Wide Riparian Zones Inhibited Trace Element Loss in Mining Wastelands by Reducing Surface Runoff and Trace Elements in Sediment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Rainfall and Riparian Zone Characteristics
3.2. Runoff, Sediment, and Trace Element Loss
3.3. Sediment and Trace Element Concentrations in Runoff
3.4. Dynamic Variation Trends in Runoff, Sediment, and Trace Elements in the Riparian Zone
3.5. The Phytostabilization of Plants for Trace Elements
3.6. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Ding, Q.; Cheng, G.; Wang, Y.; Zhuang, D. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Sci. Total Environ. 2017, 578, 577–585. [Google Scholar] [CrossRef]
- Žibret, G.; Gosar, M.; Miler, M.; Alijagić, J. Impacts of mining and smelting activities on environment and landscape degradation—Slovenian case studies. Land Degrad. Dev. 2018, 29, 4457–4470. [Google Scholar] [CrossRef]
- Li, B.; Deng, J.; Li, Z.; Chen, J.; Zhan, F.; He, Y.; He, L.; Li, Y. Contamination and health risk assessment of heavy metals in soil and ditch sediments in long-term mine wastes area. Toxics 2022, 10, 607. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Xie, Z.; Ding, M.; Devlin, A.T.; Jiang, Y.; Xie, K. The temporal response of dissolved heavy metals to landscape indices in the Le’an river, China. Environ. Res. 2022, 210, 112941. [Google Scholar] [CrossRef]
- Chen, J.Q. Riparian vegetation characteristics and their functions in ecosystems and landscapes. Chin. J. Appl. Ecol. 1996, 7, 439–448. (In Chinese) [Google Scholar]
- Liu, X.; Zhang, X.; Zhang, M. Major Factors Influencing the Efficacy of Vegetated Buffers on Sediment Trapping: A Review and Analysis. J. Environ. Qual. 2008, 37, 1667–1674. [Google Scholar] [CrossRef]
- Borin, M.; Passoni, M.; Thiene, M.; Tempesta, T. Multiple functions of buffer strips in farming areas. Eur. J. Agron. 2010, 32, 103–111. [Google Scholar] [CrossRef]
- Sun, C.; Liu, H.W.; Gong, L.F.; Cao, X.P.; Shen, H.L.; Gao, D.W. Purification of Three Herbal Buffer Strips for Non-point Source Pollution of Copper and Lead. Chin. J. Soil Sci. 2019, 50, 196–202. (In Chinese) [Google Scholar]
- Wang, J.; Luo, X.H.; Zhang, Y.F.; Huang, Y.H.; Rajendran, M.; Xue, S.G. Plant species diversity for vegetation restoration in manganese tailing wasteland. Environ. Sci. Pollut. Res. Int. 2018, 25, 24101–24110. [Google Scholar] [CrossRef]
- Tang, J.X.; He, M.M.; Wang, D.H.; Zeng, X.F.; Li, R.J.; Ying, B. Suspended sediments and runoff reduction by established riparian vegetated filter strips. Chin. J. Environ. Eng. 2016, 10, 2747–2755. (In Chinese) [Google Scholar]
- Fu, J.; Wang, Y.Q.; Ma, C.; Wang, Y.J.; Liang, D. Research Progress on the Effects of Vegetation Buffer Zone on Reducing Agricultural Non-point Pollution. J. Soil Water Conserv. 2019, 33, 1–8. (In Chinese) [Google Scholar]
- McMahon, J.M.; Olley, J.M.; Brooks, A.P.; Smart, J.C.R.; Stewart-Koster, B.; Venables, W.N.; Curwen, G.; Kemp, J.; Stewartd, M.; Saxton, N.; et al. Vegetation and longitudinal coarse sediment connectivity affect the ability of ecosystem restoration to reduce riverbank erosion and turbidity in drinking water. Sci. Total Environ. 2020, 707, 135904. [Google Scholar] [CrossRef]
- Ouyang, W.; Wang, Y.; Lin, C.; He, M.; Hao, F.; Liu, H.; Zhu, W. Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Sci. Total Environ. 2018, 637–638, 208–220. [Google Scholar] [CrossRef]
- Li, J.G.; Li, Z.X.; Brandis, K.J.; Bu, J.W.; Sun, Z.Y.; Yu, Q.; Ramp, D. Tracing geochemical pollutants in stream water and soil from mining activity in an alpine catchment. Chemosphere 2020, 242, 125167. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Y.P.; Lin, Y.S. Heavy rainfall events following the dry season elevate metal contamination in mining-impacted rivers: A case study of wenyu river, Qinling, China. Arch. Environ. Contam. Toxicol. 2021, 81, 335–345. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Ai, Y.; Chen, J.; Luo, X.; Chen, J.; Zhong, S. Effects and mechanisms of revegetation modes on cadmium and lead pollution in artificial soil on railway rock-cut slopes. Sci. Total Environ. 2018, 644, 1602–1611. [Google Scholar] [CrossRef]
- Miller, J.J.; Curtis, T.; Chanasyk, D.S.; Reedyk, S. Influence of mowing and narrow grass buffer widths on reductions in sediment, nutrients, and bacteria in surface runoff. Can. J. Soil Sci. 2015, 95, 139–151. [Google Scholar] [CrossRef]
- Zhou, J.; Fu, B.; Gao, G.; Lü, Y.; Liu, Y.; Lü, N.; Wang, S. Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau, China. Catena 2016, 137, 1–11. [Google Scholar] [CrossRef]
- Rao, Z.X.; Huang, D.Y.; Zhu, H.H.; Zhu, Q.H.; Wang, J.Y.; Luo, Z.C.; Xu, C.; Shen, X.; He, Y.B. Effect of rice straw mulching on migration and transportation of Cd, Cu, Zn, and Ni in surface runoff under simulated rainfall. J. Soils Sediments 2016, 16, 2021–2029. [Google Scholar] [CrossRef]
- King, S.E.; Osmond, D.L.; Smith, J.; Burchell, M.R.; Dukes, M.; Evans, R.O.; Knies, S.; Kunickis, S. Effects of Riparian Buffer Vegetation and Width: A 12-Year Longitudinal Study. J. Environ. Qual. 2016, 45, 1243–1251. [Google Scholar] [CrossRef]
- Hao, R.X.; Xue, L.M.; Liu, R.X.; Sun, F.; Li, X.J.; Yuan, P.; Zhou, Y.M. VFSMOD model-based simulation of interception by ecological buffer zone under different scenarios. Chin. J. Environ. Eng. 2022, 16, 47–55. (In Chinese) [Google Scholar]
- Xu, H.S.; Li, C.Y.; Wen, C.; Zhu, S.J.; Zhu, S.Q.; Li, N.H.; Li, R.F.; Luo, X. Heavy metal fraction, pollution, and source-oriented risk assessment in biofilms on a river system polluted by mining activities. Chemosphere 2023, 322, 138137. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, C.; Li, Y.; Li, B.; Zu, Y.; Li, Y.; Chen, J.; Zhang, Z. Effect of ecological buffer patterns on abating soil erosion and heavy metal diffusion in riverbanks near mining waste catchments. J. Agro-Environ. Sci. 2022, 41, 325–335. (In Chinese) [Google Scholar]
- Zhiyuan, W.; Dengfeng, W.; Huiping, Z.; Zhiping, Q. Assessment of Soil Heavy Metal Pollution with Principal Component Analysis and Geoaccumulation Index. Procedia Environ. Sci. 2011, 10, 1946–1952. [Google Scholar] [CrossRef]
- Huang, J.; Wang, C.; Qi, L.; Zhang, X.; Tang, G.; Li, L.; Guo, J.; Jia, Y.; Dou, X.; Lu, M. Phosphorus is more effective than nitrogen in restoring plant communities of heavy metals polluted soils. Environ. Pollut. 2020, 266, 115259. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R.; Peinado, F.J.M.; de Graaff, J.; Martínez, J.R.F.; Flanagan, D.C. Environmental impact of introducing plant covers in the taluses of terraces: Implications for mitigating agricultural soil erosion and runoff. CATENA 2011, 84, 79–88. [Google Scholar] [CrossRef]
- Niu, Y.; Li, S.; Liu, Y.; Shi, J.; Wang, Y.; Ma, Y.; Wu, G.-L. Regulation of alpine meadow patch coverage on runoff and sediment under natural rainfall on the eastern Qinghai-Tibetan Plateau. J. Hydrol. 2021, 603, 127101. [Google Scholar] [CrossRef]
- Gene, S.M.; Hoekstra, P.F.; Hannam, C.; White, M.; Truman, C.; Hanson, M.L.; Prosser, R.S. The role of vegetated buffers in agriculture and their regulation across Canada and the United States. J. Environ. Manag. 2019, 243, 12–21. [Google Scholar] [CrossRef]
- Prosser, R.S.; Hoekstra, P.F.; Gene, S.; Truman, C.; White, M.; Hanson, M.L. A review of the effectiveness of vegetated buffers to mitigate pesticide and nutrient transport into surface waters from agricultural areas. J. Environ. Manag. 2020, 261, 110210. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Q.Y.; Xue, S.G.; Rajendran, M.; Wu, C.; Liao, J.X. Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland. Environ. Sci. Pollut. Res. 2018, 25, 9998–10005. [Google Scholar] [CrossRef]
- Wei, L.H.; Liu, Y.; Routh, J.; Tang, J.F.; Liu, G.W.; Liu, L.R.; Luo, D.G.; Li, H.S.; Zhang, H.G. Release of heavy metals and metalloids from two contaminated soils to surface runoff in southern china: A simulated-rainfall experiment. Water 2019, 11, 1339. [Google Scholar] [CrossRef]
- Ma, R.; Hu, F.; Xu, C.; Liu, J.; Zhao, S. Response of soil aggregate stability and splash erosion to different breakdown mechanisms along natural vegetation restoration. CATENA 2022, 208, 105775. [Google Scholar] [CrossRef]
- Smith, D.J.; Snead, M.; Thompson, T.M. Soil amended with organic matter increases fluvial erosion resistance of cohesive streambank soil. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006723. [Google Scholar] [CrossRef]
- Wu, T.; Li, X.P.; Cai, Y.; Ai, Y.W.; Sun, X.M.; Yu, H.T. Geochemical behavior and risk of heavy metals in different size lead-polluted soil particles. China Environ. Sci. 2017, 37, 4212–4221. (In Chinese) [Google Scholar]
- Xu, C.Y.; Zhou, T.T.; Wang, C.L.; Liu, H.Y.; Zhang, C.T.; Hu, F.N.; Zhao, S.W.; Geng, Z.C. Aggregation of polydisperse soil colloidal particles: Dependence of Hamaker constant on particle size. Geoderma 2020, 359, 113999. [Google Scholar] [CrossRef]
- Dong, Y.; Lei, T.; Li, S.; Yuan, C.; Zhou, S.; Yang, X. Effects of ryegrass coverage on soil loss from loess slopes. Int. Soil Water Conserv. Res. 2015, 3, 170–182. [Google Scholar] [CrossRef]
- Yao, J.J.; Cheng, J.H.; Zhou, Z.D.; Sun, L.; Zhang, H.J. Effects of herbaceous vegetation coverage and rainfall intensity on splash characteristics in northern China. CATENA 2018, 167, 411–421. [Google Scholar] [CrossRef]
- Pan, D.; Gao, X.; Dyck, M.; Song, Y.; Wu, P.; Zhao, X. Dynamics of runoff and sediment trapping performance of vegetative filter strips: Run-on experiments and modeling. Sci. Total Environ. 2017, 593-594, 54–64. [Google Scholar] [CrossRef]
- Reubens, B.; Poesen, J.; Danjon, F.; Geudens, G.; Muys, B. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review. Trees 2007, 21, 385–402. [Google Scholar] [CrossRef]
- Hao, H.X.; Wei, Y.J.; Cao, D.N.; Guo, Z.L.; Shi, Z.H. Vegetation restoration and fine roots promote soil infiltrability in heavy-textured soils. Soil Tillage Res. 2020, 198, 104542. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Geitner, C.; Wellstein, C.; Zerbe, S. The influence of herbaceous vegetation on slope stability—A review. Earth-Sci. Rev. 2020, 209, 103328. [Google Scholar] [CrossRef]
- Zwieback, S.; Chang, Q.; Marsh, P.; Berg, A. Shrub tundra ecohydrology: Rainfall interception is a major component of the water balance. Environ. Res. Lett. 2019, 14, 055005. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Ji, X.; Strauss, P.; Zhang, Z. Effects of shrub-grass cover on the hillslope overland flow and soil erosion under simulated rainfall. Environ. Res. 2022, 214, 113774. [Google Scholar] [CrossRef]
- Schmitt, T.J.; Dosskey, M.G.; Hoagland, K.D. Filter Strip Performance and Processes for Different Vegetation, Widths, and Contaminants. J. Environ. Qual. 1999, 28, 1479–1489. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, X.; Xia, J.; Zeng, R.; Cai, C.; Wang, T. Dynamic study of infiltration rate for soils with varying degrees of degradation by water erosion. Int. Soil Water Conserv. Res. 2019, 7, 167–175. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, D.; Liao, Q.; Ying, B. Analysis on the influence of rainfall characteristics on soil and water loss in rocky desertification region. Carbonates Evaporites 2021, 36, 77. [Google Scholar] [CrossRef]
- Gaiero, D.; Probst, J.; Depetris, P.; Lelyter, L.; Kempe, S. Riverine transfer of heavy metals from Patagonia to the southwestern Atlantic Ocean. Reg. Environ. Chang. 2002, 3, 51–64. [Google Scholar] [CrossRef]
- Liu, M.; Fan, D.; Bi, N.; Sun, X.; Tian, Y. Impact of water-sediment regulation on the transport of heavy metals from the Yellow River to the sea in 2015. Sci. Total Environ. 2019, 658, 268–279. [Google Scholar] [CrossRef]
- Lv, J.; Wu, Y. Nitrogen removal by different riparian vegetation buffer strips with different stand densities and widths. Water Supply 2021, 21, 3541–3556. [Google Scholar] [CrossRef]
- Zhou, B.B.; Chen, X.P.; Su, L.J.; Li, H.J.; Wang, Q.J.; Tao, W.H. Evaluation and modeling of factors influencing the depth of mixing layer in which soil solute releasing from soil to surface runoff. Can. J. Soil Sci. 2021, 101, 415–429. [Google Scholar] [CrossRef]
- Chang, L.X.; Liu, F.S.; Zhan, F.D.; Li, B.; Chen, J.J.; Zu, Y.Q.; Li, Y.; He, Y.M. Growth adaptability of 13 Rhododendron varieties in complex polluted cropland in a plateau lead-zinc mining area. Chin. J. Ecol. 2023, 42, 1449–1456. (In Chinese) [Google Scholar]
- Zhang, J.; Yang, N.N.; Geng, Y.N.; Zhou, J.H.; Lei, J. Effects of the combined pollution of cadmium, lead and zinc on the phytoextraction efficiency of ryegrass (Lolium perenne L.). RSC Adv. 2019, 9, 20603–20611. [Google Scholar] [CrossRef]
- Xu, T.Y.; Quan, W.X.; Li, C.C.; Pan, Y.N.; Xie, L.J.; Hao, J.T.; Gao, Y.D. Distribution characteristics of low molecular weight organic acids in soil of wild rhododendron forest. Sci. Silvae Sin. 2021, 57, 24–32. (In Chinese) [Google Scholar]
- Zou, W.; Cao, Z.; Wang, Y.; Jin, M.; Lin, M. Intercropping of Pennisetum sinese with Lolium perenne improved phytoextraction of heavy metal from soil. Restor. Ecol. 2022, 31, e13702. [Google Scholar] [CrossRef]
Plant | Biomass (kg m−2) | Cd (mg m−2) | Cu (mg m−2) | As (mg m−2) | Pb (mg m−2) | Zn (mg m−2) | |
---|---|---|---|---|---|---|---|
Lolium perenne L. | Shoot | 0.44 ± 0.15 a | 1.71 ± 0.83 a | 2.58 ± 1.27 b | 0.60 ± 0.40 a | 37.94 ± 22.71 a | 198.83 ± 111.04 a |
Root | 0.01 ± 0.01 d | 1.02 ± 0.44 b | 0.50 ± 0.22 c | 0.68 ± 0.38 a | 37.47 ± 25.87 a | 110.68 ± 74.92 b | |
Rhododendron simsii | Shoot | 0.10 ± 0.01 c | 0.29 ± 0.04 c | 0.84 ± 0.18 c | 0.19 ± 0.05 b | 13.96 ± 1.84 b | 21.58 ± 11.15 c |
Root | 0.16 ± 0.05 b | 0.26 ± 0.09 c | 3.45 ± 0.87 a | 0.10 ± 0.04 b | 10.66 ± 2.56 b | 18.61 ± 6.20 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Li, Z.; Li, B.; Xu, C.; Wang, L.; Li, Y. Wide Riparian Zones Inhibited Trace Element Loss in Mining Wastelands by Reducing Surface Runoff and Trace Elements in Sediment. Toxics 2024, 12, 279. https://doi.org/10.3390/toxics12040279
Deng J, Li Z, Li B, Xu C, Wang L, Li Y. Wide Riparian Zones Inhibited Trace Element Loss in Mining Wastelands by Reducing Surface Runoff and Trace Elements in Sediment. Toxics. 2024; 12(4):279. https://doi.org/10.3390/toxics12040279
Chicago/Turabian StyleDeng, Jiangdi, Zuran Li, Bo Li, Cui Xu, Lei Wang, and Yuan Li. 2024. "Wide Riparian Zones Inhibited Trace Element Loss in Mining Wastelands by Reducing Surface Runoff and Trace Elements in Sediment" Toxics 12, no. 4: 279. https://doi.org/10.3390/toxics12040279
APA StyleDeng, J., Li, Z., Li, B., Xu, C., Wang, L., & Li, Y. (2024). Wide Riparian Zones Inhibited Trace Element Loss in Mining Wastelands by Reducing Surface Runoff and Trace Elements in Sediment. Toxics, 12(4), 279. https://doi.org/10.3390/toxics12040279