.; Esposito, F.; Cirillo, T.; Severino, L. Effects of COVID-19 pandemic lockdown and environmental pollution assessment in Campania region (Italy) through the analysis of heavy metals in honeybees. Environ. Pollut. 2022, 307, 119504. [Google Scholar] [CrossRef] [PubMed]
- Xun, E.; Zhang, Y.; Zhao, J.; Guo, J. Translocation of heavy metals from soils into floral organs and rewards of Cucurbita pepo: Implications for plant reproductive fitness. Ecotoxicol. Environ. Saf. 2017, 145, 235–243. [Google Scholar] [CrossRef]
- Bargańska, Ż.; Ślebioda, M.; Namieśnik, J. Honey bees and their products: Bioindicators of environmental contamination. Crit. Rev. Environ. Sci. Technol. 2016, 46, 235–248. [Google Scholar] [CrossRef]
- Conti, M.E.; Botrè, F. Honeybees and their products as potential bioindicators of heavy metals contamination. Environ. Monit. Assess. 2001, 69, 267–282. [Google Scholar] [CrossRef] [PubMed]
- van der Steen, J.J.M.; de Kraker, J.; Grotenhuis, T. Spatial and temporal variation of metal concentrations in adult honeybees (Apis mellifera L.). Environ. Monit. Assess. 2012, 184, 4119–4126. [Google Scholar] [CrossRef]
- Goretti, E.; Pallottini, M.; Rossi, R.; La Porta, G.; Gardi, T.; Cenci Goga, B.T.; Elia, A.C.; Galletti, M.; Moroni, B.; Petroselli, C.; et al. Heavy metal bioaccumulation in honey bee matrix, an indicator to assess the contamination level in terrestrial environments. Environ. Pollut. 2020, 256, 113388. [Google Scholar] [CrossRef]
- Pankiw, T.; Page, R.E. Genotype and colony environment affect honeybee (Apis mellifera L.) development and foraging behavior. Behav. Ecol. Sociobiol. 2001, 51, 87–94. [Google Scholar]
- Walton, A.; Toth, A.L.; Dolezal, A.G. Developmental environment shapes honeybee worker response to virus infection. Sci. Rep. 2021, 11, 13961. [Google Scholar] [CrossRef] [PubMed]
- Harbo, J.R.; Bolten, A.B. Development times of male and female eggs of the honey bee. Ann. Entomol. Soc. Am. 1981, 74, 504–506. [Google Scholar] [CrossRef]
- Page, R.E.; Peng, C.Y.S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 2001, 36, 695–711. [Google Scholar] [CrossRef] [PubMed]
- Sgolastra, F.; Blasioli, S.; Renzi, T.; Tosi, S.; Medrzycki, P.; Molowny-Horas, R.; Porrini, C.; Braschi, I. Lethal effects of Cr(III) alone and in combination with propiconazole and clothianidin in honey bees. Chemosphere 2018, 191, 365–372. [Google Scholar] [CrossRef]
- Nikolić, T.V.; Kojić, D.; Orčić, S.; Batinić, D.; Vukašinović, E.; Blagojević, D.P.; Purać, J. The impact of sublethal concentrations of Cu, Pb and Cd on honey bee redox status, superoxide dismutase and catalase in laboratory conditions. Chemosphere 2016, 164, 98–105. [Google Scholar] [CrossRef]
- Søvik, E.; Perry, C.J.; LaMora, A.; Barron, A.B.; Ben-Shahar, Y. Negative impact of manganese on honeybee foraging. Biol. Lett. 2015, 11, 20140989. [Google Scholar] [CrossRef]
- Meindl, G.A.; Ashman, T.-L. The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees. Environ. Pollut. 2013, 177, 78–81. [Google Scholar] [CrossRef]
- Madras-Majewska, B.; Ochnio, L.; Ochnio, M. Impact of the bioaccumulation of selected toxic elements on the condition of bees and other organisms. Med. Weter. 2014, 70, 715–718. [Google Scholar]
- Hu, X.; Meng, Q.; Zhi, D.; Deng, S.; Zhao, W.; Tian, Y.; Gong, X.; Dong, K. Comb cell structure and morphological characteristics of the Chinese honey bee, Apis cerana cerana (Hymenoptera: Apidae), under successive generations. J. Econ. Entomol. 2023, 116, 352–358. [Google Scholar] [CrossRef]
- Jay, S.C. The cocoon of the honey bee, Apis mellifera L. Can. Entomol. 1964, 96, 784–792. [Google Scholar] [CrossRef]
- Borsuk, G.; Sulborska, A.; Stawiarz, E.; Olszewski, K.; Wiącek, D.; Ramzi, N.; Nawrocka, A.; Jędryczka, M. Capacity of honeybees to remove heavy metals from nectar and excrete the contaminants from their bodies. Apidologie 2021, 52, 1098–1111. [Google Scholar] [CrossRef]
- Chen, P.; Miah, M.R.; Aschner, M. Metals and Neurodegeneration. F1000Research 2016, 5, F1000 Faculty Rev-366. [Google Scholar] [CrossRef]
- GóMez-Moracho, T.; Heeb, P.; Lihoreau, M. Effects of parasites and pathogens on bee cognition. Ecol. Entomol. 2017, 42, 51–64. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, Y.; Li, J.; Wan, K.; Nie, H.; Su, S. Chronic cadmium exposure induces impaired olfactory learning and altered brain gene expression in honey bees (Apis mellifera). Insects 2022, 13, 988. [Google Scholar] [CrossRef] [PubMed]
- Kojour, M.A.M.; Han, Y.S.; Jo, Y.H. An overview of insect innate immunity. Entomol. Res. 2020, 50, 282–291. [Google Scholar] [CrossRef]
- Ilyasov, R.A.; Gaifullina, L.R.; Saltykova, E.S.; Poskryakov, A.V.; Nikolaenko, A.G. Defensins in the honeybee antiinfectious protection. J. Evol. Biochem. Physiol. 2013, 49, 1–9. [Google Scholar] [CrossRef]
- Polykretis, P.; Delfino, G.; Petrocelli, I.; Cervo, R.; Tanteri, G.; Montori, G.; Perito, B.; Branca, J.J.V.; Morucci, G.; Gulisano, M. Evidence of immunocompetence reduction induced by cadmium exposure in honey bees (Apis mellifera). Environ. Pollut. 2016, 218, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Pankau, C.; Cooper, R.L. Molecular physiology of manganese in insects. Curr. Opin. Insect Sci. 2022, 51, 100886. [Google Scholar] [CrossRef] [PubMed]
- Monchanin, C.; Sanchez, M.G.d.B.; Lecouvreur, L.; Boidard, O.; Méry, G.; Silvestre, J.; Le Roux, G.; Baqué, D.; Elger, A.; Barron, A.B.; et al. Honey bees cannot sense harmful concentrations of metal pollutants in food. Chemosphere 2022, 297, 134089. [Google Scholar] [CrossRef] [PubMed]
- Hassona, N.M.; El-Wahed, A.A.A. Heavy metal concentrations of beeswax (Apis mellifera L.) at different ages. Bull. Environ. Contam. Toxicol. 2023, 111, 26. [Google Scholar] [CrossRef] [PubMed]
- Dżugan, M.; Wesołowska, M.; Zaguła, G.; Kaczmarski, M.; Czernicka, M.; Puchalski, C. Honeybees (Apis mellifera) as a biological barrier for contamination of honey by environmental toxic metals. Environ. Monit. Assess. 2018, 190, 101. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Diao, Q. Current knowledge of detoxification mechanisms of xenobiotic in honey bees. Ecotoxicology 2017, 26, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yao, Y.; Wang, H.; Liu, Z.; Ma, L.; Wang, Y.; Xu, B. The roles of four novel P450 genes in pesticides resistance in Apis cerana cerana Fabricius: Expression levels and detoxification efficiency. Front. Genet. 2019, 10, 1000. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Song, Y.; Zeng, R. The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Curr. Opin. Insect Sci. 2021, 43, 103–107. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, W.; Li, Z.; Ma, L.; Yu, J.; Wang, H.; Liu, Z.; Xu, B. Identification and characterization of three new cytochrome P450 genes and the use of RNA interference to evaluate their roles in antioxidant defense in Apis cerana cerana Fabricius. Front. Physiol. 2018, 9, 1608. [Google Scholar] [CrossRef]
Gene | Primer Sequence (5′-3′) | |
---|---|---|
Target gene | AccCYP4AV1 | F: GTGTGGATGTCCTTCGATCC |
R: TTCCACTCGGCTTTTCTTTC | ||
AccCYP314A1 | F: CTTCGGGTAGCTCTCACGTC | |
R: ACTTTGTATCCGACCCGTTG | ||
AccCYP4AZ1 | F: TTGGCCGAATCCAAATAAGT | |
R: GCAAATCGTTGTCCAATGC | ||
AccCYP6AS5 | F: AATGGGCAGAGAAGTGTTCG | |
R: AAAGAATGGTGCGAATGTCC | ||
Reference gene | β-actin | F: TTATATGCCAACACTGTCCTTT |
R: AGAATTGATCCACCAATCCA |
Metals | Cocoons | Statistical Value | p Value | |
---|---|---|---|---|
Single | Multiple | |||
Cr | 0.273 ± 0.024 a | 0.435 ± 0.038 b | t = 3.577, df = 4 | p = 0.0232 |
Cd | 0.140 ± 0.012 a | 0.305 ± 0.028 b | t = 5.432, df = 4 | p = 0.0056 |
Pb | 0.534 ± 0.024 a | 1.131 ± 0.105 b | t = 5.517, df = 4 | p = 0.0053 |
Mn | 50.039 ± 2.134 a | 125.773 ± 6.333 b | t = 11.320, df = 4 | p = 0.0003 |
Ni | 1.510 ± 0.092 a | 3.860 ± 0.358 b | t = 6.358, df = 4 | p = 0.0031 |
As | 0.045 ± 0.005 a | 0.080 ± 0.002 b | t = 6.923, df = 4 | p = 0.0023 |
Hg | ND | ND | / | / |
Metals | Six-Day-Old Larvae | Statistical Value | p Value | |
---|---|---|---|---|
Single | Multiple | |||
Cr | 0.009 ± 0.002 a | 0.049 ± 0.009 b | t = 4.257, df = 4 | p = 0.0131 |
Cd | 0.008 ± 0.001 a | 0.016 ± 0.002 b | t = 3.385, df = 4 | p = 0.0277 |
Pb | 0.033 ± 0.006 a | 0.058 ± 0.002 b | t = 3.879, df = 4 | p = 0.0179 |
Mn | 9.420 ± 1.132 a | 13.623 ± 1.014 b | t = 2.777, df = 4 | p = 0.0499 |
Ni | 0.168 ± 0.042 a | 0.337 ± 0.037 b | t = 3.054, df = 4 | p = 0.0379 |
As | 0.005 ± 0.001 a | 0.015 ± 0.003 b | t = 2.991, df = 4 | p = 0.0403 |
Hg | ND | ND | / | / |
Metals | Newly Emerged Workers | Statistical Value | p Value | |
---|---|---|---|---|
Single | Multiple | |||
Cr | 0.046 ± 0.004 a | 0.084 ± 0.009 b | t = 3.825, df = 4 | p = 0.0187 |
Cd | 0.005 ± 0.003 a | 0.022 ± 0.002 b | t = 5.565, df = 4 | p = 0.0051 |
Pb | 0.070 ± 0.022 a | 0.195 ± 0.009 b | t = 5.228, df = 4 | p = 0.0064 |
Mn | 5.803 ± 1.587 a | 13.963 ± 1.284 b | t = 4.000, df = 4 | p = 0.0161 |
Ni | 0.068 ± 0.040 a | 0.271 ± 0.019 b | t = 4.581, df = 4 | p = 0.0102 |
As | 0.034 ± 0.002 a | 0.049 ± 0.005 b | t = 2.966, df = 4 | p = 0.0413 |
Hg | ND | ND | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Q.; Huang, R.; Yang, S.; Li, H.; Yue, D.; Gong, X.; Zhao, W.; Tian, Y.; Dong, K. Impact of Brood Cell Cocoons on Metal Accumulation and CYP450 Detoxification Gene Expression in Apis cerana cerana. Toxics 2024, 12, 131. https://doi.org/10.3390/toxics12020131
Meng Q, Huang R, Yang S, Li H, Yue D, Gong X, Zhao W, Tian Y, Dong K. Impact of Brood Cell Cocoons on Metal Accumulation and CYP450 Detoxification Gene Expression in Apis cerana cerana. Toxics. 2024; 12(2):131. https://doi.org/10.3390/toxics12020131
Chicago/Turabian StyleMeng, Qingxin, Rong Huang, Shunhua Yang, Hui Li, Dan Yue, Xueyang Gong, Wenzheng Zhao, Yakai Tian, and Kun Dong. 2024. "Impact of Brood Cell Cocoons on Metal Accumulation and CYP450 Detoxification Gene Expression in Apis cerana cerana" Toxics 12, no. 2: 131. https://doi.org/10.3390/toxics12020131
APA StyleMeng, Q., Huang, R., Yang, S., Li, H., Yue, D., Gong, X., Zhao, W., Tian, Y., & Dong, K. (2024). Impact of Brood Cell Cocoons on Metal Accumulation and CYP450 Detoxification Gene Expression in Apis cerana cerana. Toxics, 12(2), 131. https://doi.org/10.3390/toxics12020131