Bisphenol A Exposure Interferes with Reproductive Hormones and Decreases Sperm Counts: A Systematic Review and Meta-Analysis of Epidemiological Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Screening
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Characteristics
3.2. Associations between BPA Exposure and Male Reproductive Hormone Levels
3.3. Associations between BPA Exposure and Male Sperm Parameters
3.4. Associations between BPA Exposure and the Risk of Below-Reference Sperm Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, N.; Singh, A.K. Trends of male factor infertility, an important cause of infertility: A review of literature. J. Hum. Reprod. Sci. 2015, 8, 191–196. [Google Scholar] [CrossRef]
- Brugo-Olmedo, S.; Chillik, C.; Kopelman, S. Definition and causes of infertility. Reprod. Biomed. Online 2001, 2, 173–185. [Google Scholar] [CrossRef]
- Gnoth, C.; Godehardt, E.; Frank-Herrmann, P.; Friol, K.; Tigges, J.; Freundl, G. Definition and prevalence of subfertility and infertility. Hum. Reprod. 2005, 20, 1144–1147. [Google Scholar] [CrossRef]
- Li, X.; Wang, K.; Huo, Y.; Zhou, M. The effect of infertility-related stress on Chinese infertile females‘ mental health: The moderating role of marital adjustment. Psych. J. 2019, 8, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Araki, A.; Itoh, S.; Miyashita, C.; Minatoya, M.; Kishi, R. Environmental Chemical Exposure and Its Effects on Infants‘ Reproductive Hormones. Nihon Eiseigaku Zasshi Jpn. J. Hyg. 2018, 73, 313–321. [Google Scholar] [CrossRef]
- Manfo, F.P.T.; Jubendradass, R.; Nantia, E.A.; Moundipa, P.F.; Mathur, P.P. Adverse Effects of Bisphenol A on Male Reproductive Function. R. Rev. Environ. Contam. Toxicol. 2014, 228, 57–82. [Google Scholar] [CrossRef]
- Cao, T.; Cao, Y.; Wang, H.; Wang, P.; Wang, X.; Niu, H.; Shao, C. The Effect of Exposure to Bisphenol A on Spermatozoon and the Expression of Tight Junction Protein Occludin in Male Mice. Dose-Response 2020, 18, 1–6. [Google Scholar] [CrossRef]
- Liu, X.; Miao, M.; Zhou, Z.; Gao, E.; Chen, J.; Wang, J.; Sun, F.; Yuan, W.; Li, D.-K. Exposure to bisphenol-A and reproductive hormones among male adults. Environ. Toxicol. Pharmacol. 2015, 39, 934–941. [Google Scholar] [CrossRef]
- Presunto, M.; Mariana, M.; Lorigo, M.; Cairrao, E. The Effects of Bisphenol A on Human Male Infertility: A Review of Current Epidemiological Studies. Int. J. Mol. Sci. 2023, 24, 12417. [Google Scholar] [CrossRef]
- EFSA CEP Panel (EFSA Panel on Food Contact Materials, Enzymes and Processing Aids); Lambré, C.; Barat Baviera, J.M.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; et al. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2023, 21, e06857. [Google Scholar] [CrossRef]
- Mendiola, J.; Jørgensen, N.; Andersson, A.-M.; Calafat, A.M.; Ye, X.; Redmon, J.B.; Drobnis, E.Z.; Wang, C.; Sparks, A.; Thurston, S.W.; et al. Are Environmental Levels of Bisphenol A Associated with Reproductive Function in Fertile Men? Environ. Health Perspect. 2010, 118, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-K.; Zhou, Z.; Miao, M.; He, Y.; Wang, J.; Ferber, J.; Herrinton, L.J.; Gao, E.; Yuan, W. Urine bisphenol-A (BPA) level in relation to semen quality. Fertil. Steril. 2011, 95, 625–630.e4. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, X.; Chen, X.; Zhang, T.; Li, G.; Zhou, X.; Su, S.; Zhang, W.; Qin, C.; Wang, S. Evaluation of post-adolescence exposure to bisphenol A on reproductive outcomes of male rodent models. Reprod. Toxicol. 2021, 101, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Nag, R.; Brunton, N.P.; Bakar Siddique, M.A.; Harrison, S.M.; Monahan, F.J.; Cummins, E. Hazard characterization of bisphenol A (BPA) based on rodent models—Multilevel meta-analysis and dose-response analysis for reproductive toxicity. Food Chem. Toxicol. 2023, 172, 113574. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Bandyopadhyay, A. Bisphenol A and Male Murine Reproductive System: Finding a Link between Plasticizer and Compromised Health. Toxicol. Sci. 2021, 183, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Rubin, A.M.; Seebacher, F. Bisphenols impact hormone levels in animals: A meta-analysis. Sci. Total Environ. 2022, 828, 154533. [Google Scholar] [CrossRef] [PubMed]
- Shamhari, A.A.; Abd Hamid, Z.; Budin, S.B.; Shamsudin, N.J.; Taib, I.S. Bisphenol A and Its Analogues Deteriorate the Hormones Physiological Function of the Male Reproductive System: A Mini-Review. Biomedicines 2021, 9, 1744. [Google Scholar] [CrossRef]
- Kortenkamp, A.; Martin, O.; Ermler, S.; Baig, A.; Scholze, M. Bisphenol A and declining semen quality: A systematic review to support the derivation of a reference dose for mixture risk assessments. Int. J. Hyg. Environ. Health 2022, 241, 113942. [Google Scholar] [CrossRef]
- Castellini, C.; Muselli, M.; Parisi, A.; Totaro, M.; Tienforti, D.; Cordeschi, G.; Giorgio Baroni, M.; Maccarrone, M.; Necozione, S.; Francavilla, S.; et al. Association between urinary bisphenol A concentrations and semen quality: A meta-analytic study. Biochem. Pharmacol. 2022, 197, 114896. [Google Scholar] [CrossRef]
- Adoamnei, E.; Mendiola, J.; Vela-Soria, F.; Fernández, M.F.; Olea, N.; Jørgensen, N.; Swan, S.H.; Torres-Cantero, A.M. Urinary bisphenol A concentrations are associated with reproductive parameters in young men. Environ. Res. 2018, 161, 122–128. [Google Scholar] [CrossRef]
- Ferguson, K.K.; Peterson, K.E.; Lee, J.M.; Mercado-García, A.; Blank-Goldenberg, C.; Téllez-Rojo, M.M.; Meeker, J.D. Prenatal and peripubertal phthalates and bisphenol A in relation to sex hormones and puberty in boys. Reprod. Toxicol. 2014, 47, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.M.; Liu, X.; Shen, Y.; Yu, P.; Chen, S.S.; Hu, J.Z.; Yu, J.H.; Li, J.X.; Wang, H.S.; Cheng, X.S.; et al. Elevated Serum Bisphenol A Level in Patients with Dilated Cardiomyopathy. Int. J. Environ. Res. Public Health 2015, 12, 5329–5337. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Miao, M.H.; Ran, M.M.; Ding, L.; Bai, L.; Wu, T.T.; Yuan, W.; Gao, E.S.; Wang, J.T.; Li, G.H.; et al. Serum bisphenol-A concentration and sex hormone levels in men. Fertil. Steril. 2013, 100, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Galloway, T.; Cipelli, R.; Guralnik, J.; Ferrucci, L.; Bandinelli, S.; Corsi, A.M.; Money, C.; McCormack, P.; Melzer, D. Daily Bisphenol A Excretion and Associations with Sex Hormone Concentrations: Results from the InCHIANTI Adult Population Study. Environ. Health Perspect. 2010, 118, 1603–1608. [Google Scholar] [CrossRef] [PubMed]
- Lassen, T.H.; Frederiksen, H.; Jensen, T.K.; Petersen, J.H.; Joensen, U.N.; Main, K.M.; Skakkebaek, N.E.; Juul, A.; Jørgensen, N.; Andersson, A.-M. Urinary Bisphenol A Levels in Young Men: Association with Reproductive Hormones and Semen Quality. Environ. Health Perspect. 2014, 122, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Mustieles, V.; Ocón-Hernandez, O.; Mínguez-Alarcón, L.; Dávila-Arias, C.; Pérez-Lobato, R.; Calvente, I.; Arrebola, J.P.; Vela-Soria, F.; Rubio, S.; Hauser, R.; et al. Bisphenol A and reproductive hormones and cortisol in peripubertal boys: The INMA-Granada cohort. Sci. Total Environ. 2018, 618, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Goldstone, A.E.; Chen, Z.; Perry, M.J.; Kannan, K.; Louis, G.M.B. Urinary bisphenol A and semen quality, the LIFE Study. Reprod. Toxicol. 2015, 51, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Knez, J.; Kranvogl, R.; Breznik, B.P.; Vončina, E.; Vlaisavljević, V. Are urinary bisphenol A levels in men related to semen quality and embryo development after medically assisted reproduction? Fertil. Steril. 2014, 101, 215–221.e5. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Miao, M.; Liang, H.; Shi, H.; Ruan, D.; Li, Y.; Wang, J.; Yuan, W. Exposure of environmental Bisphenol A in relation to routine sperm parameters and sperm movement characteristics among fertile men. Sci. Rep. 2018, 8, 17548. [Google Scholar] [CrossRef]
- Caporossi, L.; Alteri, A.; Campo, G.; Paci, E.; Tranfo, G.; Capanna, S.; Papaleo, E.; Pigini, D.; Viganò, P.; Papaleo, B. Cross Sectional Study on Exposure to BPA and Phthalates and Semen Parameters in Men Attending a Fertility Center. Int. J. Environ. Res. Public Health 2020, 17, 489. [Google Scholar] [CrossRef]
- Radwan, M.; Wielgomas, B.; Dziewirska, E.; Radwan, P.; Kałużny, P.; Klimowska, A.; Hanke, W.; Jurewicz, J. Urinary Bisphenol A Levels and Male Fertility. Am. J. Mens. Health 2018, 12, 2144–2151. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Ehrlich, S.; Toth, T.L.; Wright, D.L.; Calafat, A.M.; Trisini, A.T.; Ye, X.; Hauser, R. Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reprod. Toxicol. 2010, 30, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-P.; Liu, C.; Zhang, M.; Miao, Y.; Cui, F.-P.; Deng, Y.-L.; Luo, Q.; Zeng, J.-Y.; Shi, T.; Lu, T.-T.; et al. Associations between urinary bisphenol A and its analogues and semen quality: A cross-sectional study among Chinese men from an infertility clinic. Environ. Int. 2022, 161, 107132. [Google Scholar] [CrossRef] [PubMed]
- Pollard, S.H.; Cox, K.J.; Blackburn, B.E.; Wilkins, D.G.; Carrell, D.T.; Stanford, J.B.; Porucznik, C.A. Male exposure to bisphenol A (BPA) and semen quality in the Home Observation of Periconceptional Exposures (HOPE) cohort. Reprod. Toxicol. 2019, 90, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Benson, T.E.; Gaml-Sørensen, A.; Ernst, A.; Brix, N.; Hougaard, K.S.; Hærvig, K.K.; Ellekilde Bonde, J.P.; Tøttenborg, S.S.; Lindh, C.H.; Ramlau-Hansen, C.H.; et al. Urinary Bisphenol A, F and S Levels and Semen Quality in Young Adult Danish Men. Int. J. Environ. Res. Public Health 2021, 18, 1742. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.-C.; Wu, K.-Y.; Lin, I.W.; Yang, Z.-J.; Chang, A.-A.; Hu, M.-C. Bisphenol A disrupts steroidogenesis and induces a sex hormone imbalance through c-Jun phosphorylation in Leydig cells. Chemosphere 2017, 185, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Chen, F.; Wang, X.; Bai, Y.; Zhou, R.; Li, Y.; Chen, L. Exposure of preimplantation embryos to low-dose bisphenol A impairs testes development and suppresses histone acetylation of StAR promoter to reduce production of testosterone in mice. Mol. Cell Endocrinol. 2016, 427, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, M.; Fu, S.; Li, K.; Liu, J.; Wang, Z. BPA disrupted the testis testosterone levels by interfering ER enrichments within StAR 5′ flanking region in rare minnow Gobiocypris rarus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2022, 257, 109338. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, P.; Romano, R.M.; Kizys, M.M.L.; Oliveira, K.C.; Kasamatsu, T.; Giannocco, G.; Chiamolera, M.I.; Dias-da-Silva, M.R.; Romano, M.A. Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic–pituitary–testicular axis. Toxicology 2015, 329, 1–9. [Google Scholar] [CrossRef]
- Sheikh, I.A.; Tayubi, I.A.; Ahmad, E.; Ganaie, M.A.; Bajouh, O.S.; AlBasri, S.F.; Abdulkarim, I.M.J.; Beg, M.A. Computational insights into the molecular interactions of environmental xenoestrogens 4- tert -octylphenol, 4-nonylphenol, bisphenol A (BPA), and BPA metabolite, 4-methyl-2, 4-bis (4-hydroxyphenyl) pent-1-ene (MBP) with human sex hormone-binding globulin. Ecotoxicol. Environ. Saf. 2017, 135, 284–291. [Google Scholar] [CrossRef]
- Gregoraszczuk, E.; Ptak, A.; Wrobel, A. The ability of hydroxylated estrogens (2-OH-E2 and 4-OH-E2) to increase of SHBG gene, protein expression and intracellular levels in MCF-7 cells line. Endocr. Regul. 2011, 45, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Ring, J.; Welliver, C.; Parenteau, M.; Markwell, S.; Brannigan, R.E.; Köhler, T.S. The Utility of Sex Hormone-Binding Globulin in Hypogonadism and Infertile Males. J. Urol. 2017, 197, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, A.F.; Iwachow, M.A.; Venara, M.; Rey, R.A.; Schteingart, H.F. Bisphenol A effect on glutathione synthesis and recycling in testicular Sertoli cells. J. Endocrinol. Investig. 2011, 34, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Sekulovski, N.; MacLean, J.A.; Hayashi, K. Effects of bisphenol A analogues on reproductive functions in mice. Reprod. Toxicol. 2017, 73, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev. Endocr. Metab. Disord. 2020, 21, 127–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, L.; Yang, H.; Pang, J.; Li, P.; Zhang, G.; Li, F.; Wang, F. Bisphenol A affects cell viability involved in autophagy and apoptosis in goat testis sertoli cell. Environ. Toxicol. Pharmacol. 2017, 55, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, Y.; Chen, Z.; Ren, J.; Rehman, A.; Ahmad, D.W.; Long, D.; Hou, J.; Zhou, Y.; Yang, L.; et al. Single-cell transcriptome analysis of Bisphenol A exposure reveals the key roles of the testicular microenvironment in male reproduction. Biomed. Pharmacother. 2022, 145, 112449. [Google Scholar] [CrossRef]
- Qian, W.; Zhu, J.; Mao, C.; Liu, J.; Wang, Y.; Wang, Q.; Liu, Y.; Gao, R.; Xiao, H.; Wang, J. Involvement of CaM-CaMKII-ERK in bisphenol A-induced Sertoli cell apoptosis. Toxicology 2014, 324, 27–34. [Google Scholar] [CrossRef]
- Peña-Corona, S.I.; Aguire, W.S.V.; Vargas, D.; Juárez, I.; Mendoza-Rodríguez, C.A. Effects of bisphenols on Blood-Testis Barrier protein expression in vitro: A systematic review and meta-analysis. Reprod. Toxicol. 2021, 103, 139–148. [Google Scholar] [CrossRef]
Reference | Representativeness of the Exposed Cohort | Selection of the Non-Exposed Cohort | Ascertainment of Exposure | Demonstration That Outcome of Interest Was Not Present at Start of Study | Comparability of Cohorts on the Basis of the Design or Analysis | Assessment of Outcome | Follow-Up Long Enough for Outcomes to Occur | Adequacy of Follow-Up of Cohorts | Total |
---|---|---|---|---|---|---|---|---|---|
Adoamnei et al. (2018) [20] | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Mendiola et al. (2010) [11] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Ferguson et al. (2014) [21] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Xiong et al. (2015) [22] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Zhou et al. (2013) [23] | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Galloway et al. (2010) [24] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Lassen et al. (2014) [25] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Mustieles et al. (2017) [26] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Liu et al. (2015) [8] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Goldstone et al. (2015) [27] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Knez et al. (2014) [28] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Ji et al. (2018) [29] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Caporossi et al. (2019) [30] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Radwan et al. (2018) [31] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Meeker et al. (2010) [32] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Chen et al. (2022) [33] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Pollard et al. (2019) [34] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Benson et al. (2021) [35] | ☆ | ☆ | ★ | ★ | ★★ | ★ | ★ | ★ | 7 |
Reference | Study Design | Country | BPA Concentration | Age | No. Participants | Population Type | Main Outcome(s) | Adjustments |
---|---|---|---|---|---|---|---|---|
Adoamnei et al. (2018) [20] | Cross-sectional study | Spain | 2.3 (0.16–11.5) a ng/mL | 20.4 (18.1–22.8) a | 215 | Healthy young university students | A significant positive association between urinary BPA concentrations and LH levels (β = 0.07, 95% CI: 0.02 to 0.12, p < 0.01). | Body mass index (BMI), smoking status, presence of varicocele, urinary creatinine concentration, ejaculation abstinence time and time to start of semen analysis. |
Mendiola et al. (2010) [11] | Cross-sectional study | USA | 1.5 (<LOD-6.5) b g/mL | NA c | 302 | Male partners of pregnant women | A significant inverse association between urinary BPA concentration and FAI levels (β = −0.05, 95% CI: −0.09 to −0.004), as well as a significant positive association between BPA and SHBG (β = 0.07, 95% CI, 0.007 to 0.13). | Age, age squared, BMI, study center, stressful life events and ejaculation abstinence time. |
Ferguson et al. (2014) [21] | Cohort study | Mexico | NA c | 8.10–14.4 d | 118 | Boys whose mother participated in the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) project | A significant positive association between BPA and SHBG levels (percent change = 4.47; 95% CI: −4.62 to 14.4, p = 0.35) and negative association with total (percent change = −17.9; 95% CI: −36.4 to 6.10, p = 0.13) and free T levels (percent change = −21.0; 95% CI: −39.7 to 3.31, p = 0.09). | Adjusted for urinary specific gravity, child age and child BMI. |
Xiong et al. (2015) [22] | Case–control study | China | Controls: 3.8 ± 1.9 Dilated cardiomyopathy patients: 6.9 ± 2.7 ng/mL e | Controls: 59.0 ± 12.7 Dilated cardiomyopathy patients: 59.6 ± 13.2 e | 176 | Patients diagnosed with dilated cardiomyopathy and age- and gender-matched healthy volunteers | A significant association between serum BPA levels with increased SHBG levels (β = 0.041; 95% CI: 0.024 to 0.058, p < 0001). | NA c |
Zhou et al. (2013) [23] | Cross-sectional study | China | Exposed: 3.198 Unexposed: 0.276 mg/L a | NA c | 290 | Male workers exposed to BPA at the workplace | A significant positive association between serum BPA concentration and SHBG level (β = 0.065; 95% CI: 0.009 to 0.120, p = 0.023) and inverse associations with androstenedione (β = −0.070; 95% CI: −0.110 to −0.130, p = 0.001), free T (β = −0.049; 95% CI: −0.084 to −0.013, p = 0.007) and the free androgen index (β = −0.073; 95% CI: −0.130 to −0.016, p = 0.012). | Adjusted for age, education, marital status, smoking and alcohol drinking status, history of chronic diseases and medication history. |
Galloway et al. (2010) [24] | Cross-sectional study | Italy | 3.59 (1.3–11.5) b ng/mL | 20–74 d | 715 | Italian adults | A significant positive association between BPA excretion and T concentrations in men (β = 0.046; 95% CI: 0.015 to 0.076, p = 0.004). | Adjusted for age and study site, and in models additionally adjusted for smoking, measures of obesity and urinary creatinine concentrations. |
Lassen et al. (2014) [25] | NA | Denmark | 3.25 (0.59–14.89) a ng/mL | NA c | 308 | Young men from the general population | A significant positive association between BPA and T (β = 0.7, 95% CI: 0.2 to 1.1, p = 0.002), LH (β = 3.5%, 95% CI: −0.02 to 7.1%, p = 0.052) and E2 (β = 2.7%, 95% CI: 0.4 to 5.1%, p = 0.02). | BMI, smoking and time of day of blood sampling. |
Mustieles et al. (2017) [26] | Cohort study | Spain | 5.1±1.09 e μg/L | 9.8 (9.7, 10.0) f | 172 | Boys at 9–11 years of age. | A significant association between BPA and higher T levels (β = 1.19, 95% CI = 1.03 to 1.44, p = 0.02). | BMT, maternal education, total cholesterol, urinary creatinine and Tanner stage. |
Liu et al. (2015) [8] | Cross-sectional study | China | Exposed 685.9 (43.7–3671.8) e Unexposed 4.2 (0–15.9) μg/g Cr | NA d | 592 | Male workers from one BPA manufacturer and three epoxy resin manufacturers | A significant association between increasing urine BPA level and increased levels of SHBG (β = 0.0293, p = 0.001), E2 (β = 0.0362, p < 0.001), and a reduced level of FSH (β = 0.0240, p = 0.029) and FAI (β = −0.0234, p = 0.021). | Age and smoking status. |
Reference | Study Design | Country | BPA Concentration | Age | No. Participants | Population Type | Main Outcome(s) | Adjustments |
---|---|---|---|---|---|---|---|---|
Goldstone et al. (2015) [27] | Cohort study | USA | 0.55 (0.48–0.62) a ng/mL | 31.8 ± 4.9 b | 501 | Male partners in couples who discontinued contraception | A negative association between BPA and DNA fragmentation (β = −0.0544, p = 0.035). | Age, abstinence time, alcohol consumption BMI, creatinine, education, income, previously fathered pregnancy, serum cotinine, study site and race/ethnicity. |
Adoamnei et al. (2018) [20] | Cross-sectional study | Spain | 2.3 (0.16, 11.5) c ng/mL | 20.4 (18.1–22.8) c | 215 | Healthy young university students | A negative association between BPA and sperm concentration (β = −0.04, 95% CI: −0.07 to −0.02, p < 0.01). | BMI, smoking status, presence of varicocele, urinary creatinine concentration, ejaculation abstinence time and time to start of semen analysis. |
Knez et al. (2014) [28] | Cohort study | Slovenia | 1.55 (0.3, 6.68) d ng/mL | 34.05 ± 4.76 b | 149 | Couples undergoing their first or second IVF or intracytoplasmic sperm injection (ICSI) procedure | A negative association between natural logarithm transformed sperm count (β = −0.241, 95% CI: −0.470 to −0.012, p = 0.039), perm concentration (β = 0.219, 95% CI: −0.436 to −0.003, p = 0.047) and sperm vitality (β = −2.660, 95% CI: −4.991 to −0.329, p = 0.026). | Male age, BMI, current smoking status, alcohol consumption and abstinence period. |
Mendiola et al. (2010) [11] | Cross-sectional study | USA | 1.5 (<LOD–6.5) d ng/mL | NA e | 375 | Male partners of pregnant women | No significant associations between urinary BPA concentrations and any of the semen parameters examined. | Age, age squared, BMI, study center, stressful life events and ejaculation abstinence time. |
Ji et al. (2018) [29] | Cross-sectional study | China | 0.44 ± 5.33 b μg/g Cr | NA | 500 | Male couples in less developed areas | A positive association between BPA and linearity (LIN, β = 2.19, 95% CI: 0.37 to 4.0, p = 0.0184), straightness (STR, β = 1.47, 95% CI: 0.19 to 2.75, p = 0.025), wobble (WOB, β = 1.75, 95% CI: 0.26 to 3.25, p = 0.0217), negative correlation with amplitude of lateral head displacement (ALH, β = −0.26, 95% CI: −0.5 to −0.02, p = 0.0334) and mean angular displacement (MAD, β = −2.17, 95% CI: −4.22 to −0.11, p = 0.0391). | Age, education, race, smoking, alcohol intake, BMI, abstinence period, history of pesticide usage and occupational exposure to high temperature. |
Caporossi et al. (2019) [30] | Cross-sectional study | Italy | 0.24 ± 0.43 b μg/g Cr | 40.5 (29–67) f | 105 | Male partners in a fertility clinic | A positive association between BPA and semen volume (β = 0.296, 95% CI: 0.044 to 0.452, p = 0.018). | Age, smoke, BMI, alcohol use and genital pathologies |
Radwan et al. (2018) [31] | NA | Poland | 3.01 ± 5.39 b μg/L | 32.14 ± 4.23 b | 315 | Men under 45 years of age with normal sperm concentration recruited from a male reproductive health clinic | A negative association between BPA and motility (β = −2.44, 95% CI: −0.26 to 7.48, p = 0.03). | Abstinence time, age, smoking, alcohol consumption and past diseases |
Lassen et al. (2014) [25] | NA | Denmark | 3.25 (0.59–14.89) c ng/mL | NA | 308 | Young men from the general population | A negative association between BPA and progressive motile spermatozoa (β = −1.82, 95% CI: −3.10 to −0.53). | BMI, smoking and time of day of blood sampling |
Reference | Study Design | Country | BPA Concentration | Mean Age ± SD | No. Participants | Population Type | Main Outcome(s) | Adjustments |
---|---|---|---|---|---|---|---|---|
Meeker et al. (2010) [32] | Cross-sectional study | USA | 1.3 (0.8–2.5) a ng/mL | 36.4 ± 4.1 b | 190 | Male partners of an infertility clinic | A positive association between BPA and ORs for below-reference sperm concentration (OR = 1.47, 95% CI: 0.85 to 2.54), motility (OR = 1.23, 95% CI: 0.83 to 1.80) and morphology (OR = 1.25, 95% CI: 0.77 to 2.06). | Specific gravity, age, BMI, abstinence period, current smoking and time of urine sample. |
Chen et al. (2022) [33] | Cross-sectional study | China | 2.24 (0.90, 5.30) a | 32.0 ± 5.4 b | 984 | Chinese men from an infertility clinic | A positive association between BPA and ORs of having below-reference sperm concentration (OR = 2.16, 95% CI: 1.13 to 4.13, p = 0.04), total sperm count (OR = 2.09, 95% CI: 1.20 to 3.64, p = 0.01), progressive motility (OR = 2.09, 95% CI: 1.38 to 3.16, p < 0.01) and total motility (OR = 2.09, 95% CI: 1.41 to 3.11, p < 0.01). | Age, BMI, abstinence duration, alcohol use, smoking status, education level and ever having fathered a pregnancy. |
Pollard et al. (2019) [34] | Cohort study | USA | 2.50 (1.81–3.27) ng/mL c | 28.5 ± 3.9 b | 161 | Men ages 18–40 without known subfertility | A positive association between BPA and prevalence ratio (PR) of abnormal sperm morphology (normal heads < 30%) (PR = 1.14, 95%CI: 1.02 to 1.28, p = 0.0224) and abnormal sperm morphology (<65% containing normal tails) (PR = 1.13, 95% CI: 0.99 to 1.28, p = 0.0081). | Age, race, income, smoking status and BMI |
Benson et al. (2021) [35] | Cross-sectional study | Denmark | 1.30 (0.22–9.90) d | 18–20 e | 556 | Men from the Fetal Programming of Semen Quality cohort | No associations were observed between urinary BPA concentrations and ejaculate volume, sperm concentration, total sperm count or sperm morphology. | Urine creatinine concentration, alcohol intake, smoking status, BMI, fever, sexual abstinence time, maternal pre-pregnancy BMI and first-trimester smoking, and highest parental education during first trimester. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lü, L.; Liu, Y.; Yang, Y.; He, J.; Luo, L.; Chen, S.; Xing, H. Bisphenol A Exposure Interferes with Reproductive Hormones and Decreases Sperm Counts: A Systematic Review and Meta-Analysis of Epidemiological Studies. Toxics 2024, 12, 294. https://doi.org/10.3390/toxics12040294
Lü L, Liu Y, Yang Y, He J, Luo L, Chen S, Xing H. Bisphenol A Exposure Interferes with Reproductive Hormones and Decreases Sperm Counts: A Systematic Review and Meta-Analysis of Epidemiological Studies. Toxics. 2024; 12(4):294. https://doi.org/10.3390/toxics12040294
Chicago/Turabian StyleLü, Lei, Yuan Liu, Yuhong Yang, Jinxing He, Lulu Luo, Shanbin Chen, and Hanzhu Xing. 2024. "Bisphenol A Exposure Interferes with Reproductive Hormones and Decreases Sperm Counts: A Systematic Review and Meta-Analysis of Epidemiological Studies" Toxics 12, no. 4: 294. https://doi.org/10.3390/toxics12040294
APA StyleLü, L., Liu, Y., Yang, Y., He, J., Luo, L., Chen, S., & Xing, H. (2024). Bisphenol A Exposure Interferes with Reproductive Hormones and Decreases Sperm Counts: A Systematic Review and Meta-Analysis of Epidemiological Studies. Toxics, 12(4), 294. https://doi.org/10.3390/toxics12040294