High-Coverage UHPLC-MS/MS Analysis of 67 Mycotoxins in Plasma for Male Infertility Exposure Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Sampling
2.3. Sample Preparation
2.4. UHPLC-MS/MS Analysis
2.5. Method Validation
2.5.1. Selectivity and Limit of Quantitation (LOQ)
2.5.2. Carry-Over Effect and Linearity
2.5.3. Trueness and Precision
2.5.4. Recovery and Matrix Effect
2.5.5. Stability
2.6. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Mobile Phase
3.2. Optimization of Ion Source Parameters
3.3. Optimization of the Pre-Treatment Methods
3.4. Methodology Validation
3.4.1. LOQ and Selectivity
3.4.2. Carry-Over Effect and Linearity
3.4.3. Trueness and Precision
3.4.4. Recovery and Matrix Effect
3.4.5. Stability
3.5. Detection of Mycotoxin Levels in Plasma Samples
3.6. Analysis of Major Co-Exposure Mycotoxins
3.7. Analysis of Potential Correlation between Mycotoxin Exposure and Infertility
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ekwomadu, T.I.; Dada, T.A.; Nleya, N.; Gopane, R.; Sulyok, M.; Mwanza, M. Variation of Fusarium free, masked, and emerging mycotoxin metabolites in maize from agriculture regions of South Africa. Toxins 2020, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Jajić, I.; Dudaš, T.; Krstović, S.; Krska, R.; Sulyok, M.; Bagi, F.; Savić, Z.; Guljaš, D.; Stankov, A. Emerging fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin in Serbian maize. Toxins 2019, 11, 357. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J. 2011, 9, 2407. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J. 2012, 10, 2605. [Google Scholar]
- EFSA. Scientific opinion on risks for animal and public health related to the presence of nivalenol in food and feed. EFSA J. 2013, 11, 3262. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J. 2014, 12, 3802. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B.; et al. Risks to human and animal health related to the presence of moniliformin in food and feed. EFSA J. 2018, 16, e05082. [Google Scholar] [PubMed]
- Braun, D.; Eva, S.; Doris, M.; Benedikt, W. Longitudinal assessment of mycotoxin co-exposures in exclusively breastfed infants. Environ. Inter. 2020, 142, 105845. [Google Scholar] [CrossRef] [PubMed]
- Kokeb, T.; Alemayehu, A.; Giles, T.H.-C.; Seifu, H.G.; Patrick, K.; Tefera, B.; Van de Mario, V.; De Sarah, S.; De Marthe, B.; Carl, L. Multiple mycotoxin exposure during pregnancy and risks of adverse birth outcomes: A prospective cohort study in rural Ethiopia. Environ. Inter. 2022, 160, 107052. [Google Scholar]
- Khoury, D.E.; Fayjaloun, S.; Nassar, M.; Sahakian, J.; Aad, P.Y. Updates on the effect of mycotoxins on male reproductive efficiency in mammals. Toxins 2019, 11, 515. [Google Scholar] [CrossRef]
- Chiminelli, I.; Spicer, L.J.; Maylem, E.R.S.; Caloni, F. Emerging mycotoxins and reproductive effects in animals: A short review. J. Appl. Toxicol. 2022, 42, 1901–1909. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Hamada, A.; Kondray, V.; Pitchika, A.; Agarwal, A. What every gynecologist should know about male infertility: An update. Arch. Gynecol. Obstet. 2012, 286, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Sharlip, I.D.; Jarow, J.P.; Belker, A.M.; Lipshultz, L.I.; Sigman, M.; Thomas, A.J.; Schlegel, P.N.; Howards, S.S.; Nehra, A.; Damewood, M.D.; et al. Best practice policies for male infertility. Fertil. Steril. 2002, 77, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Li, W.N.; Jia, M.M.; Peng, Y.Q.; Ding, R.; Fan, L.Q.; Liu, G. Semen quality pattern and age threshold: A retrospective cross-sectional study of 71,623 infertile men in China, between 2011 and 2017. Reprod. Biol. Endocrinol. 2019, 17, 107. [Google Scholar] [CrossRef] [PubMed]
- Rolland, M.; Le Moal, J.; Wagner, V.; Royère, D.; De Mouzon, J. Decline in semen concentration and morphology in a sample of 26,609 men close to general population between 1989 and 2005 in France. Hum. Reprod. 2012, 28, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Rosa-Villagrán, L.; Barrera, N.; Montes, J.; Riso, C.; Sapiro, R. Decline of semen quality over the last 30 years in Uruguay. Basic Clin. Androl. 2021, 31, 8. [Google Scholar] [CrossRef] [PubMed]
- Eze, U.A.; Okonofua, F.E. High prevalence of male infertility in Africa: Are mycotoxins to blame? Afr. J. Reprod. Health 2015, 19, 9–17. [Google Scholar] [PubMed]
- Wipfler, R.; McCormick, S.P.; Proctor, R.H.; Teresi, J.M.; Hao, G.; Ward, T.J.; Alexander, N.; Vaughan, M.M. Synergistic phytotoxic effects of culmorin and trichothecene mycotoxins. Toxins 2019, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Vejdovszky, K.; Hahn, K.; Braun, D.; Warth, B.; Marko, D. Synergistic estrogenic effects of Fusarium and Alternaria mycotoxins in vitro. Arch. Toxicol. 2016, 91, 1447–1460. [Google Scholar] [CrossRef]
- Malachová, A.; Stránská, M.; Václavíková, M.; Elliott, C.T.; Black, C.; Meneely, J.; Hajšlová, J.; Ezekiel, C.N.; Schuhmacher, R.; Krska, R. Advanced LC-MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Anal. Bioanal. Chem. 2018, 410, 801–825. [Google Scholar] [CrossRef]
- Rausch, A.K.; Brockmeyer, R.; Schwerdtle, T. Development and validation of a liquid chromatography tandem mass spectrometry multi-method for the determination of 41 free and modified mycotoxins in beer. Food Chem. 2021, 338, 127801. [Google Scholar] [CrossRef] [PubMed]
- Coppa, C.F.S.C.; Cirelli, A.C.; Gonçalves, B.L.; Barnabé, E.M.B.; Khaneghah, A.M.; Corassin, C.H.; Oliveira, C.A.F. Dietary exposure assessment and risk characterization of mycotoxins in lactating women: Case study of São Paulo state, Brazil. Food Res. Int. 2020, 134, 109272. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Tan, T.; Zhu, W.; Gong, L.; Yan, Y.; Li, Q.; Xiao, D.; Li, Y.; Yang, X.; Hao, L.; et al. Exposure assessment of urinary deoxynivalenol in pregnant women in Wuhan, China. Food Chem. Toxicol. 2022, 167, 113289. [Google Scholar] [CrossRef] [PubMed]
- Heyndrickx, E.; Sioen, I.; Huybrechts, B.; Callebaut, A.; De Henauw, S.; De Saeger, S. Human biomonitoring of multiple mycotoxins in the Belgian population: Results of the BIOMYCO study. Environ. Int. 2015, 84, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Warth, B.; Fruhmann, P.; Wiesenberger, G.; Kluger, B.; Sarkanj, B.; Lemmens, M.; Hametner, C.; Fröhlich, J.; Adam, G.; Krska, R.; et al. Deoxynivalenol-sulfates: Identification and quantification of novel conjugated (masked) mycotoxins in wheat. Anal. Bioanal. Chem. 2014, 407, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- FDA. Guidance for Industry: Bioanalytical Method Validation. 2013. Available online: http://www.fda.gov/ucm/groups/fdagov-public/@fdagov-drugs-gen/documents/document/ucm368107.pdf (accessed on 1 June 2023).
- EMEA. Committee for Medicinal Products for Human Use, Guideline on Bioanalytical Method Validation. EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2**. 21 July 2011. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf (accessed on 3 June 2023).
- CLSI. Mass Spectrometry in the Clinical Laboratory: General Principles and Guidance; Approved Guideline. 2007. Available online: http://shop.clsi.org/c.1253739/site/Sample_pdf/C50A_sample.pdf (accessed on 24 July 2023).
- Mei, S.; Shi, X.; Du, Y.; Cui, Y.; Zeng, C.; Ren, X.; Yu, K.; Zhao, Z.; Lin, S. Simultaneous determination of plasma methotrexate and 7- hydroxy methotrexate by UHPLC–MS/MS in patients receiving high-dose methotrexate therapy. J. Pharm. Biomed. Anal. 2018, 158, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Ediagea, E.N.; Mavungua, J.D.D.; Songa, S.; Wub, A.; Peteghema, C.V.; Saeger, S.D. A direct assessment of mycotoxin biomarkers in human urine samples by liquid chromatography tandem mass spectrometry. Anal. Chim. Acta 2012, 741, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Slobodchikova, I.; Vuckovic, D. Liquid chromatography—High resolution mass spectrometry method for monitoring of 17 mycotoxins in human plasma for exposure studies. J. Chromatogr. A 2018, 1548, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, D.; Mei, S.; Zhao, Z. Simultaneous determination of plasma lamotrigine, lamotrigine N2-glucuronide and lamotrigine N2-oxide by UHPLC-MS/MS in epileptic patients. J. Pharm. Biomed. Anal. 2022, 220, 115017. [Google Scholar] [CrossRef]
- Qiu, N.; Sun, D.; Zhou, S.; Li, J.; Zhao, Y.; Wu, Y. Rapid and sensitive UHPLC-MS/MS methods for dietary sample analysis of 43 mycotoxins in China total diet study. J. Adv. Res. 2021, 39, 15–47. [Google Scholar] [CrossRef]
- Yogendrarajah, P.; Van Poucke, C.; De Meulenaer, B.; De Saeger, S. Development and validation of a QuEChERS based liquid chromatography tandem mass spectrometry method for the determination of multiple mycotoxins in spices. J. Chromatogr. A 2013, 1297, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tölgyesi, Á.; Stroka, J.; Tamosiunas, V.; Zwickel, T. Simultaneous analysis of Alternaria toxins and citrinin in tomato: An optimised method using liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A 2015, 32, 1512–1522. [Google Scholar] [CrossRef] [PubMed]
- Arce-López, B.; Lizarraga, E.; Flores-Flores, M.; Irigoyen, Á.; González-Peñas, E. Development and validation of a methodology based on Captiva EMR-lipid clean-up and LC-MS/MS analysis for the simultaneous determination of mycotoxins in human plasma. Talanta 2020, 206, 120193. [Google Scholar] [CrossRef] [PubMed]
- Arce-López, B.; Lizarraga, E.; Lopez de Mesa, R.; González-Peñas, E. Assessment of exposure to mycotoxins in Spanish children through the analysis of their levels in plasma samples. Toxins 2021, 13, 150. [Google Scholar] [CrossRef]
- Sirot, V.; Fremy, J.-M.; Leblanc, J.-C. Dietary exposure to mycotoxins and health risk assessment in the second French total diet study. Food Chem. Toxicol. 2012, 52, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Marín, S.; Cano-Sancho, G.; Sanchis, V.; Ramos, A.J. The role of mycotoxins in the human exposome: Application of mycotoxin biomarkers in exposome-health studies. Food Chem. Toxicol. 2018, 121, 504–518. [Google Scholar] [CrossRef]
- Pleadin, J.; Zadravec, M.; Lešić, T.; Vahčić, N.; Frece, J.; Mitak, M.; Markov, K. Co-occurrence of ochratoxin A and citrinin in unprocessed cereals established during a three-year investigation period. Food Addit. Contam. Part B Surveill. 2018, 11, 20–25. [Google Scholar] [CrossRef]
- Taniwaki, M.H.; Pitt, J.I.; Copetti, M.V.; Teixeira, A.A.; Iamanaka, B.T. nderstanding mycotoxin contamination across the food chain in Brazil: Challenges and opportunities. Toxins 2019, 11, 411. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Ryu, D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef]
- Elfadil, D.; Silveri, F.; Palmieri, S.; Della Pelle, F.; Sergi, M.; Del Carlo, M.; Amine, A.; Compagnone, D. Liquid-phase exfoliated 2D graphene nanoflakes electrochemical sensor coupled to molecularly imprinted polymers for the determination of citrinin in food. Talanta 2023, 253, 124010. [Google Scholar] [CrossRef]
- Csenki, Z.; Garai, E.; Faisal, Z.; Csepregi, R.; Garai, K.; Sipos, D.K.; Szabó, I.; Kőszegi, T.; Czéh, Á.; Czömpöly, T.; et al. The individual and combined effects of ochratoxin A with citrinin and their metabolites (ochratoxin B, ochratoxin C, and dihydrocitrinone) on 2D/3D cell cultures, and zebrafish embryo models. Food Chem. Toxicol. 2021, 158, 112674. [Google Scholar] [CrossRef] [PubMed]
- Peraica, M.; Domijan, A.-M.; Šarić, M. Mycotoxic and aristolochic acid theories of the development of endemic nephropathy. Arch. Ind. Hyg. Toxicol. 2008, 59, 59–65. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Ruprich, J. Producers and important dietary sources of ochratoxin A and citrinin. Toxins 2013, 5, 1574–1586. [Google Scholar] [CrossRef]
- Supriya, C.; Girish, B.P.; Reddy, P.S. Aflatoxin b1-induced reproductive toxicity in male rats: Possible mechanism of action. Int. J. Toxicol. 2014, 33, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Bonyadi, F.; Hasanzadeh, S.; Malekinejad, H. Cyclopiazonic acid induced p53-dependent apoptosis in the testis of mice: Another male related risk factor of infertility. Environ. Toxicol. 2021, 36, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Bonyadi, F.; Hasanzadeh, S.; Malekinejad, H.; Najafi, G. Cyclopiazonic acid decreases sperm quality and in vitro fertilisation rate in mice. World Mycotoxin J. 2018, 11, 599–610. [Google Scholar] [CrossRef]
- Da Silva, E.O.; Bracarense, A.P.F.L.; Oswald, I.P. Mycotoxins and oxidative stress: Where are we? World Mycotoxin J. 2018, 11, 113–134. [Google Scholar] [CrossRef]
- Fan, K.; Xu, J.; Jiang, K.; Liu, X.; Meng, J.; Di Mavungu, J.D.; Guo, W.; Zhang, Z.; Jing, J.; Li, H.; et al. Determination of multiple mycotoxins in paired plasma and urine samples to assess human exposure in Nanjing, China. Environ. Pollut. 2019, 248, 865–873. [Google Scholar] [CrossRef]
- Osteresch, B.; Viegas, S.; Cramer, B.; Humpf, H.-U. Multi-mycotoxin analysis using dried blood spots and dried serum spots. Anal. Bioanal. Chem. 2017, 409, 3369–3382. [Google Scholar] [CrossRef]
- Gerding, J.; Cramer, B.; Humpf, H. Determination of mycotoxin exposure in Germany using an LC-MS/MS multibiomarker approach. Mol. Nutr. Food Res. 2014, 58, 2358–2368. [Google Scholar] [CrossRef]
- Warth, B.; Sulyok, M.; Krska, R. LC-MS/MS-based multibiomarker approaches for the assessment of human exposure to mycotoxins. Anal. Bioanal. Chem. 2013, 405, 5687–5695. [Google Scholar] [CrossRef]
- Ali, N.; Hossain, K.; Degen, G.H. Blood plasma biomarkers of citrinin and ochratoxin A exposure in young adults in Bangladesh. Mycotoxin Res. 2017, 34, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Ouhibi, S.; Vidal, A.; Martins, C.; Gali, R.; Hedhili, A.; De Saeger, S.; De Boevre, M. LC-MS/MS methodology for simultaneous determination of patulin and citrinin in urine and plasma applied to a pilot study in colorectal cancer patients. Food Chem. Toxicol. 2020, 136, 110994. [Google Scholar] [CrossRef] [PubMed]
- Jagdale, P.R.; Dev, I.; Ayanur, A.; Singh, D.; Arshad; Ansari, K.M. Safety evaluation of ochratoxin A and citrinin after 28 days repeated dose oral exposure to Wistar rats. Regul. Toxicol. Pharmacol. 2020, 115, 104700. [Google Scholar] [CrossRef]
- Rašić, D.; Mladinić, M.; Želježić, D.; Pizent, A.; Stefanović, S.; Milićević, D.; Konjevoda, P.; Peraica, M. Effects of combined treatment with ochratoxin A and citrinin on oxidative damage in kidneys and liver of rats. Toxicon 2018, 146, 99–105. [Google Scholar] [CrossRef]
- Ghallab, A.; Hassan, R.; Myllys, M.; Albrecht, W.; Friebel, A.; Hoehme, S.; Hofmann, U.; Seddek, A.-L.; Braeuning, A.; Kuepfer, L.; et al. Subcellular spatio-temporal intravital kinetics of aflatoxin B1 and ochratoxin A in liver and kidney. Arch. Toxicol. 2021, 95, 2163–2177. [Google Scholar] [CrossRef]
- Echodu, R.; Malinga, G.M.M.; Kaducu, J.M.; Ovuga, E.; Haesaert, G. Prevalence of aflatoxin, ochratoxin and deoxynivalenol in cereal grains in Northern Uganda: Implication for food safety and health. Toxicol. Rep. 2019, 6, 1012–1017. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.K. Impact of environmental factors on human semen quality and male fertility: A narrative review. Environ. Sci. Eur. 2022, 34, 6. [Google Scholar] [CrossRef]
- De Santis, B.; Brera, C.; Mezzelani, A.; Soricelli, S.; Ciceri, F.; Moretti, G.; Debegnach, F.; Bonaglia, M.C.; Villa, L.; Molteni, M.; et al. Role of mycotoxins in the pathobiology of autism: A first evidence. Nutr. Neurosci. 2019, 22, 132–144. [Google Scholar] [CrossRef]
- Malir, F.; Louda, M.; Ostry, V.; Toman, J.; Ali, N.; Grosse, Y.; Malirova, E.; Pacovsky, J.; Pickova, D.; Brodak, M.; et al. Analyses of biomarkers of exposure to nephrotoxic mycotoxins in a cohort of patients with renal tumours. Mycotoxin Res. 2019, 35, 391–403. [Google Scholar] [CrossRef]
- Mauro, T.; Hao, L.; Pop, L.C.; Buckley, B.; Schneider, S.H.; Bandera, E.V.; Shapses, S.A. Circulating zearalenone and its metabolites differ in women due to body mass index and food intake. Food Chem. Toxicol. 2018, 116, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Li, X.; Li, J.; Niu, Y.; Shi, L.; Fang, Z.; Zhang, T.; Ding, H. Quantitative determination of carcinogenic mycotoxins in human and animal biological matrices and animal-derived foods using multi-mycotoxin and analyte-specific high performance liquid chromatography-tandem mass spectrometric methods. J. Chromatogr. B 2018, 1073, 191–200. [Google Scholar] [CrossRef] [PubMed]
- De Santis, B.; Raggi, M.E.; Moretti, G.; Facchiano, F.; Mezzelani, A.; Villa, L.; Bonfanti, A.; Campioni, A.; Rossi, S.; Camposeo, S.; et al. Study on the Association among Mycotoxins and other Variables in Children with Autism. Toxins 2017, 9, 203. [Google Scholar] [CrossRef]
- Osteresch, B.; Cramer, B.; Humpf, H.U. Analysis of ochratoxin A in dried blood spots—Correlation between venous and finger-prick blood, the influence of hematocrit and spotted volume. J. Chromatogr. B 2016, 1020, 158–164. [Google Scholar] [CrossRef]
Groups | Analytes | Abbreviation | Analytes | Abbreviation |
---|---|---|---|---|
A group | aflatoxin B1 | AFB1 | dihydrolysergol | DH-LYS |
aflatoxin B2 | AFB2 | elymoclavine | Ecl | |
aflatoxin G1 | AFG1 | Ergine | Ergine | |
aflatoxin G2 | AFG2 | ergocornine | Eco | |
aflatoxin M1 | AFM1 | ergocorninine | Econ | |
aflatoxin M2 | AFM2 | ergocristine | Ecr | |
ochratoxin A | OTA | ergocristinine | Ecrn | |
ochratoxin B | OTB | dihydroergocristine | DH-Ecr | |
fumonisin B1 | FB1 | ergokryptine | Ek | |
fumonisin B2 | FB2 | ergokryptinine | Ekn | |
fumonisin B3 | FB3 | ergometrine | Em | |
T-2 toxin | T2 | ergometrinine | Emn | |
HT-2 toxin | HT2 | ergosinine | Esn | |
T-2 triol toxin | T2(OH)3 | ergotamine | Et | |
beauvericin | BEA | ergotaminine | Etn | |
enniatin A | EnA | gliotoxin | GLIO | |
enniatin A1 | EnA1 | mycophenolic acid | MPA | |
enniatin B | EnB | penicillic acid | PCA | |
enniatin B1 | EnB1 | roquefortine C | RC | |
neosolaniol | NEO | sterigmatocystin | STG | |
15-acetoxyscirpenol | 15AS | cyclopiazonic acid | CPA | |
4,15-diacetoxyscirpenol | DAS | citrinin | CIT | |
agroclavine | Acl | |||
B group | zearalanone | ZAN | altenuene | ALT |
zearalenone | ZEN | tenuazonic acid | TeA | |
alpha-zearalenol | α-ZEL | altertoxin I | AXT I | |
beta-zearalenol | β-ZEL | tentoxin | TEN | |
alpha-zearalanol | α-ZAL | moniliformin | MON | |
beta-zearalanol | β-ZAL | patulin | PAT | |
alternariol | AOH | ochratoxin- alpha | OTα | |
alternariol monomethyl ether | AME | |||
C group | deoxynivalenol | DON | nivalenol | NIV |
deoxynivalenol 3-glucuronide | D3G | 3-acetyldeoxynivalenol | 3AcDON | |
deepoxy-deoxynivalenol | DOM | 15-acetyldeoxynivalenol | 15AcDON | |
fusarenon-X | FusX | |||
IS | 13C-aflatoxin B1 | 13C-AFB1 | 13C-sterigmatocystin | 13C-STG |
13C-aflatoxin B2 | 13C-AFB2 | 13C-citrinin | 13C-CIT | |
13C-aflatoxin G1 | 13C-AFG1 | 13C-zearalanone | 13C-ZEN | |
13C-aflatoxin G2 | 13C-AFG2 | 13C-patulin | 13C-PAT | |
13C-aflatoxin M1 | 13C-AFM1 | 13C-alternariol | 13C-AOH | |
13C-ochratoxin A | 13C-OTA | 13C-alternariol monomethyl ether | 13C-AME | |
13C-T-2 toxin | 13C-T2 | 13C-tenuazonic acid | 13C-TeA | |
13C-HT-2 toxin | 13C-HT2 | tentoxin-d3 | TEN-d3 | |
13C-fumonisin B1 | 13C-FB1 | 13C-deoxynivalenol | 13C-DON | |
13C-fumonisin B2 | 13C-FB2 | 13C-deoxynivalenol | 13C-D3G | |
13C-fumonisin B3 | 13C-FB3 | 13C-nivalenol | 13C-NIV | |
13C-4,15-diacetoxyscirpenol | 13C-DAS | 13C-3-acetyldeoxynivalenol | 13C-3AcDON | |
13C-mycophenolic acid | 13C-MPA | 13C-15-acetyldeoxynivalenol | 13C-15AcDON | |
13C-roquefortine C | 13C-RC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, X.; Wang, L.; Wang, J.-S.; Ji, J.; Jin, S.; Sun, J.; Ye, Y.; Mei, S.; Zhang, Y.; Cao, J.; et al. High-Coverage UHPLC-MS/MS Analysis of 67 Mycotoxins in Plasma for Male Infertility Exposure Studies. Toxics 2024, 12, 395. https://doi.org/10.3390/toxics12060395
Ning X, Wang L, Wang J-S, Ji J, Jin S, Sun J, Ye Y, Mei S, Zhang Y, Cao J, et al. High-Coverage UHPLC-MS/MS Analysis of 67 Mycotoxins in Plasma for Male Infertility Exposure Studies. Toxics. 2024; 12(6):395. https://doi.org/10.3390/toxics12060395
Chicago/Turabian StyleNing, Xiao, Lulu Wang, Jia-Sheng Wang, Jian Ji, Shaoming Jin, Jiadi Sun, Yongli Ye, Shenghui Mei, Yinzhi Zhang, Jin Cao, and et al. 2024. "High-Coverage UHPLC-MS/MS Analysis of 67 Mycotoxins in Plasma for Male Infertility Exposure Studies" Toxics 12, no. 6: 395. https://doi.org/10.3390/toxics12060395
APA StyleNing, X., Wang, L., Wang, J. -S., Ji, J., Jin, S., Sun, J., Ye, Y., Mei, S., Zhang, Y., Cao, J., & Sun, X. (2024). High-Coverage UHPLC-MS/MS Analysis of 67 Mycotoxins in Plasma for Male Infertility Exposure Studies. Toxics, 12(6), 395. https://doi.org/10.3390/toxics12060395