Ecotoxicological Properties of Pure and Phosphorus-Containing Graphene Oxide Bidimensional Sheets in Daphnia magna
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of GO Sheets
2.2. Synthesis of GOP Sheets
2.3. Characterization
2.4. D. magna Culture
2.5. D. magna Exposure to GO and GOP Sheets
- Commercial drinking water: The GO could not be properly dispersed in this type of water, as the GO particles were totally flocculated.
- Ultrapure water: In the ultrapure water, both samples could be properly dispersed. This suspension was evidenced in other previous works regarding the dispersion of GO [32].
- Microalgae water: In the microalgae water, as in the case of the commercial drinking water, the GO could not be dispersed either. The substantial difference with the commercial drinking water was that it took a little longer for the GO particles to be suspended.
2.6. Morphological Analysis of D. magna and Statistical Analysis
3. Results and Discussions
3.1. Structural and Thermogravimetric Analyses
3.2. Vibrational Analysis
3.3. NMR Analysis
3.4. Colloidal Stability Analysis
3.5. SEM and TEM Analysis
3.6. Lethal Concentration (24 h-)
- For GO sample:
- For GOP sample:
3.7. Morphological Analysis in D. magna
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, D.; Xie, G.; Luo, J. Mechanical Properties of Nanoparticles: Basics and Applications. J. Phys. D Appl. Phys. 2013, 47, 013001. [Google Scholar] [CrossRef]
- Sharifi, M.; Attar, F.; Saboury, A.A.; Akhtari, K.; Hooshmand, N.; Hasan, A.; El-Sayed, M.A.; Falahati, M. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. J. Control Release 2019, 311, 170–189. [Google Scholar] [CrossRef] [PubMed]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef] [PubMed]
- Palma, V.; Ruocco, C.; Cortese, M.; Renda, S.; Meloni, E.; Festa, G.; Martino, M. Platinum based catalysts in the water gas shift reaction: Recent advances. Metals 2020, 10, 866. [Google Scholar] [CrossRef]
- Chakraborty, A.; Samriti; Ruzimuradov, O.; Gupta, R.K.; Cho, J.; Prakash, J. TiO2 nanoflower photocatalysts: Synthesis, modifications and applications in wastewater treatment for removal of emerging organic pollutants. Environ. Res. 2022, 212, 113550. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M.S.; Cooper, V.R.; et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539. [Google Scholar] [CrossRef]
- Dai, L. Functionalization of Graphene for Efficient Energy Conversion and Storage. Accounts Chem. Res. 2013, 46, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Fan, Q.; Ma, T.; Liu, S.; Gysling, H.; Texter, J.; Guo, F.; Sun, Z. Two-dimensional materials for energy conversion and storage. Prog. Mater. Sci. 2020, 111, 100637. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.W. Thermal properties of two-dimensional materials. Chin. Phys. B 2017, 26, 034401. [Google Scholar] [CrossRef]
- Kim, J.H.; Jeong, J.H.; Kim, N.; Joshi, R.; Lee, G.H. Mechanical properties of two-dimensional materials and their applications. J. Phys. D Appl. Phys. 2018, 52, 083001. [Google Scholar] [CrossRef]
- Paredes, J.I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascon, J.M. Graphene Oxide Dispersions in Organic Solvents. Langmuir 2008, 24, 10560–10564. [Google Scholar] [CrossRef] [PubMed]
- Some, S.; Shackery, I.; Kim, S.J.; Jun, S.C. Phosphorus-doped graphene oxide layer as a highly efficient flame retardant. Chem. Eur. J. 2015, 21, 15480–15485. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bernal, R. Electrical properties of two-dimensional materials used in gas sensors. Sensors 2019, 19, 1295. [Google Scholar] [CrossRef] [PubMed]
- Ebert, D. Ecology, Epidemiology, and Evolution of Parasitism in Daphnia. National Library of Medicine. 2005. Available online: https://edoc.unibas.ch/13505/1/Ebert-Parasitism_in_Daphnia-2005-A4-print.pdf (accessed on 27 March 2024).
- Tatarazako, N.; Oda, S. The Water Flea Daphnia magna (Crustacea, Cladocera) as a Test Species for Screening and Evaluation of Chemicals with Endocrine Disrupting Effects on Crustaceans. Ecotoxicology 2007, 16, 197–203. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.; Li, B.L.; Ariga, K.; Lim, C.-T.; Garaj, S.; Leong, D.T. Toxicity of two-dimensional layered materials and their heterostructures. Bioconjugate Chem. 2019, 30, 2287–2299. [Google Scholar] [CrossRef] [PubMed]
- Seabra, A.B.; Paula, A.J.; de Lima, R.; Alves, O.L.; Durán, N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 2014, 27, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Huertas-Chambilla, M.Y.; Moyano-Arocutipa, M.F.; Zarria-Romero, J.Y.; Checca-Huaman, N.R.; Passamani, E.C.; Arencibia, A.; Ramos-Guivar, J.A. In-Field 57Fe Mössbauer Study of Maghemite Nanoparticles Functionalized Multiwall Carbon Nanotubes and Their Ecotoxicological Properties in Young Daphnia magna. Hyperfine Interact. 2022, 243, 24. [Google Scholar] [CrossRef]
- Moyano-Arocutipa, M.F.; Zarria-Romero, J.Y.; Huertas-Chambilla, M.Y.; Checca-Huaman, N.R.; Pino, J.; Passamani, E.C.; Ramos-Guivar, J.A. In Situ and after Synthesis of Magnetic Nanoarchitectures Grown onto Zeolite Type 5A/CTAB Frameworks and Their Ecotoxicological Properties. Cryst. Growth Des. 2023, 23, 2951–2970. [Google Scholar] [CrossRef]
- Wang, L.-M.; Jia, K.; Li, Z.-F.; Qi, H.-Y.; Liu, D.-X.; Liang, Y.-J.; Hao, S.-L.; Tan, F.-Q.; Yang, W.-X. TiO2 nanoparticles affect spermatogenesis and adhesion junctions via the ROS-mediated mTOR signalling pathway in Eriocheir sinensis testes. Environ. Pollut. 2023, 331, 121952. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Villa, F.; Checca-Huaman, N.R.; Ramos-Guivar, J.A. Ecotoxicological Properties of Titanium Dioxide Nanomorphologies in Daphnia magna. Nanomaterials 2023, 13, 927. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, S.M.; Choi, J. Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ. Toxicol. Pharmacol. 2009, 28, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liang, J.; Wu, Q.; Li, M.; Shan, W.; Zeng, L.; Yao, L.; Liang, Y.; Wang, C.; Gao, J.; et al. Developmental toxicity of few-layered black phosphorus toward zebrafish. Environ. Sci. Technol. 2020, 55, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Costa, T.L.G.; Vieira, M.A.; Gonçalves, G.R.; Cipriano, D.F.; Lacerda, V., Jr.; Gonçalves, A.S.; Scopel, W.L.; de Siervo, A.; Freitas, J.C.C. Combined computational and experimental study about the incorporation of phosphorus into the structure of graphene oxide. Phys. Chem. Chem. Phys. 2023, 25, 6927–6943. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Zhu, X.Y.; Wang, W.P.; Wang, Y.; Wang, L.; Xu, X.X.; Zhang, K.; Deng, D.G. Reproductive switching analysis of Daphnia similoides between sexual female and parthenogenetic female by transcriptome comparison. Sci. Rep. 2016, 6, 34241. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Han, Y.; Schutzius, T.M.; Wang, Y.; Pan, Y.; Hu, M.; Poulikakos, D. On the Mechanism of Hydrophilicity of Graphene. Nano Lett. 2016, 16, 4447–4453. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, B.; Park, J.; Yang, J.; Shen, X.; Yao, J. Synthesis of Enhanced Hydrophilic and Hydrophobic Graphene Oxide Nanosheets by a Solvothermal Method. Carbon 2009, 47, 68–72. [Google Scholar] [CrossRef]
- Lv, X.; Yang, Y.; Tao, Y.; Jiang, Y.; Chen, B.; Zhu, X.; Li, B. A Mechanism Study on Toxicity of Graphene Oxide to Daphnia Magna: Direct Link between Bioaccumulation and Oxidative Stress. Environ. Pollut. 2018, 234, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Bigdeli, H.; Moradi, M.; Borhani, S.; Abbasi Jafari, E.; Hajati, S.; Kiani, M.A. One-pot electrochemical growth of sponge-like polyaniline-intercalated phosphorous-doped graphene oxide on nickel foam as binder-free electrode material of supercapacitor. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 100, 45–53. [Google Scholar] [CrossRef]
- Hidayah, N.M.S.; Liu, W.W.; Lai, C.W.; Noriman, N.Z.; Khe, C.S.; Hashim, U.; Lee, H.C. Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization. AIP Conf. Proc. 2017, 1892, 010027. [Google Scholar] [CrossRef]
- Thakur, S.; Karak, N. Green Reduction of Graphene Oxide by Aqueous Phytoextracts. Carbon 2012, 50, 5331–5339. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano 2010, 4, 2429–2437. [Google Scholar] [CrossRef] [PubMed]
- Guivar, J.A.R.; Bustamante, A.; Gonzalez, J.C.; Sanches, E.A.; Morales, M.A.; Raez, J.M.; Arencibia, A. Adsorption of Arsenite and Arsenate on Binary and Ternary Magnetic Nanocomposites with High Iron Oxide Content. Appl. Surf. Sci. 2018, 454, 87–100. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Jindal, N.; Kumar, V.; Singh, K. Role of Green Chemistry in Synthesis and Modification of Graphene Oxide and Its 417 Application: A Review Study. Chem. Phys. Impact 2023, 6, 100185. [Google Scholar] [CrossRef]
- Pelaez-Fernandez, M.; Bermejo, A.; Benito, A.M.; Maser, W.K.; Arenal, R. Detailed Thermal Reduction Analyses of Graphene Oxide via In-Situ TEM/EELS Studies. Carbon 2021, 178, 477–487. [Google Scholar] [CrossRef]
- D’Angelo, D.; Bongiorno, C.; Amato, M.; Deretzis, I.; La Magna, A.; Fazio, E.; Scalese, S. Oxygen Functionalities Evolution in Thermally Treated Graphene Oxide Featured by EELS and DFT Calculations. J. Phys. Chem. C 2017, 121, 5408–5414. [Google Scholar] [CrossRef]
- D’Angelo, D.; Bongiorno, C.; Amato, M.; Deretzis, I.; La Magna, A.; Compagnini, G.; Scalese, S. Electron Energy-Loss Spectra of Graphene Oxide for the Determination of Oxygen Functionalities. Carbon 2015, 93, 1034–1041. [Google Scholar] [CrossRef]
- Kumar, V.; Sheoran, O.P.; Rani, S.; Malik, K. Development of a Web-Based Tool for Probit Analysis to Compute LC50/LD50/GR50 for Its Use in Toxicology Studies. J. Appl. Nat. Sci. 2020, 12, 641–646. [Google Scholar] [CrossRef]
- Jordan, G.W. Basis for the Probit Analysis of an Interferon Plaque Reduction Assay. J. Gen. Virol. 1972, 14, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Malatjie, T.S.; Botha, T.L.; Tekere, M.; Kuvarega, A.T.; Nkambule, T.T.I.; Mamba, B.B.; Msagati, T.A.M. Toxicity assessment of TiO2-conjugated Carbon-based nanohybrid material on a freshwater bioindicator cladoceran, Daphnia magna. Aquat. Toxicol. 2022, 247, 106176. [Google Scholar] [CrossRef] [PubMed]
- Tejada-Meza, K.; Arenazas-Rodríguez, A.; Garcia-Chevesich, P.A.; Flores-Farfan, C.; Morales-Paredes, L.; Romero-Mariscal, G.; Sharp, J.O. Acute Ecotoxicity Potential of Untreated Tannery Wastewater Release in Arequipa, Southern Peru. Sustainability 2023, 15, 15240. [Google Scholar] [CrossRef]
- Murali, M.; Suganthi, P.; Athif, P.; He, S.M.; Basu, H.; Singhal, R.K. Synthesis and Characterization of TiO2 Nanoparticle and Study of Its Impact on Aquatic Organism. J. Adv. Appl. Sci. Res. 2016, 1, 10–23. [Google Scholar] [CrossRef]
- Tamanaha-Vegas, C.A.; Zarria-Romero, J.Y.; Greneche, J.M.; Passamani, E.C.; Ramos-Guivar, J.A. Surface Magnetic Properties of a Ternary Nanocomposite and Its Ecotoxicological Properties in Daphnia Magna. Adv. Powder Technol. 2022, 33, 103395. [Google Scholar] [CrossRef]
- Cano, A.M.; Maul, J.D.; Saed, M.; Shah, S.A.; Green, M.J.; Cañas-Carrell, J.E. Bioaccumulation, Stress, and Swimming Impairment in Daphnia Magna Exposed to Multiwalled Carbon Nanotubes, Graphene, and Graphene Oxide. Environ. Toxicol. Chem. 2017, 36, 2199–2204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Meng, T.; Shi, L.; Guo, X.; Si, X.; Yang, R.; Quan, X. The Effects of Humic Acid on the Toxicity of Graphene Oxide to Scenedesmus obliquus and Daphnia magna. Sci. Total Environ. 2019, 649, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Zarria-Romero, J.Y.; Ocampo-Anticona, J.A.; Pinotti, C.N.; Passamani, E.C.; Checca-Huaman, N.R.; Castro-Merino, I.L.; Pino, J.; Shiga, B.; Ramos-Guivar, J.A. Ecotoxicological properties of functionalized magnetic graphene oxide and multiwall carbon nanotubes in Daphnia magna. Ceram. Int. 2023, 49, 15200–15212. [Google Scholar] [CrossRef]
- Chen, L.; Hu, P.; Zhang, L.; Huang, S.; Luo, L.; Huang, C. Toxicity of Graphene Oxide and Multi-Walled Carbon Nanotubes Against Human Cells and Zebrafish. Sci. China Chem. 2012, 55, 2209–2216. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, U.; Pandey, C.M.; Mishra, P.; Pandey, G. Application of Student’s t-test, Analysis of Variance, and Covariance. Ann. Card. Anaesth. 2019, 22, 407. [Google Scholar] [CrossRef] [PubMed]
- Porto, V.A.; da Rocha Júnior, E.R.; Ursulino, J.S.; Porto, R.S.; da Silva, M.; de Jesus, L.W.O.; de Oliveira, J.M.; Crispim, A.C.; Santos, J.C.C.; de Aquino, T.M. NMR-based metabolomics applied to ecotoxicology with zebrafish (Danio rerio) as a prominent model for metabolic profiling and biomarker discovery: Overviewing the most recent approaches. Sci. Total Environ. 2023, 868, 161737. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Fu, M.; Du, Q.; Chang, Z. Developmental toxicity of black phosphorus quantum dots in zebrafish (Danio rerio) embryos. Chemosphere 2023, 335, 139029. [Google Scholar] [CrossRef] [PubMed]
- Potter, K. Methods for Presenting Statistical Information: The Box Plot. Available online: https://sci.utah.edu/~kpotter/publications/potter-2006-MPSI.pdf (accessed on 27 March 2024).
Species | System | Dispersion Method | Size | Exposition Time (h) | (mg ) | Reference |
---|---|---|---|---|---|---|
D. magna | GO | Sonication | 0.2–0.3 μm | 72 | 45.4 | [32] |
D. magna | GO | Sonication | 0.5–5 μm | 48 | 84.2 | [50] |
D. magna | GO--Fe2O3 | Sonication | 10.4 nm | 24 | 0.94 | [51] |
D. magna | -Fe2O3-TiO2-GO | Sonication | 19.6 nm | 24 | 550 | [48] |
D. magna | GO | Sonication | 0.5–5 μm | 72 | 111.4 | [50] |
D. magna | GO | Sonication | 3–4 μm | 24 | 0.18 | [49] |
D. magna | GOP | Sonication | 3.1 μm | 24 | 9.8 | This work |
D. magna | GO | Sonication | 0.8 μm | 24 | 11.4 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Villa, F.; Checca-Huaman, N.-R.; Costa, T.L.G.; Freitas, J.C.C.; Ramos-Guivar, J.A. Ecotoxicological Properties of Pure and Phosphorus-Containing Graphene Oxide Bidimensional Sheets in Daphnia magna. Toxics 2024, 12, 252. https://doi.org/10.3390/toxics12040252
Mendoza-Villa F, Checca-Huaman N-R, Costa TLG, Freitas JCC, Ramos-Guivar JA. Ecotoxicological Properties of Pure and Phosphorus-Containing Graphene Oxide Bidimensional Sheets in Daphnia magna. Toxics. 2024; 12(4):252. https://doi.org/10.3390/toxics12040252
Chicago/Turabian StyleMendoza-Villa, F., Noemi-Raquel Checca-Huaman, Tainara L. G. Costa, Jair C. C. Freitas, and Juan A. Ramos-Guivar. 2024. "Ecotoxicological Properties of Pure and Phosphorus-Containing Graphene Oxide Bidimensional Sheets in Daphnia magna" Toxics 12, no. 4: 252. https://doi.org/10.3390/toxics12040252
APA StyleMendoza-Villa, F., Checca-Huaman, N. -R., Costa, T. L. G., Freitas, J. C. C., & Ramos-Guivar, J. A. (2024). Ecotoxicological Properties of Pure and Phosphorus-Containing Graphene Oxide Bidimensional Sheets in Daphnia magna. Toxics, 12(4), 252. https://doi.org/10.3390/toxics12040252