Occurrence, Source Apportionment, and Ecological Risk of Typical Pharmaceuticals in Surface Waters of Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pharmaceutical and Reagents
2.2. Sample Collection and Pretreatment
2.3. Instrumental Analysis
2.4. Quality Assurance and Quality Control (QA/QC)
2.5. Positive Matrix Factorization (PMF) Model
2.6. Ecological Risk Assessment
3. Results and Discussion
3.1. Occurrence of Selected Pharmaceuticals
3.2. Spatial Distribution of Pharmaceutical
3.3. Quantitative Source Apportionment of Pharmaceuticals
3.4. Ecological Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bavumiragira, J.P.; Ge, J.; Yin, H. Fate and Transport of Pharmaceuticals in Water Systems: A Processes Review. Sci. Total Environ. 2022, 823, 153635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Q.; Ying, G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Anh, H.Q.; Le, T.P.Q.; Da Le, N.; Lu, X.X.; Duong, T.T.; Garnier, J.; Rochelle-Newall, E.; Zhang, S.; Oh, N.-H.; Oeurng, C.; et al. Antibiotics in Surface Water of East and Southeast Asian Countries: A Focused Review on Contamination Status, Pollution Sources, Potential Risks, and Future Perspectives. Sci. Total Environ. 2021, 764, 142865. [Google Scholar] [CrossRef]
- Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and Personal Care Products (PPCPs) in the Freshwater Aquatic Environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Pandey, R.P.; Yousef, A.F.; Alsafar, H.; Hasan, S.W. Surveillance, Distribution, and Treatment Methods of Antimicrobial Resistance in Water: A Review. Sci. Total Environ. 2023, 890, 164360. [Google Scholar] [CrossRef]
- García-Valverde, M.; Aragonés, A.M.; Andújar, J.A.S.; García, M.D.G.; Martínez-Bueno, M.J.; Fernández-Alba, A.R. Long-Term Effects on the Agroecosystem of Using Reclaimed Water on Commercial Crops. Sci. Total Environ. 2023, 859, 160462. [Google Scholar] [CrossRef]
- Pu, S.; Shao, Z.; Yang, L.; Liu, R.; Bi, J.; Ma, Z. How Much Will the Chinese Public Pay for Air Pollution Mitigation? A Nationwide Empirical Study Based on a Willingness-to-Pay Scenario and Air Purifier Costs. J. Clean. Prod. 2019, 218, 51–60. [Google Scholar] [CrossRef]
- K’oreje, K.O.; Okoth, M.; Van Langenhove, H.; Demeestere, K. Occurrence and Treatment of Contaminants of Emerging Concern in the African Aquatic Environment: Literature Review and a Look Ahead. J. Environ. Manag. 2020, 254, 109752. [Google Scholar] [CrossRef]
- Chaves, M.D.J.S.; Kulzer, J.; Pujol De Lima, P.D.R.; Barbosa, S.C.; Primel, E.G. Updated Knowledge, Partitioning and Ecological Risk of Pharmaceuticals and Personal Care Products in Global Aquatic Environments. Environ. Sci. Processes Impacts 2022, 24, 1982–2008. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, S.; Yu, P.; Wang, D.; Hu, B.; Zheng, P.; Zhang, M. A Bibliometric Analysis of Emerging Contaminants (ECs) (2001−2021): Evolution of Hotspots and Research Trends. Sci. Total Environ. 2024, 907, 168116. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Ding, J.; Liu, X. Prioritization of Pharmaceuticals in Water Environment in China Based on Environmental Criteria and Risk Analysis of Top-Priority Pharmaceuticals. J. Environ. Manag. 2020, 253, 109732. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Bu, Q.; Cao, H.; Hong, C.; Wu, X.; Guo, Y.; Jiang, W. Simultaneous Determination of 33 Pharmaceuticals in Surface Water Using Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. Environ. Monit. China 2023, 39, 206–217. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive Matrix Factorization: A Non-negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Wang, Q.; Guo, L.; Miao, Y.; Shen, Z. Uncertainty Analysis in Source Apportionment of Heavy Metals in Road Dust Based on Positive Matrix Factorization Model and Geographic Information System. Sci. Total Environ. 2019, 652, 27–39. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Li, H.; Zhu, Y.; Liu, R. Occurrence, Source Apportionment and Source-Specific Risk Assessment of Antibiotics in a Typical Tributary of the Yellow River Basin. J. Environ. Manag. 2022, 305, 114382. [Google Scholar] [CrossRef]
- Wu, S.; Hua, P.; Gui, D.; Zhang, J.; Ying, G.; Krebs, P. Occurrences, Transport Drivers, and Risk Assessments of Antibiotics in Typical Oasis Surface and Groundwater. Water Res. 2022, 225, 119138. [Google Scholar] [CrossRef]
- Chinese Research Academy of Environmental Sciences; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences; National Marine Environmental Monitoring Center; China National Environmental Monitoring Centre. Technical Guideline for Deriving Water Quality Criteria for Freshwater Organisms; HJ 831—2022; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2022. [Google Scholar]
- Van Leeuwen, K. Technical Guidance Documenton Risk Assessment; EUR 20418 EN/1; European Communities: Rome, Italy, 2003. [Google Scholar]
- Kuroda, K.; Li, C.; Dhangar, K.; Kumar, M. Predicted Occurrence, Ecotoxicological Risk and Environmentally Acquired Resistance of Antiviral Drugs Associated with COVID-19 in Environmental Waters. Sci. Total Environ. 2021, 776, 145740. [Google Scholar] [CrossRef]
- Duan, L.; Zhang, Y.; Wang, B.; Cagnetta, G.; Deng, S.; Huang, J.; Wang, Y.; Yu, G. Characteristics of Pharmaceutically Active Compounds in Surface Water in Beijing, China: Occurrence, Spatial Distribution and Biennial Variation from 2013 to 2017. Environ. Pollut. 2020, 264, 114753. [Google Scholar] [CrossRef]
- Yuan, X.; Hu, J.; Li, S.; Yu, M. Occurrence, Fate, and Mass Balance of Selected Pharmaceutical and Personal Care Products (PPCPs) in an Urbanized River. Environ. Pollut. 2020, 266, 115340. [Google Scholar] [CrossRef]
- Li, J.; Li, W.; Liu, K.; Guo, Y.; Ding, C.; Han, J.; Li, P. Global Review of Macrolide Antibiotics in the Aquatic Environment: Sources, Occurrence, Fate, Ecotoxicity, and Risk Assessment. J. Hazard. Mater. 2022, 439, 129628. [Google Scholar] [CrossRef]
- Mehrtens, A.; Licha, T.; Burke, V. Occurrence, Effects and Behaviour of the Antibiotic Lincomycin in the Agricultural and Aquatic Environment—A Review. Sci. Total Environ. 2021, 778, 146306. [Google Scholar] [CrossRef]
- Wang, H.; Tang, C.; Wang, Y.; Han, M.; Jiang, F.; Jiang, L.; Wu, J.; Fu, C.; Chen, Y.; Jiang, Q. Urinary Antibiotic Level of School Children in Shanghai, East China, 2017–2020. Environ. Pollut. 2021, 291, 118167. [Google Scholar] [CrossRef]
- Duan, L.; Zhang, Y.; Wang, B.; Yu, G.; Gao, J.; Cagnetta, G.; Huang, C.; Zhai, N. Wastewater Surveillance for 168 Pharmaceuticals and Metabolites in a WWTP: Occurrence, Temporal Variations and Feasibility of Metabolic Biomarkers for Intake Estimation. Water Res. 2022, 216, 118321. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Cagnetta, G.; Duan, L.; Yang, J.; Deng, S.; Huang, J.; Wang, Y.; Yu, G. Typical Pharmaceuticals in Major WWTPs in Beijing, China: Occurrence, Load Pattern and Calculation Reliability. Water Res. 2018, 140, 291–300. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, H.; Du, J.; Qu, Y.; Shen, C.; Tan, F.; Chen, J.; Quan, X. Occurrence, Removal, and Risk Assessment of Antibiotics in 12 Wastewater Treatment Plants from Dalian, China. Environ. Sci. Pollut. Res. 2017, 24, 16478–16487. [Google Scholar] [CrossRef]
- Yuan, X.; Qiang, Z.; Ben, W.; Zhu, B.; Qu, J. Distribution, Mass Load and Environmental Impact of Multiple-Class Pharmaceuticals in Conventional and Upgraded Municipal Wastewater Treatment Plants in East China. Environ. Sci. Processes Impacts 2015, 17, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Prabhasankar, V.P.; Joshua, D.I.; Balakrishna, K.; Siddiqui, I.F.; Taniyasu, S.; Yamashita, N.; Kannan, K.; Akiba, M.; Praveenkumarreddy, Y.; Guruge, K.S. Removal Rates of Antibiotics in Four Sewage Treatment Plants in South India. Environ. Sci. Pollut. Res. 2016, 23, 8679–8685. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, G.; Liu, Y.; Lu, S.; Qin, P.; Guo, X.; Bi, B.; Wang, L.; Xi, B.; Wu, F.; et al. Occurrence and Fate of Antibiotics and Antibiotic Resistance Genes in Typical Urban Water of Beijing, China. Environ. Pollut. 2019, 246, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Byzova, N.A.; Smirnova, N.I.; Zherdev, A.V.; Eremin, S.A.; Shanin, I.A.; Lei, H.-T.; Sun, Y.; Dzantiev, B.B. Rapid Immunochromatographic Assay for Ofloxacin in Animal Original Foodstuffs Using Native Antisera Labeled by Colloidal Gold. Talanta 2014, 119, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, J.; Zhuo, L.; Yan, X.; Cai, F.; Luo, W.; Ren, M.; Liu, Q.; Yu, Y. Antibiotics in Wastewater from Multiple Sources and Surface Water of the Yangtze River in Chongqing in China. Environ. Monit. Assess. 2020, 192, 159. [Google Scholar] [CrossRef]
- Cai, S.; Liu, Y.; Chen, J. FeCu-Biochar Enhances the Removal of Antibacterial Sulfapyridine from Groundwater by Activation of Persulfate. Environ. Chem. Lett. 2020, 18, 1693–1700. [Google Scholar] [CrossRef]
- Carneiro, R.B.; Sabatini, C.A.; Santos-Neto, Á.J.; Zaiat, M. Feasibility of Anaerobic Packed and Structured-Bed Reactors for Sulfamethoxazole and Ciprofloxacin Removal from Domestic Sewage. Sci. Total Environ. 2019, 678, 419–429. [Google Scholar] [CrossRef]
- Qiu, T.; Liu, L.; Gao, M.; Zhang, L.; Tursun, H.; Wang, X. Effects of Solid-Phase Denitrification on the Nitrate Removal and Bacterial Community Structure in Recirculating Aquaculture System. Biodegradation 2016, 27, 165–178. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Microbial Degradation of Sulfamethoxazole in the Environment. Appl. Microbiol. Biotechnol. 2018, 102, 3573–3582. [Google Scholar] [CrossRef]
- De Smet, J.; Boyen, F.; Croubels, S.; Rasschaert, G.; Haesebrouck, F.; De Backer, P.; Devreese, M. Similar Gastro-Intestinal Exposure to Florfenicol after Oral or Intramuscular Administration in Pigs, Leading to Resistance Selection in Commensal Escherichia coli. Front. Pharmacol. 2018, 9, 1265. [Google Scholar] [CrossRef]
- Bagnis, S.; Boxall, A.; Gachanja, A.; Fitzsimons, M.; Murigi, M.; Snape, J.; Tappin, A.; Wilkinson, J.; Comber, S. Characterization of the Nairobi River Catchment Impact Zone and Occurrence of Pharmaceuticals: Implications for an Impact Zone Inclusive Environmental Risk Assessment. Sci. Total Environ. 2020, 703, 134925. [Google Scholar] [CrossRef] [PubMed]
- Kondor, A.C.; Molnár, É.; Jakab, G.; Vancsik, A.; Filep, T.; Szeberényi, J.; Szabó, L.; Maász, G.; Pirger, Z.; Weiperth, A.; et al. Pharmaceuticals in Water and Sediment of Small Streams under the Pressure of Urbanization: Concentrations, Interactions, and Risks. Sci. Total Environ. 2022, 808, 152160. [Google Scholar] [CrossRef] [PubMed]
- Bernus, I.; Dickinson, R.G.; Hooper, W.D.; Eadie, M.J. Early Stage Autoinduction of Carbamazepine Metabolism in Humans. Eur. J. Clin. Pharmacol. 1994, 47, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Sawchuk, R.J.; Maloney, J.A.; Cartier, L.L.; Rackley, R.J.; Chan, K.K.H.; Lau, H.S.L. Analysis of Diclofenac and Four of Its Metabolites in Human Urine by HPLC. Pharm. Res. 1995, 12, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, Y.; Han, L.; Guo, X.; Wu, Z.; Fang, J.; Hou, B.; Cai, Y.; Jiang, J.; Yang, Z. Impacts of COVID-19 Pandemic on the Aquatic Environment Associated with Disinfection Byproducts and Pharmaceuticals. Sci. Total Environ. 2022, 811, 151409. [Google Scholar] [CrossRef]
- Beijing Municipal Health Commission. Beijing Statistical Bulletin on the Development of Health Undertakings in 2021. Available online: https://wjw.beijing.gov.cn/sjfb/bjstjgb/bjstjgb2021/202306/t20230614_3133785.html (accessed on 31 October 2023).
- Dai, G.; Wang, B.; Fu, C.; Dong, R.; Huang, J.; Deng, S.; Wang, Y.; Yu, G. Pharmaceuticals and Personal Care Products (PPCPs) in Urban and Suburban Rivers of Beijing, China: Occurrence, Source Apportionment and Potential Ecological Risk. Environ. Sci. Processes Impacts 2016, 18, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Song, S.; Chen, X.; Shi, Y.; Cui, H.; Liu, Y.; Yang, S. Source-Specific Ecological Risks and Critical Source Identification of PPCPs in Surface Water: Comparing Urban and Rural Areas. Sci. Total Environ. 2023, 854, 158792. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhang, J.; Fiedler, H.; Liu, W.; Pan, T.; Cao, Z.; Zhang, T. Influence of Land Use Type and Urbanization Level on the Distribution of Pharmaceuticals and Personal Care Products and Risk Assessment in Beiyun River, China. Chemosphere 2022, 287, 132075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, W.; Wu, R.; Yan, Z.; Tan, G.; Zhu, C.; Gao, W.; Hu, B. Real-Time and Online Monitoring of Hazardous Volatile Organic Compounds in Environmental Water by an Unmanned Shipborne Mass Spectrometer System. Environ. Sci. Technol. 2023, 57, 20864–20870. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Bu, Q.; Li, Q.; Gao, X.; Xie, H.; Gong, W.; Wang, X.; Yang, L.; Tang, J. Development and Applications of Diffusive Gradients in Thin Films for Monitoring Pharmaceuticals in Surface Waters. Environ. Pollut. 2022, 311, 119979. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Huang, X.; Hou, J.; Xiong, J.; Qian, Z.; Liu, S.; Zhang, J.; Yin, D.; Li, J.; Su, Q.; et al. Occurrence and Distribution of PPCPs in Water from Two Largest Urban Lakes of China: First Perspective from DGT in-Situ Measurement. Sci. Total Environ. 2023, 904, 166656. [Google Scholar] [CrossRef]
- Gao, H.; Zhao, F.; Li, R.; Jin, S.; Zhang, H.; Zhang, K.; Li, S.; Shu, Q.; Na, G. Occurrence and Distribution of Antibiotics and Antibiotic Resistance Genes in Water of Liaohe River Basin, China. J. Environ. Chem. Eng. 2022, 10, 108297. [Google Scholar] [CrossRef]
- Linghu, K.; Wu, Q.; Zhang, J.; Wang, Z.; Zeng, J.; Gao, S. Occurrence, Distribution and Ecological Risk Assessment of Antibiotics in Nanming River: Contribution from Wastewater Treatment Plant and Implications of Urban River Syndrome. Process Saf. Environ. Prot. 2023, 169, 428–436. [Google Scholar] [CrossRef]
- Guo, F.; Wang, Y.; Peng, J.; Huang, H.; Tu, X.; Zhao, H.; Zhan, N.; Rao, Z.; Zhao, G.; Yang, H. Occurrence, Distribution, and Risk Assessment of Antibiotics in the Aquatic Environment of the Karst Plateau Wetland of Yangtze River Basin, Southwestern China. Int. J. Environ. Res. Public Health 2022, 19, 7211. [Google Scholar] [CrossRef]
- Ci, M.; Zhang, G.; Yan, X.; Dong, W.; Xu, W.; Wang, W.; Fan, Y. Occurrence of Antibiotics in the Xiaoqing River Basin and Antibiotic Source Contribution-a Case Study of Jinan City, China. Environ. Sci. Pollut. Res. 2021, 28, 25241–25254. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, G.; Arif, M.; Shi, X.; Wang, S. Occurrence and Risk Assessment of Antibiotics in the Surface Water of Chaohu Lake and Its Tributaries in China. Sci. Total Environ. 2022, 807, 151040. [Google Scholar] [CrossRef]
- Malnes, D.; Ahrens, L.; Köhler, S.; Forsberg, M.; Golovko, O. Occurrence and Mass Flows of Contaminants of Emerging Concern (CECs) in Sweden’s Three Largest Lakes and Associated Rivers. Chemosphere 2022, 294, 133825. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.-J.; Li, N.; Ying, G.-G. Antibiotic Distribution, Risk Assessment, and Microbial Diversity in River Water and Sediment in Hong Kong. Environ. Geochem. Health 2018, 40, 2191–2203. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Wu, Y.; Zhang, W.; Zhong, J.; Lou, Q.; Yang, P.; Fang, Y. Occurrence, Distribution, and Risk Assessment of Antibiotics in the Surface Water of Poyang Lake, the Largest Freshwater Lake in China. Chemosphere 2017, 184, 137–147. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Feng, M.; Chen, J.; Shen, W.; Zhang, S. Occurrence of Antibiotics and Antibiotic Resistance Genes and Their Correlations in River-Type Drinking Water Source, China. Environ. Sci. Pollut. Res. 2021, 28, 42339–42352. [Google Scholar] [CrossRef]
- Yu, X.; Yu, F.; Li, Z.; Zhan, J. Occurrence, Distribution, and Ecological Risk Assessment of Pharmaceuticals and Personal Care Products in the Surface Water of the Middle and Lower Reaches of the Yellow River (Henan Section). J. Hazard. Mater. 2023, 443, 130369. [Google Scholar] [CrossRef]
- Guo, X.; Song, R.; Lu, S.; Liu, X.; Chen, J.; Wan, Z.; Bi, B. Multi-Media Occurrence of Antibiotics and Antibiotic Resistance Genes in East Dongting Lake. Front. Environ. Sci. 2022, 10, 866332. [Google Scholar] [CrossRef]
- Zou, S.; Huang, F.; Chen, L.; Liu, F. The Occurrence and Distribution of Antibiotics in the Karst River System in Kaiyang, Southwest China. Water Supply 2018, 18, 2044–2052. [Google Scholar] [CrossRef]
- Gopal, C.M.; Bhat, K.; Ramaswamy, B.R.; Kumar, V.; Singhal, R.K.; Basu, H.; Udayashankar, H.N.; Vasantharaju, S.G.; Praveenkumarreddy, Y.; Shailesh; et al. Seasonal Occurrence and Risk Assessment of Pharmaceutical and Personal Care Products in Bengaluru Rivers and Lakes, India. J. Environ. Chem. Eng. 2021, 9, 105610. [Google Scholar] [CrossRef]
- Feng, J.; Liu, Q.; Ru, X.; Xi, N.; Sun, J. Occurrence and Distribution of Priority Pharmaceuticals in the Yellow River and the Huai River in Henan, China. Environ. Sci. Pollut. Res. 2020, 27, 16816–16826. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, J.M.M.; Sanson, A.L.; Machado, C.F.; Aquino, S.F.; Afonso, R.J.C.F. Occurrence of Contaminants of Emerging Concern in Surface Waters from Paraopeba River Basin in Brazil: Seasonal Changes and Risk Assessment. Environ. Sci. Pollut. Res. 2021, 28, 30242–30254. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Sun, J.; Wang, W.; Yang, L.; Xu, Y. Pharmaceuticals in Two Watersheds in Eastern China and Their Ecological Risks. Environ. Pollut. 2021, 277, 116773. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-García, P.; Rodríguez, R.R.; Barata, C.; Gómez-Canela, C. Presence and Toxicity of Drugs Used to Treat SARS-CoV-2 in Llobregat River, Catalonia, Spain. Environ. Sci. Pollut. Res. 2023, 30, 49487–49497. [Google Scholar] [CrossRef] [PubMed]
- | Pharmaceuticals | Abbr. | Max (ng/L) | Min (ng/L) | Mean (ng/L) | Detection Frequency (%) |
---|---|---|---|---|---|---|
SAs | Sulfapyridine | SPD | 75.6 | N.D. | 12.0 | 90.2 |
Trimethoprim | TMP | 153 | N.D. | 15.6 | 93.9 | |
Sulfamonomethoxine | SMM | 6.82 | N.D. | 0.55 | 53.7 | |
Sulfamerazine | SMZ | 28.8 | N.D. | 0.86 | 7.32 | |
Sulfadiazine | SDA | 12.4 | N.D. | 1.87 | 76.8 | |
Sulfamethoxazole | SMX | 45.0 | N.D. | 7.76 | 73.2 | |
Sulfadimidine | SMZ-2 | 75.0 | N.D. | 1.79 | 57.3 | |
TCs | Oxytetracycline | OTC | 17.7 | N.D. | 0.54 | 11.0 |
Doxycycline hyclate | DOXY | 106 | N.D. | 3.92 | 20.7 | |
Tetracycline | TC | 66.2 | N.D. | 9.34 | 79.3 | |
FQs | Ofloxacin | OFX | 114 | <0.16 | 18.7 | 100 |
Enrofloxacin | EFX | 18.7 | N.D. | 0.97 | 31.7 | |
Ciprofloxacin | CIP | 13.0 | N.D. | 2.14 | 31.7 | |
Norfloxacin | NFX | 193 | N.D. | 40.0 | 90.2 | |
Pefloxacin | PEF | 7.63 | N.D. | 0.20 | 4.88 | |
MLs | Azithromycin | AZM | 49.5 | N.D. | 11.8 | 67.1 |
Clarithromycin | CLR | 83.2 | N.D. | 20.9 | 98.8 | |
Roxithromycin | ROX | 47.8 | N.D. | 12.7 | 97.6 | |
Erythromycin | ERY | 29.6 | N.D. | 4.42 | 86.6 | |
OTs | Lincomycin hydrochloride | LIN | 45.8 | N.D. | 5.74 | 62.2 |
Chloramphenicol | CP | 32.3 | N.D. | 1.18 | 47.6 | |
Ampicillin | AMP | N.D. | N.D. | 0.00 | 0.00 | |
Bezafibrate | BF | 29.4 | N.D. | 6.56 | 90.2 | |
Florfenicol | FFC | 139 | N.D. | 3.55 | 76.8 | |
Clofibric acid | CA | 25.4 | N.D. | 3.18 | 26.8 | |
Gemfibrozil | GEM | 14.8 | N.D. | 0.48 | 4.88 | |
Carbamazepine | CBZ | 18.7 | N.D. | 6.02 | 91.5 | |
Diclofenac | DF | 54.8 | N.D. | 15.3 | 92.7 | |
Ritonavir | RTV | 18.0 | N.D. | 1.64 | 59.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huangfu, Y.; Li, Q.; Yang, W.; Bu, Q.; Yang, L.; Tang, J.; Gan, J. Occurrence, Source Apportionment, and Ecological Risk of Typical Pharmaceuticals in Surface Waters of Beijing, China. Toxics 2024, 12, 171. https://doi.org/10.3390/toxics12030171
Huangfu Y, Li Q, Yang W, Bu Q, Yang L, Tang J, Gan J. Occurrence, Source Apportionment, and Ecological Risk of Typical Pharmaceuticals in Surface Waters of Beijing, China. Toxics. 2024; 12(3):171. https://doi.org/10.3390/toxics12030171
Chicago/Turabian StyleHuangfu, Yonghao, Qingshan Li, Weiwei Yang, Qingwei Bu, Lei Yang, Jianfeng Tang, and Jie Gan. 2024. "Occurrence, Source Apportionment, and Ecological Risk of Typical Pharmaceuticals in Surface Waters of Beijing, China" Toxics 12, no. 3: 171. https://doi.org/10.3390/toxics12030171
APA StyleHuangfu, Y., Li, Q., Yang, W., Bu, Q., Yang, L., Tang, J., & Gan, J. (2024). Occurrence, Source Apportionment, and Ecological Risk of Typical Pharmaceuticals in Surface Waters of Beijing, China. Toxics, 12(3), 171. https://doi.org/10.3390/toxics12030171