Non-Steroidal Anti-Inflammatory Drugs in the Aquatic Environment and Bivalves: The State of the Art
Abstract
:1. Introduction
2. Methodology
3. Bivalves
3.1. Bivalves as Foodstuff
3.2. Bivalves as Bioindicators of Environmental Contamination
4. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
4.1. Physical–Chemical Characteristics
4.2. Mechanisms of Action
5. Environmental Occurrence of NSAIDs
5.1. Aquatic Environment
5.2. Aquatic Biota
6. Effects of NSAIDs on Bivalves
7. Legal Framework
8. Analytical Methodologies for the Determination of NSAIDs in Bivalves
8.1. Sample Preparation and Extraction
8.1.1. Pressurized Liquid Extraction
8.1.2. QuEChERS
8.1.3. Other Extraction Techniques
8.2. Extract Purification
8.2.1. Solid-Phase Extraction
8.2.2. Dispersive Solid-Phase Extraction
8.3. Instrumental Analysis
8.4. Analytical Performance
9. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mezzelani, M.; Gorbi, S.; Regoli, F. Pharmaceuticals in the Aquatic Environments: Evidence of Emerged Threat and Future Challenges for Marine Organisms. Mar. Environ. Res. 2018, 140, 41–60. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef]
- Cueva-Mestanza, R.; Torres-Padrón, M.E.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Microwave-Assisted Micellar Extraction Coupled with Solid- Phase Extraction for Preconcentration of Pharmaceuticals in Molluscs Prior to Determination by HPLC. Biomed. Chromatogr. 2008, 1122, 1115–1122. [Google Scholar] [CrossRef]
- Pereira, A.; Silva, L.; Laranjeiro, C.; Lino, C.; Pena, A. Selected Pharmaceuticals in Different Aquatic Compartments: Part I—Source, Fate and Occurrence. Molecules 2020, 25, 1026. [Google Scholar] [CrossRef]
- Pereira, A.M.P.T.; Silva, L.J.G.; Lino, C.M.; Meisel, L.M.; Pena, A. Assessing Environmental Risk of Pharmaceuticals in Portugal: An Approach for the Selection of the Portuguese Monitoring Stations in Line with Directive 2013/39/EU. Chemosphere 2016, 144, 2507–2515. [Google Scholar] [CrossRef]
- Santos, L.H.M.L.M.; Araújo, A.N.; Fachini, A.; Pena, A.; Delerue-Matos, C.; Montenegro, M.C.B.S.M.; Araújo, N.; Fachini, A.; Pena, A.; Delerue-Matos, C.; et al. Ecotoxicological Aspects Related to the Presence of Pharmaceuticals in the Aquatic Environment. J. Hazard. Mater. 2010, 175, 45–95. [Google Scholar] [CrossRef]
- Conaghan, P.G. A Turbulent Decade for NSAIDs: Update on Current Concepts of Classification, Epidemiology, Comparative Efficacy, and Toxicity. Rheumatol. Int. 2012, 32, 1491–1502. [Google Scholar] [CrossRef]
- Moreno-González, R.; Rodriguez-Mozaz, S.; Gros, M.; Barceló, D.; León, V.M. Seasonal Distribution of Pharmaceuticals in Marine Water and Sediment from a Mediterranean Coastal Lagoon (SE Spain). Environ. Res. 2015, 138, 326–344. [Google Scholar] [CrossRef]
- Silva, L.J.G.; Pereira, A.M.P.T.; Rodrigues, H.; Meisel, L.M.; Lino, C.M.; Pena, A. SSRIs Antidepressants in Marine Mussels from Atlantic Coastal Areas and Human Risk Assessment. Sci. Total Environ. 2017, 603–604, 118–125. [Google Scholar] [CrossRef]
- Norkko, A.; Villnäs, A.; Norkko, J.; Valanko, S.; Pilditch, C. Size Matters: Implications of the Loss of Large Individuals for Ecosystem Function. Sci. Rep. 2013, 3, 2646. [Google Scholar] [CrossRef]
- Anacleto, P.; Barrento, S.; Nunes, M.L.; Rosa, R.; Marques, A. Portuguese Consumers’ Attitudes and Perceptions of Bivalve Molluscs. Food Control 2014, 41, 168–177. [Google Scholar] [CrossRef]
- Gosling, E.M. Bivalve Molluscs: Biology, Ecology, and Culture; Fishing News Books; Wiley-Blackwell: Hoboken, NJ, USA, 2003; ISBN 978-0-852-38234-9. [Google Scholar]
- Serra-Compte, A.; Maulvault, A.L.; Camacho, C.; Álvarez-Muñoz, D.; Barceló, D.; Rodríguez-Mozaz, S.; Marques, A. Effects of Water Warming and Acidification on Bioconcentration, Metabolization and Depuration of Pharmaceuticals and Endocrine Disrupting Compounds in Marine Mussels (Mytilus Galloprovincialis). Environ. Pollut. 2018, 236, 824–834. [Google Scholar] [CrossRef]
- Alvarez-Muñoz, D.; Huerta, B.; Fernandez-Tejedor, M.; Rodríguez-Mozaz, S.; Barceló, D. Multi-Residue Method for the Analysis of Pharmaceuticals and Some of Their Metabolites in Bivalves. Talanta 2015, 136, 174–182. [Google Scholar] [CrossRef]
- Iwamoto, M.; Ayers, T.; Mahon, B.E.; Swerdlow, D.L. Epidemiology of Seafood-Associated Infections in the United States. Clin. Microbiol. Rev. 2010, 23, 399–411. [Google Scholar] [CrossRef]
- Ruxton, C.H.S.; Reed, S.C.; Simpson, M.J.A.; Millington, K.J. The Health Benefits of Omega-3 Polyunsaturated Fatty Acids: A Review of the Evidence. J. Hum. Nutr. Diet. 2004, 17, 449–459. [Google Scholar] [CrossRef]
- Yaghubi, E.; Carboni, S.; Snipe, R.M.J.; Shaw, C.S.; Fyfe, J.J.; Smith, C.M.; Kaur, G.; Tan, S.Y.; Hamilton, D.L. Farmed Mussels: A Nutritive Protein Source, Rich in Omega-3 Fatty Acids, with a Low Environmental Footprint. Nutrients 2021, 13, 1124. [Google Scholar] [CrossRef]
- Tan, K.; Ma, H.; Li, S.; Zheng, H. Bivalves as Future Source of Sustainable Natural Omega-3 Polyunsaturated Fatty Acids. Food Chem. 2020, 311, 125907. [Google Scholar] [CrossRef]
- Walker, D.I.; Younger, A.; Stockley, L.; Baker-Austin, C. Escherichia Coli Testing and Enumeration in Live Bivalve Shellfish—Present Methods and Future Directions. Food Microbiol. 2018, 73, 29–38. [Google Scholar] [CrossRef]
- Lowther, J.A.; Gustar, N.E.; Powell, A.L.; Hartnell, R.E.; Lees, D.N. Two-Year Systematic Study to Assess Norovirus Contamination in Oysters from Commercial Harvesting Areas in the United Kingdom. Appl. Environ. Microbiol. 2012, 78, 5812–5817. [Google Scholar] [CrossRef]
- Li, J.; Qu, X.; Su, L.; Zhang, W.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in Mussels along the Coastal Waters of China. Environ. Pollut. 2016, 214, 177–184. [Google Scholar] [CrossRef]
- Maskrey, B.H.; Dean, K.; Morrell, N.; Turner, A.D. A Simple and Rapid UHPLC-MS/MS Method for the Quantitation of Pharmaceuticals and Related Compounds in Mussels and Oysters. Environ. Toxicol. Chem. 2021, 40, 3263–3274. [Google Scholar] [CrossRef]
- McEneff, G.; Barron, L.; Kelleher, B.; Paull, B.; Quinn, B. The Determination of Pharmaceutical Residues in Cooked and Uncooked Marine Bivalves Using Pressurised Liquid Extraction, Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 9509–9521. [Google Scholar] [CrossRef]
- Parmar, T.K.; Rawtani, D.; Agrawal, Y.K. Bioindicators: The Natural Indicator of Environmental Pollution. Front. Life Sci. 2016, 9, 110–118. [Google Scholar] [CrossRef]
- Almeida, Â.; Solé, M.; Soares, A.M.V.M.; Freitas, R. Anti-Inflammatory Drugs in the Marine Environment: Bioconcentration, Metabolism and Sub-Lethal Effects in Marine Bivalves. Environ. Pollut. 2020, 263, 114442. [Google Scholar] [CrossRef]
- Álvarez-Muñoz, D.; Rodríguez-Mozaz, S.; Maulvault, A.L.; Tediosi, A.; Fernández-Tejedor, M.; Van den Heuvel, F.; Kotterman, M.; Marques, A.; Barceló, D. Occurrence of Pharmaceuticals and Endocrine Disrupting Compounds in Macroalgaes, Bivalves, and Fish from Coastal Areas in Europe. Environ. Res. 2015, 143, 56–64. [Google Scholar] [CrossRef]
- Zenker, A.; Cicerob, M.R.; Prestinaci, F.; Bottoni, P.; Carere, M. Bioaccumulation and Biomagnification Potential of Pharmaceuticals with a Focus to the Aquatic Environment. J. Environ. Manag. 2014, 133, 378–387. [Google Scholar] [CrossRef]
- Vane, J.R.; Botting, R.M. The Mechanism of Action of Aspirin. Thromb. Res. 2003, 110, 255–258. [Google Scholar] [CrossRef]
- Praveen Rao, P.N.; Knaus, E.E. Evolution of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Cyclooxygenase (COX) Inhibition and Beyond. J. Pharm. Pharm. Sci. 2008, 11, 81–110. [Google Scholar] [CrossRef]
- Mompelat, S.; Le Bot, B.; Thomas, O. Occurrence and Fate of Pharmaceutical Products and By-Products, from Resource to Drinking Water. Environ. Int. 2009, 35, 803–814. [Google Scholar] [CrossRef]
- Vane, J.R. Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin-like Drugs. Nat. New Biol. 1971, 231, 232–235. [Google Scholar] [CrossRef]
- Narumiya, S.; Sugimoto, Y.; Ushikubi, F. Prostanoid Receptors: Structures, Properties, and Functions. Physiol. Rev. 1999, 79, 1193–1226. [Google Scholar] [CrossRef]
- Rainsford, K.D. Anti-Inflammatory Drugs in the 21st Century. Subcell. Biochem. 2007, 42, 3–27. [Google Scholar] [CrossRef]
- Ishiguro, H.; Kawahara, T. Nonsteroidal Anti-Inflammatory Drugs and Prostatic Diseases. Biomed Res. Int. 2014, 2014, 436123. [Google Scholar] [CrossRef]
- Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging Dis. 2018, 9, 143. [Google Scholar] [CrossRef]
- Nunes, B.; Daniel, D.; Canelas, G.G.; Barros, J.; Correia, A.T. Toxic Effects of Environmentally Realistic Concentrations of Diclofenac in Organisms from Two Distinct Trophic Levels, Hediste Diversicolor and Solea Senegalensis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 231, 108722. [Google Scholar] [CrossRef]
- Paíga, P.; Santos, L.H.M.L.M.; Ramos, S.; Jorge, S.; Silva, J.G.; Delerue-Matos, C. Presence of Pharmaceuticals in the Lis River (Portugal): Sources, Fate and Seasonal Variation. Sci. Total Environ. 2016, 573, 164–177. [Google Scholar] [CrossRef]
- Al-Rifai, J.H.; Khabbaz, H.; Schäfer, A.I. Removal of Pharmaceuticals and Endocrine Disrupting Compounds in a Water Recycling Process Using Reverse Osmosis Systems. Sep. Purif. Technol. 2011, 77, 60–67. [Google Scholar] [CrossRef]
- Knappe Project. 2008. Knappe Project. (2008). KNAPPE: Knowledge and Need Assessment on Pharmaceutical Products in Environmental Waters—Final Report. Available online: https://cordis.europa.eu/docs/results/36/36864/124584761-6_en.pdf (accessed on 18 April 2024).
- Ashfaq, M.; Nawaz Khan, K.; Saif Ur Rehman, M.; Mustafa, G.; Faizan Nazar, M.; Sun, Q.; Iqbal, J.; Mulla, S.I.; Yu, C.P. Ecological Risk Assessment of Pharmaceuticals in the Receiving Environment of Pharmaceutical Wastewater in Pakistan. Ecotoxicol. Environ. Saf. 2017, 136, 31–39. [Google Scholar] [CrossRef]
- Kleywegt, S.; Payne, M.; Ng, F.; Fletcher, T. Environmental Loadings of Active Pharmaceutical Ingredients from Manufacturing Facilities in Canada. Sci. Total Environ. 2019, 646, 257–264. [Google Scholar] [CrossRef]
- Santos, L.H.M.L.M.; Paíga, P.; Araújo, A.N.; Pena, A.; Delerue-Matos, C.; Montenegro, M.C.B.S.M. Development of a Simple Analytical Method for the Simultaneous Determination of Paracetamol, Paracetamol-Glucuronide and p-Aminophenol in River Water. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 930, 75–81. [Google Scholar] [CrossRef]
- de Jesus Gaffney, V.; Cardoso, V.V.; Cardoso, E.; Teixeira, A.P.; Martins, J.; Benoliel, M.J.; Almeida, C.M.M. Occurrence and Behaviour of Pharmaceutical Compounds in a Portuguese Wastewater Treatment Plant: Removal Efficiency through Conventional Treatment Processes. Environ. Sci. Pollut. Res. 2017, 24, 14717–14734. [Google Scholar] [CrossRef]
- Palli, L.; Spina, F.; Varese, G.C.; Vincenzi, M.; Aragno, M.; Arcangeli, G.; Mucci, N.; Santianni, D.; Caffaz, S.; Gori, R. Occurrence of Selected Pharmaceuticals in Wastewater Treatment Plants of Tuscany: An Effect-Based Approach to Evaluate the Potential Environmental Impact. Int. J. Hyg. Environ. Health 2019, 222, 717–725. [Google Scholar] [CrossRef]
- Loos, R.; Locoro, G.; Comero, S.; Contini, S.; Schwesig, D.; Werres, F.; Balsaa, P.; Gans, O.; Weiss, S.; Blaha, L.; et al. Pan-European Survey on the Occurrence of Selected Polar Organic Persistent Pollutants in Ground Water. Water Res. 2010, 44, 4115–4126. [Google Scholar] [CrossRef]
- Petrović, M.; Škrbić, B.; Živančev, J.; Ferrando-Climent, L.; Barcelo, D. Determination of 81 Pharmaceutical Drugs by High Performance Liquid Chromatography Coupled to Mass Spectrometry with Hybrid Triple Quadrupole-Linear Ion Trap in Different Types of Water in Serbia. Sci. Total Environ. 2014, 468–469, 415–428. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lai, W.W.P.; Tung, H.; Lin, A.Y.C. Occurrence of Pharmaceuticals, Hormones, and Perfluorinated Compounds in Groundwater in Taiwan. Environ. Monit. Assess. 2015, 187, 256. [Google Scholar] [CrossRef]
- López-Serna, R.; Petrović, M.; Barceló, D. Occurrence and Distribution of Multi-Class Pharmaceuticals and Their Active Metabolites and Transformation Products in the Ebro River Basin (NE Spain). Sci. Total Environ. 2012, 440, 280–289. [Google Scholar] [CrossRef]
- Lolić, A.; Paíga, P.; Santos, L.H.M.L.M.; Ramos, S.; Correia, M.; Delerue-Matos, C. Assessment of Non-Steroidal Anti-Inflammatory and Analgesic Pharmaceuticals in Seawaters of North of Portugal: Occurrence and Environmental Risk. Sci. Total Environ. 2015, 508, 240–250. [Google Scholar] [CrossRef]
- López-Serna, R.; Pérez, S.; Ginebreda, A.; Petrović, M.; Barceló, D. Fully Automated Determination of 74 Pharmaceuticals in Environmental and Waste Waters by Online Solid Phase Extraction-Liquid Chromatography-Electrospray-Tandem Mass Spectrometry. Talanta 2010, 83, 410–424. [Google Scholar] [CrossRef]
- TemaNord. PPCP Monitoring in the Nordic Countries-Status Report; 2012. Available online: http://norden.diva-portal.org/smash/record.jsf?pid=diva2%3A702823&dswid=-171 (accessed on 18 April 2024).
- Arpin-Pont, L.; Martínez-Bueno, M.J.; Gomez, E.; Fenet, H. Occurrence of PPCPs in the Marine Environment: A Review. Environ. Sci. Pollut. Res. 2016, 23, 4978–4991. [Google Scholar] [CrossRef]
- Miller, T.H.; Bury, N.R.; Owen, S.F.; MacRae, J.I.; Barron, L.P. A Review of the Pharmaceutical Exposome in Aquatic Fauna. Environ. Pollut. 2018, 239, 129–146. [Google Scholar] [CrossRef]
- McEneff, G.; Barron, L.; Kelleher, B.; Paull, B.; Quinn, B. A Year-Long Study of the Spatial Occurrence and Relative Distribution of Pharmaceutical Residues in Sewage Effluent, Receiving Marine Waters and Marine Bivalves. Sci. Total Environ. 2014, 476–477, 317–326. [Google Scholar] [CrossRef]
- Wille, K.; Kiebooms, J.A.L.; Claessens, M.; Rappé, K.; Vanden Bussche, J.; Noppe, H.; Van Praet, N.; De Wulf, E.; Van Caeter, P.; Janssen, C.R.; et al. Development of Analytical Strategies Using U-HPLC-MS/MS and LC-ToF-MS for the Quantification of Micropollutants in Marine Organisms. Anal. Bioanal. Chem. 2011, 400, 1459–1472. [Google Scholar] [CrossRef]
- Mezzelani, M.; Gorbi, S.; Da Ros, Z.; Fattorini, D.; d’Errico, G.; Milan, M.; Bargelloni, L.; Regoli, F. Ecotoxicological Potential of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Marine Organisms: Bioavailability, Biomarkers and Natural Occurrence in Mytilus Galloprovincialis. Mar. Environ. Res. 2016, 121, 31–39. [Google Scholar] [CrossRef]
- Mello, F.V.; Cunha, S.C.; Fogaça, F.H.S.; Alonso, M.B.; Torres, J.P.M.; Fernandes, J.O. Occurrence of Pharmaceuticals in Seafood from Two Brazilian Coastal Areas: Implication for Human Risk Assessment. Sci. Total Environ. 2022, 803, 149744. [Google Scholar] [CrossRef]
- Rodrigues, J.; Albino, S.; Silva, S.; Cravo, A.; Cardoso, V.V.; Benoliel, M.J.; Almeida, C.M.M. Development of a Multiresidue Method for the Determination of 24 Pharmaceuticals in Clams by QuEChERS and Liquid Chromatography-Triple Quadrupole Tandem Mass Spectrometry. Food Anal. Methods 2019, 12, 838–851. [Google Scholar] [CrossRef]
- Cunha, S.C.; Pena, A.; Fernandes, J.O. Mussels as Bioindicators of Diclofenac Contamination in Coastal Environments. Environ. Pollut. 2017, 225, 354–360. [Google Scholar] [CrossRef]
- Xie, Z.; Lu, G.; Yan, Z.; Liu, J.; Wang, P.; Wang, Y. Bioaccumulation and Trophic Transfer of Pharmaceuticals in Food Webs from a Large Freshwater Lake. Environ. Pollut. 2017, 222, 356–366. [Google Scholar] [CrossRef]
- Wolecki, D.; Caban, M.; Pazdro, K.; Mulkiewicz, E.; Stepnowski, P.; Kumirska, J. Simultaneous Determination of Non-Steroidal Anti-Inflammatory Drugs and Natural Estrogens in the Mussels Mytilus Edulis Trossulus. Talanta 2019, 200, 316–323. [Google Scholar] [CrossRef]
- Klosterhaus, S.L.; Grace, R.; Hamilton, M.C.; Yee, D. Method Validation and Reconnaissance of Pharmaceuticals, Personal Care Products, and Alkylphenols in Surface Waters, Sediments, and Mussels in an Urban Estuary. Environ. Int. 2013, 54, 92–99. [Google Scholar] [CrossRef]
- Huerta, B.; Rodríguez-Mozaz, S.; Barceló, D. Pharmaceuticals in Biota in the Aquatic Environment: Analytical Methods and Environmental Implications. Anal. Bioanal. Chem. 2012, 404, 2611–2624. [Google Scholar] [CrossRef]
- Núñez Marcé, M. Emerging Organic Contaminants in Aquatic Organisms; Universitat Rovira i Virgili: Tarragona, Spain, 2017. [Google Scholar]
- Daniele, G.; Fieu, M.; Joachim, S.; James-Casas, A.; Andres, S.; Baudoin, P.; Bonnard, M.; Bonnard, I.; Geffard, A.; Vulliet, E. Development of a Multi-Residue Analysis of Diclofenac and Some Transformation Products in Bivalves Using QuEChERS Extraction and Liquid Chromatography-Tandem Mass Spectrometry. Application to Samples from Mesocosm Studies. Talanta 2016, 155, 1–7. [Google Scholar] [CrossRef]
- Pereira, A.; Silva, L.; Laranjeiro, C.; Lino, C.; Pena, A. Selected Pharmaceuticals in Different Aquatic Compartments: Part II—Toxicity and Environmental Risk Assessment. Molecules 2020, 25, 1796. [Google Scholar] [CrossRef]
- Freitas, R.; Silvestro, S.; Coppola, F.; Meucci, V.; Battaglia, F.; Intorre, L.; Soares, A.M.V.M.; Pretti, C.; Faggio, C. Combined Effects of Salinity Changes and Salicylic Acid Exposure in Mytilus Galloprovincialis. Sci. Total Environ. 2020, 715, 136804. [Google Scholar] [CrossRef]
- Balbi, T.; Montagna, M.; Fabbri, R.; Carbone, C.; Franzellitti, S.; Fabbri, E.; Canesi, L. Diclofenac Affects Early Embryo Development in the Marine Bivalve Mytilus Galloprovincialis. Sci. Total Environ. 2018, 642, 601–609. [Google Scholar] [CrossRef]
- Afsa, S.; De Marco, G.; Cristaldi, A.; Giannetto, A.; Galati, M.; Billè, B.; Oliveri Conti, G.; ben Mansour, H.; Ferrante, M.; Cappello, T. Single and Combined Effects of Caffeine and Salicylic Acid on Mussel Mytilus Galloprovincialis: Changes at Histomorphological, Molecular and Biochemical Levels. Environ. Toxicol. Pharmacol. 2023, 101, 104167. [Google Scholar] [CrossRef]
- Bayen, S.; Estrada, E.S.; Juhel, G.; Kelly, B.C. Direct Injection of Tissue Extracts in Liquid Chromatography/Tandem Mass Spectrometry for the Determination of Pharmaceuticals and Other Contaminants of Emerging Concern in Mollusks. Anal. Bioanal. Chem. 2015, 407, 5553–5558. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Off. J. Eur. Union 2006, 49, 5–24. [Google Scholar]
- European Commission. COMMISSION REGULATION (EU) 2022/1370 of 5 August 2022 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Ochratoxin A in Certain Foodstuffs. Off. J. Eur. Union 2022, L206, 11–14. [Google Scholar]
- Vandermeersch, G.; Maria, H.; Alvarez-muñoz, D.; Cunha, S.; Diogène, J.; Cano-sancho, G.; Sloth, J.J.; Kwadijk, C.; Barcelo, D.; Allegaert, W.; et al. Environmental Contaminants of Emerging Concern in Seafood—European Database on Contaminant Levels. Environ. Res. 2015, 143, 29–45. [Google Scholar] [CrossRef]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Ribeiro, C.; Tiritan, M.E.; Pereira, M.F.R.; Silva, A.M.T. Monitoring of the 17 EU Watch List Contaminants of Emerging Concern in the Ave and the Sousa Rivers. Sci. Total Environ. 2019, 649, 1083–1095. [Google Scholar] [CrossRef]
- Mijangos, L.; Ziarrusta, H.; Zabaleta, I.; Usobiaga, A.; Olivares, M.; Zuloaga, O.; Etxebarria, N.; Prieto, A. Multiresidue Analytical Method for the Determination of 41 Multiclass Organic Pollutants in Mussel and Fish Tissues and Biofluids by Liquid Chromatography Coupled to Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2019, 411, 493–506. [Google Scholar] [CrossRef]
- Martínez Bueno, M.J.; Boillot, C.; Fenet, H.; Chiron, S.; Casellas, C.; Gómez, E. Fast and Easy Extraction Combined with High Resolution-Mass Spectrometry for Residue Analysis of Two Anticonvulsants and Their Transformation Products in Marine Mussels. J. Chromatogr. A 2013, 1305, 27–34. [Google Scholar] [CrossRef]
- Pavlović, D.M.; Babić, S.; Horvat, A.J.M.; Kaštelan-Macan, M. Sample Preparation in Analysis of Pharmaceuticals. TrAC Trends Anal. Chem. 2007, 26, 1062–1075. [Google Scholar] [CrossRef]
- Núñez, M.; Borrull, F.; Fontanals, N.; Pocurull, E. Determination of Pharmaceuticals in Bivalves Using Quechers Extraction and Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2015, 407, 3841–3849. [Google Scholar] [CrossRef]
- Nireesha, G.; Divya, L.; Sowmya, C.; Venkateshan, N.; Niranjan Babu, M.; Lavakumar, V. Lyophilization/Freeze Drying—An Review. Int. J. Nov. Trends Pharm. Sci. 2013, 3, 87–98. [Google Scholar]
- Takach, E. Tissue Homogenization. In Tissue Analysis for Drug Development; Future Science Ltd.: London, UK, 2013; pp. 22–35. ISBN 9781909453678. [Google Scholar]
- Núñez, M.; Borrull, F.; Pocurull, E.; Fontanals, N. Pressurized Liquid Extraction Followed by Liquid Chromatography with Tandem Mass Spectrometry to Determine Pharmaceuticals in Mussels. J. Sep. Sci. 2016, 39, 741–747. [Google Scholar] [CrossRef]
- Núñez, M.; Borrull, F.; Pocurull, E.; Fontanals, N. Sample Treatment for the Determination of Emerging Organic Contaminants in Aquatic Organisms. TrAC Trends Anal. Chem. 2017, 97, 136–145. [Google Scholar] [CrossRef]
- Mitra, S. (Ed.) Sample Preparation Techniques in Analytical Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; ISBN 9780471328452. [Google Scholar]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Lucci, P.; Pacetti, D.; Nunez, O.; Frega, N. Current Trends in Sample Treatment Techniques for Environmental and Food Analysis. In Chromatography—The Most Versatile Method of Chemical Analysis; IntechOpen Limited: London, UK, 2012. [Google Scholar] [CrossRef]
- Silva, L.J.G.; Meisel, L.M.; Lino, C.M.; Pena, A. Profiling Serotonin Reuptake Inhibitors (SSRIs) in the Environment: Trends in Analytical Methodologies. Crit. Rev. Anal. Chem. 2014, 44, 41–67. [Google Scholar] [CrossRef]
- Islas, G.; Ibarra, I.S.; Hernandez, P.; Miranda, J.M.; Cepeda, A. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review. Int. J. Anal. Chem. 2017, 2017, 8215271. [Google Scholar] [CrossRef]
- Noguera-Oviedo, K.; Aga, D.S. Lessons Learned from More than Two Decades of Research on Emerging Contaminants in the Environment. J. Hazard. Mater. 2016, 316, 242–251. [Google Scholar] [CrossRef]
- Otles, S. Methods of Analysis of Food Components and Additives; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Yilmaz, B.; Asci, A.; Erdem, A.F. HPLC Method for Naproxen Determination in Human Plasma and Its Application to a Pharmacokinetic Study in Turkey. J. Chromatogr. Sci. 2014, 52, 584–589. [Google Scholar] [CrossRef]
- Ali, J. Analysis of Non-Steroidal Anti-Inflammatory Drugs Using a Highly Pure, High Surface Area C18 HPLC Column; Thermo Fisher Scientific: Runcorn, UK, 2012. [Google Scholar]
- Hopkins, T. The Role of Methanol and Acetonitrile as Organic Modifiers in Reversed-Phase Liquid Chromatography. Chromatogr. Today 2019, 26, 24–26. [Google Scholar]
- Nemoto, A.C.M. Monitoring of Anti-Inflammatory Drugs in Hydric Media from Bragança District; Polytechnic Institute of Bragança: Braganca, Portugal, 2019. [Google Scholar]
- Kazakevich, Y.; LoBrutto, R. (Eds.) HPLC for Pharmaceutical Scientists; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; ISBN 9780470087954. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the Performance of Analytical Methods for Residues of Pharmacologically Active Substances Used in Food-Producing Animals and on the Interpretation of Results as Well as on the Methods To. Off. J. Eur. Union 2021, 180, 84–109. [Google Scholar]
Pharmaceutical | CAS Number | Structure and Molecular Formula | Molecular Weight | Log Kow | pKa | Solubility (mg mL−1) |
---|---|---|---|---|---|---|
Diclofenac | 15307-86-5 | C14H11Cl2NO2 | 296.1 | 4.51 | 4.15 | 2.37 a |
4′-Hydroxydiclofenac b | 64118-84-9 | C14H11Cl2NO3 | 312.1 | 3.18 | _ | 17.9 |
Ibuprofen | 15687-27-1 | C13H18O2 | 206.28 | 3.97 | 4.91 | 21 a |
Paracetamol c | 103-90-2 | C8H9NO2 | 151.16 | 0.91 | 9.38 | 14 a |
Naproxen | 22204-53-1 | C14H14O3 | 230.26 | 3.18 | 4.15 | 15.9 a |
Ketoprofen | 22071-15-4 | C16H14O3 | 254.28 | 3.12 | 4.45 | 51 a |
Phenazone | 60-80-0 | C11H12N2O | 188.23 | 0.38 | 1.4 | 51,900 a |
Acetylsalicylic acid | 50-78-2 | C9H8O4 | 180.6 | 1.18 | 3.5 | 4600 a |
Salicylic acid d | 69-72-7 | C7H6O3 | 138.12 | 2.26 | 2.97 | 2240 a |
Mefenamic acid | 61-68-7 | C15H15NO2 | 241.28 | 5.12 | 4.2 | 20 |
Piroxicam | 36322-90-4 | C15H13N3O4S | 331.3 | 3.06 | 6.3 | 23 |
Aquatic Body | NSAIDs | Level (µg/L) | Local | Reference |
---|---|---|---|---|
Pharmaceutical industry effluent | PAR | 12–64 | Lahore, Pakistan | [40] |
NAP | 215–464 | |||
DIC | 252–836 | |||
IBU | 703–1673 | |||
PAR | 461 | Ontario, Canada | [41] | |
COD | 49.2 | |||
IBU | 344 | |||
NAP | 253 | |||
Hospital effluent | KET | <LOQ–0.199 | Coimbra, Portugal | [42] |
NAP | 0.0454–6.042 | |||
IBU | 0.32–5.815 | |||
PAR | 0.0130–0.0589 | |||
AS | 0.383–2.817 | |||
DIC | <LOQ–0.189 | |||
PHE | 0.0605–0.271 | |||
PRO-PHE | <LOD–0.0017 | |||
PIR | n.d.–0.0512 | |||
COD | 0.0081–2.837 | |||
Wastewater influent | DIC | 0.46–6.5 | Lisbon, Portugal | [43] |
KET | n.d.–1.7 | |||
IBU | 8–53 | |||
NAP | n.d.–38 | |||
PAR | 0.741–8.556 | Tuscany, Italy | [44] | |
KET | 0.247–3.511 | |||
DIC | 1.038–3.429 | |||
PAR | 615.135 a | Lisbon, Portugal | [37] | |
IBU | 24.505 a | |||
DIC | 0.165 a | |||
NAP | 3.245 a | |||
AS | 61.259 a | |||
KET | 0.147 a | |||
Wastewater effluent | DIC | 0.05–4.2 | Leiria, Portugal | [43] |
KET | n.d.–0.72 | |||
IBU | n.d. | |||
NAP | n.d.–3.3 | |||
PAR | <LOD–0.444 | Toscana, Itália | [44] | |
KET | 0.031–0.512 | |||
DIC | 0.811–4.882 | |||
PAR | 4.909 a | Lisbon, Portugal | [37] | |
IBU | 3.304 a | |||
DIC | 0.724 a | |||
NAP | 0.270 a | |||
AS | 0.296 a | |||
KET | 0.233 a | |||
Groundwater | KET | 2.886 a | Europe | [45] |
IBU | 0.395 a | |||
DIC | 0.024 a | |||
NAP | 0.0276 | Serbia (Novi Sad, Zrenjanin, Bečej, Vrbas and Obrenovac) | [46] | |
IBU | 0.092 | |||
AS | <LOQ–0.0025 | |||
PHE | 0.0234 | |||
PRO-PHE | <LOQ–0.0248 | |||
PAR | 0.0009–1.036 | Taiwan | [47] | |
IBU | 0.0174–0.837 | |||
NAP | 0.128 | |||
KET | n.d. | |||
DIC | 0.0021–0.032 | |||
Surface water | PAR | 0.527 a | Leiria, Portugal | [37] |
IBU | 1.317 a | |||
DIC | 0.038 a | |||
NAP | 0.260 a | |||
AS | 0.294 a | |||
KET | 0.0753 a | |||
Surface water | NAP | 0.101 a | Spain | [48] |
DIC | 0.26 a | |||
4-OH-DIC | 0.0482 a | |||
MA | n.d. | |||
PAR | 0.712 | |||
PHE | 0.0375 | |||
Seawater | PAR | 0.584 a | Atlantic ocean North Portuguese coast | [49] |
AS | 0.0053 a | |||
DIC | 0.241 a | |||
IBU | 0.222 a | |||
NAP | 0.178 | |||
KET | 0.0897 a | |||
Surface water | KET | 0.045 | Serbia (Novi Sad, Zrenjanin, Bečej, Vrbas and Obrenovac) | [46] |
NAP | <LOQ–0.0742 | |||
IBU | <LOQ–0.346 | |||
DIC | <LOQ–0.324 | |||
PHE | 0.0125 | |||
COD | 0.0073 | |||
Drinking water | AS | 0.2012 | Spain | [50] |
DIC | 0.140 b | Stockholm, Sweden | [51] | |
IBU | 1.35 b | Germany | [39] | |
NAP | 0.055 | Queensland, Australia | [38] | |
PAR | 0.211 b | Germany | [39] | |
PHE | 0.4 b | Germany | [39] |
NSAIDs | Species | Level (ng/g) | Local | Reference |
---|---|---|---|---|
Mefenamic acid | Mytilus edulis | n.d. < 23 | Ireland | [54] |
Salicylic acid | Mytilus edulis | ≤490 | Belgium | [55] |
Ketoprofen | Mytilus galloprovincialis | <LOQ | Adriatic Sea | [56] |
Anomalocardia brasiliana | 0.53 | Brazil | [57] | |
Mytilus edulis | 0.29 | Brazil | [57] | |
Diclofenac | Mytilus edulis | n.d. | Ireland | [54] |
Mytilus galloprovincialis | <LOD–16.11 | Adriatic Sea | [56] | |
Ruditapes decussatus | 1.1–6.2 | Portugal | [58] | |
Mytilus spp | 0.5–4.5 | Portugal | [59] | |
Corbiculidae | 1.2–31 | China | [60] | |
Mytilus edulis trossulus | 560 ± 130 | Adriatic Sea | [61] | |
Anomalocardia brasiliana | <LOQ | Brazil | [57] | |
Mytilus edulis | 0.81 | Brazil | [57] | |
Phenazone | Crassostrea gigas; Chamelea gallina; Mytilus galloprovincialis | <LOQ<LOD<LOD | Ebro Delta, Spain | [26] |
Ibuprofen | Geukensia demissa | <LOQ | San Francisco | [62] |
Mytilus galloprovincialis | <LOD–9.39 | Adriatic Sea | [56] | |
Ruditapes decussatus | 0.9–13 | Portugal | [58] | |
Corbiculidae | 5.0–44 | China | [60] | |
Mytilus edulis trossulus | 730 ± 290 | Adriatic Sea | [61] | |
Anomalocardia brasiliana | 1.93 | Brazil | [57] | |
Mytilus edulis | 1.78 | Brazil | [57] | |
Naproxen | Geukensia demissa | <LOQ | San Francisco | [62] |
Ruditapes decussatus | 1.4–3.9 | Portugal | [58] | |
Mytilus edulis trossulus | 473 ± 76 | Adriatic Sea | [61] | |
Anomalocardia brasiliana | <LOQ | Brazil | [57] | |
Mytilus edulis | <LOQ | Brazil | [57] | |
Paracetamol | Mytilus edulis | ≤115 | Belgium | [55] |
Mytilus galloprovincialis | <LOD | Adriatic Sea | [56] | |
Piroxicam | Crassostrea gigas; Chamelea gallina; Mytilus galloprovincialis | <LOD | Ebro Delta, Spain | [26] |
Propyphenazone | Crassostrea gigas; Chamelea gallina; Mytilus galloprovincialis | <LOD | Ebro Delta, Spain | [26] |
Species | Drugs | NSAIDs | Sample Preparation | Analytical Method | Recovery (%) | References | ||
---|---|---|---|---|---|---|---|---|
Extraction Method | Extraction Procedures | Purification Method | ||||||
Blue mussel (Mytillus edulis) | 5 drugs, including 2 NSAIDs | DIC | PLE | PLE performed on a Dionex ASE 200; extraction solvent: ACN/H2O (3:1); 3 cycles of 5 min at 60 °C; extracts evaporated to dryness using N2, followed by the addition of H2O Milli-Q until 200 mL | SPE | LC-MS/MS | 83 ± 8 | [23,54] |
MA | 104 ± 12 | |||||||
Pacific oyster (Crassostrea gigas) | 23 drugs and metabolites, including 9 NSAIDs and metabolites | COD | PLE | PLE performed on a Dionex ASE 350; extraction solvent: MeOH/H2O (1:2); 3 cycles of 5 min at 50 °C; extracts evaporated to dryness using N2, followed by the addition of H2O until 200 mL and then 6 mL of Na2EDTA were added | SPE | UHPLC-MS/MS | 49.3 ± 2 and 41.7 ± 4.3 | [14,26] |
PHE | 34.5 ± 3.3 and 42.1 ± 3.9 | |||||||
PRO-PHE | 45.3 ± 12 and 42.5 ± 3.7 | |||||||
PIR | 40.1 ± 3.5 and 32.8 ± 2.6 | |||||||
Mediterranean mussel (Mytilus galloprovincialis) | COD | 43.1 ± 4.4 and 49.5 ± 2.9 | ||||||
PHE | 48.2 ± 3.1 and 48.6 ± 3.2 | |||||||
PRO-PHE | 47.7 ± 0.1 and 50.3 ± 3.6 | |||||||
PIR | 62.2 ± 2.3 and 63.1 ± 4.4 | |||||||
Striped venus clam (Chamelea gallina) | COD | 54 ± 2.8 and 36.1 ± 11.7 | ||||||
PHE | 56.4 ± 0.3 and 59.3 ± 7.5 | |||||||
PRO-PHE | 71.7 ± 18 and 68.5 ± 17.4 | |||||||
PIR | 46.4 ± 12.7 and 43.7 ± 16.3 | |||||||
Blue mussel (Mytillus edulis) | 34 drugs and metabolites, including 2 NSAIDs and metabolites | DIC | SLE and centrifugation | Extraction solvent: ACN with 1% formic acid; 6 mL added to 1 g of sample and solution vortexed (5 min, 2500 rpm); centrifugation (10 min, 4500 rpm, 20 °C); scupernatant decanted (in a 15 mL polypropylene tube) and evaporated to dryness; reconstituted in 1mL MeOH/ACN (75:25) | SPE | UHPLC-MS/MS | 86 ± 3.4 | [22] |
4-OH DIC | 61 ± 8.9 | |||||||
Pacific oyster (Crassostrea gigas) | DIC | 80 ± 4.2 | ||||||
4 OH DIC | 46 ± 11.1 | |||||||
Mediterranean mussel (Mytilus galloprovincialis) | 7 drugs, including 5 NSAIDs | AS | QuEchERs | Extraction solvent: ACN 10 mL of H2O + 1 g of sample, shake for 1 min; 10 mL ACN added and shake 1 min; add the citrate buffer package and shake (15 s manually and 45 s on a vortex); centrifuge (5 min at 7000 rpm); supernatant was transferred to a 15 mL tube with 1 g of silica gel (dispersive sorbent); tube shaken (15 s manually and 45 s in a vortex) and then centrifuged (5 min at 7000 rpm); 1 mL of supernatant was evaporated to dryness (N2) | dSPE | LC-MS/MS | 61 | [78] |
KET | 91 | |||||||
NAP | 95 | |||||||
DIC | 93 | |||||||
IBU | 90 | |||||||
Zebra Mussel (Dreissena polymorpha) | NSAIDs | DIC and metabolites | Modified QuEchERs | Extraction solvent: ACN and heptane 5 mL of H2O was added to 0.1 g of sample (50 mL tube); 10 mL of ACN and 200 μL of heptane were added to the tube (vortexed for 15 s). The “acetate salt” was added and the tube was shaken (10 s manually, 20 s in a vortex, and 3 min in a centrifuge at 10,000 rpm); 6 mL of supernatant was evaporated to dryness (N2) | dSPE | LC-MS/MS | 93–105 ± 8–16 | [65] |
Mediterranean mussel (Mytilus galloprovincialis) | 7 drugs, including 3 NSAIDs | KET | MAME | Surfactant (3% v/v) was added to the sample (1g of mussel homogenate) in the container up to 10 mL. MAME extraction followed, and then the extract was filtered with a 0.45 μm nylon membrane before SPE | SPE | LC-UV/DAD | 100 ± 4 | [3] |
NAP | 97 ± 4 | |||||||
IBU | 106 ± 7 | |||||||
Blue mussel (Mytilus edulis) | 14 pesticides, 10 PFCs, and 11 drugs, including 4 NSAIDs | PAR | PLE | PLE performed on a Dionex ASE 350; extraction solvent: ACN/H20 (3:1) with 1% formic acid | SPE | UHPLC-MS/MS | 97 ± 26 | [55] |
AS | 103 ± 10 | |||||||
KET | 100 ± 12 | |||||||
DIC | 98 ± 16 | |||||||
Green Mussel (Perna viridis) | 7 EDCs, 37 drugs, including 3 NSAIDs | DIC | SLE and centrifugation | Extraction solvent: ACN/MeOH (1:1); 8 mL of the extraction solvent was added to the sample (between 1 and 1.5 g) to a 50 mL tube, which was then shaken (for 16 h at 200 rpm); the tubes were centrifuged (30 min at 12,000 rpm) and the supernatant evaporated to dryness (N2) | Sem Purificação | LC-MS/MS | 55 ± 5 | [70] |
IBU | 91 ± 8 | |||||||
NAP | 41 ± 3 | |||||||
Venus clam (Ruditapes decussatus) | 24 drugs, including 3 NSAIDs | DIC | QuEChERS | Extraction solvent: ACN 10 mL of ACN was added to the sample (1 g in a 50 mL tube) and the solution was vortexed (5 min) before being transferred to QuEChERS tubes (with a given combination of salts) which were also vortexed (5 min); samples were then centrifuged (10 min at 4000 rpm) | dSPE | LC-MS/MS | 67.2–101.8 | [58] |
IBU | 104–92.4 | |||||||
NAP | 67.3–79.2 | |||||||
Pacific mussel (Mytilus edulis trossulus) | 3 estrogens and 5 NSAIDs | DIC | PLE | PLE performed on a Dionex ASE 350. Extraction solvent: MeOH:H2O (1:1, v/v), EtOH:H2O (1:1 v/v); ACN:H2O (1:1 v/v). Optimized conditions: preheating for 5 min at 80 °C, 3 min extraction over three static cycles and a pressure of 1500 psi | SPE | GC-MS | 61 ± 11 | [61] |
NAP | 92 ± 6 | |||||||
KET | 110 ± 9 | |||||||
IBU | 104 ± 3 | |||||||
PAR | 66 ± 4 | |||||||
Mediterranean mussel (Mytilus galloprovincialis) | 7 drugs, including 3 NSAIDs | AS | PLE | PLE performed on a Dionex ASE 350. Extraction solvent mixture: MeOH:H2O (1:1, v/v), EtOH:H2O (1:1 v/v); ACN:H2O (1:1 v/v). Optimized conditions: preheating for 5 min at 80 °C, 3 min extraction over three static cycles, and a pressure of 1500 psi | SPE | LC-MS/MS | 74 | [81] |
KET | 82 | |||||||
NAP | 88 | |||||||
DIC | 82 | |||||||
IBU | 89 | |||||||
OX | 90 ± 6 | |||||||
Mediterranean mussel (Mytilus galloprovincialis) | 41 drugs, including 3 NSAIDs | PAR | FUSLE followed by filtration | Extraction solvent: MeOH/MilliQ H2O (95:5); 0.5 g of the sample was added with the extraction solvent to a 40 mL container and then the FUSLE step occurred for 30 s; extraction took place at 0 °C; the extracts were evaporated to dryness (N2) | SPE | LC-MS/MS | 112 ± 8 | [75] |
DIC | 101 ± 8 | |||||||
KET | 93 ± 10 |
Cartridge | Conditioning | Washing | Elution | Reference |
---|---|---|---|---|
Strata-X (6 mL, 200 mg) | 6 mL MeOH, 6 mL H2O | 6 mL H2O | 3 mL ethyl acetate/acetone (1:1) 3 times | [23,54] |
Oasis HLB (6 mL, 200 mg) | 6 mL MeOH, 6 mL H2O | 6 mL H2O | 6 mL MeOH | [14,26] |
Oasis HLB (6 mL, 150 mg) | 5 mL MeOH twice 5 mL H2O | 5 mL H2O twice | 0.75 mL MeOH twice | [3] |
Strata-X (6 mL, 200 mg) | 5 mL MeOH 5 mL H2O | 5 mL H2O | 3 mL MeOH twice | [55] |
Strata-X (3 mL, 200 mg) | 3 mL MeOH 3 mL H2O | 3 mL MeOH 5% in H2O 3 mL n-hexane | 3 mL MeOH twice | [61] |
Oasis MAX (6 mL, 150 mg) | 5 mL MeOH 5 mL H2O | 3 mL H2O with 5% NH4OH 10 mL MeOH | 10 mL MeOH with 5% HCOOH | [81] |
Oasis HLB | 2 mL MeOH 2 mL H2O | - | 6 mL MeOH | [76] |
Oasis HLB (200 mg) | 5 mL MeOH 5 mL H2O twice (last at pH = 2) | 6 mL H2O | 6 mL MeOH | [75] |
Species | Pharmaceuticals | NSAIDs | Analytical Method | Analytical Column | Mobile Phase | Detection | LOD and LOQ | Reference |
---|---|---|---|---|---|---|---|---|
Blue mussel (Mytillus edulis) | 5 drugs, including 2 NSAIDs | DIC | LC-MS/MS | Waters Sunfire C18, 150 × 2.1 mm, 3.5 μm | (A) (80:20) 13 mM ammonium acetate in H2O/can; (B) ACN 0.3 mL/min | ESI (+/−) ion trap SRM | LOQ: 29 ng/g | [23,54] |
MA | LOQ: 23 ng/g | |||||||
Pacific oyster (Crassostrea gigas) | 23 drugs and metabolites, including 4 NSAIDs | COD | UHPLC-MS/MS | Acquity HSS T3, 50 × 2.1 mm, 1.8 μm (ESI +). Acquity BEH C18 50 × 2.1 mm, 1.7 μm (ESI −) | ESI (+): (A) MeOH; (B) 10 mM formic acid/ammonium, pH 3.2 0.5 mL/min. ESI (−): (A) ACN; (B) 5 mM ammonium acetate/ammonia at pH 8 0.6 mL/min | ESI (+/−) QqLIT SRM | LOD: 0.02 ng/g; LOQ: 0.08 ng/g | [14] |
PHE | LOD: 0.05 ng/g; LOQ: 0.18 ng/g | |||||||
PRO-PHE | LOD: 0.01 ng/g; LOQ: 0.02 ng/g | |||||||
PIR | LOD: 0.03 ng/g; LOQ: 0.11 ng/g | |||||||
Mediterranean mussel (Mytilus galloprovincialis) | COD | LOD: 0.02 ng/g; LOQ: 0.06 ng/g | ||||||
PHE | LOD: 0.10 ng/g; LOQ: 0.32 ng/g | |||||||
PRO-PHE | LOD: 0.04 ng/g; LOQ: 0.15 ng/g | |||||||
PIR | LOD: 0.06 ng/g; LOQ: 0.20 ng/g | |||||||
Striped venus clam (Chamelea gallina) | COD | LOD: 0.02 ng/g; LOQ: 0.06 ng/g | ||||||
PHE | LOD: 0.05 ng/g; LOQ: 0.17 ng/g | |||||||
PRO-PHE | LOD: 0.01 ng/g; LOQ: 0.02 ng/g | |||||||
PIR | LOD: 0.04 ng/g; LOQ: 0.13 ng/g | |||||||
Blue mussel (Mytillus edulis) | 34 drugs and metabolites, including 4 NSAIDs | DIC | UHPLC-MS/MS | Luna Omega Polar C18, 100 × 2.1 mm, 1.6 µm (acidic conditions) Waters Acquity BEH C18, 50 × 2.1 mm, 1.7 µm (basic conditions) | Acidic conditions: (A) H2O + 0.15% formic acid; (B) (90:10) ACN in H2O with 0.15% formic acid 0.5 mL/min. Basic conditions: (A) (95:5) H2O in ACN (B) (90:10) ACN in H2O 0.5 mL/min | ESI (+/−) QqQ MRM | LOQ: 0.15 ng/g | [22] |
4 OH DIC | LOQ: 1.10 ng/g | |||||||
IBU | - | |||||||
NAP | LOQ: 8.50 ng/g | |||||||
Pacific oyster (Crassostrea gigas) | DIC | LOQ: 0.10 ng/g | ||||||
4 OH DIC | LOQ: 0.52 ng/g | |||||||
IBU | - | |||||||
NAP | LOQ: 5.62 ng/g | |||||||
Mediterranean mussel (Mytilus galloprovincialis) | 7 drugs, including 5 NSAIDs | AS | LC-MS/MS | Ascentis Express Fused-Core C18, 50 × 4.6 mm, 2.7 μm | (A) 0.5% acetic acid in H2O; (B) ACN 0.6 mL/min | ESI (−) QqQ MRM | LOD: 5 ng/g | [78] |
KET | LOD: 50 ng/g | |||||||
NAP | LOD: 2.5 ng/g | |||||||
DIC | LOD: 5ng/g | |||||||
IBU | LOD: 50 ng/g | |||||||
Zebra Mussel (Dreissena polymorpha) | NSAIDs | DIC and transformation products (metabolites) | LC-MS/MS | Poroshell 120 SB-C8, 50 × 2.1 mm, 2.7 μm | (A) 0.01% formic acid in H2O; (B) MeOH 0.6 mL/min | ESI (+) QqQ MRM | LOD: 0.17 ng/g; LOQ: 0.29 ng/g | [65] |
Mediterranean mussel (Mytilus galloprovincialis) | 7 drugs, including 3 NSAIDs | KET | HPLC-UV/DAD | Waters Nova-Pack C18, 150 × 3.9 mm, 4 μm | MeOH in H2O (pH 3.0 with acetic acid) 1.0 mL/min | UV | LOD: 0.12 ng/g; LOQ: 0.41 μg/g | [3] |
NAP | LOD: 0.03 μg/g; LOQ: 0.10 μg/g | |||||||
IBU | LOD: 0.06 μg/g; LOQ: 0.21 μg/g | |||||||
Blue mussel (Mytilus edulis) | 14 pesticides, 10 PFCs, and 11 drugs, including 4 NSAIDs | PAR | UHPLC-MS/MS | Nucleodur Pyramid C18, 100 × 2 mm, 1.8 μm | (A) 0.08% formic acid in water; (B) 0.08% formic acid in can; (C) isopropanol | HESI (+) QqQ SRM | LOQ: 2.5 ng/g | [55] |
AS | LOQ: 10 ng/g | |||||||
KET | LOQ: 5 ng/g | |||||||
DIC | LOQ: 2.5 ng/g | |||||||
Green mussel (Perna viridis) | 7 EDCs and 37 drugs, including 3 NSAIDs | DIC | LC-MS/MS | Poroshell 120 SB-C18, 150 × 2.1 mm, 2.7 μm | - | ESI (+/−) QqQ MRM | LOD: 0.24 ng/g | [70] |
IBU | n/a | |||||||
NAP | LOD: 1.4 ng/g | |||||||
Venus clam (Ruditapes decussatus) | 24 drugs, including 3 NSAIDs | DIC | LC-MS/MS | Kinetex EVO C18, 50 × 2.1 mm, 2.6 μm | Acidic conditions: (A) H2O + 0.01 mM ammonium acetate + 0.5% formic acid; (B) MeOH 0.3 mL/min. Basic conditions: (A) H2O + 0.05 ammonia; (B) MeOH 0.5 mL/min | ESI (+/−) QqQ MRM | LOD: 0.84 ng/g | [58] |
IBU | LOD: 0.6 ng/g | |||||||
NAP | LOD: 0.75 ng/g | |||||||
Pacific mussel (Mytilus edulis trossulus) | NSAIDs | DIC | GC-MS | Zebron ZB-5MSi, 30 m × 0.25 mm × 0.25 µm | - | - | LOD: 2 ng/g; LOQ: 5 ng/g | [61] |
NAP | LOD: 1 ng/g; LOQ: 4 ng/g | |||||||
KET | LOD: 1 ng/g; LOQ: 4 ng/g | |||||||
IBU | LOD: 1 ng/g; LOQ: 3 ng/g | |||||||
PAR | LOD: 2 ng/g; LOQ: 5 ng/g | |||||||
Mediterranean mussel (Mytilus galloprovincialis) | 7 drugs, including 3 NSAIDs | AS | LC-MS/MS | Ascentis Express C18, 5 cm × 4.6 mm, 2.7 μm | (A) 0.5% ethanoic acid in H2O; (B) ACN 0.6 mL/min | ESI (−) QqQ MRM | LOD: 2 ng/g | [81] |
KET | LOD: 50 ng/g | |||||||
NAP | LOD: 2.5 ng/g | |||||||
DIC | LOD: 2.5 ng/g | |||||||
IBU | LOD: 50 ng/g | |||||||
Mediterranean mussel (Mytilus galloprovincialis) | 41 compounds, including 3 NSAIDs | PAR | LC-MS/MS | Kinetex F5 100 A, 100 × 2.1 mm, 2.6 μm | (A) H2O /MeOH (95:5); (B) MeOH/H2O (95:5), both with 0.1% methanoic acid 0.3 mL/min | ESI (+/−) QqQ SRM | LOD: 20 ng/g | [75] |
DIC | LOD: 1 ng/g | |||||||
KET | LOD: 2 ng/g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, P.; Pereira, A.M.P.T.; Pena, A.; Silva, L.J.G. Non-Steroidal Anti-Inflammatory Drugs in the Aquatic Environment and Bivalves: The State of the Art. Toxics 2024, 12, 415. https://doi.org/10.3390/toxics12060415
Pires P, Pereira AMPT, Pena A, Silva LJG. Non-Steroidal Anti-Inflammatory Drugs in the Aquatic Environment and Bivalves: The State of the Art. Toxics. 2024; 12(6):415. https://doi.org/10.3390/toxics12060415
Chicago/Turabian StylePires, Pedro, André M. P. T. Pereira, Angelina Pena, and Liliana J. G. Silva. 2024. "Non-Steroidal Anti-Inflammatory Drugs in the Aquatic Environment and Bivalves: The State of the Art" Toxics 12, no. 6: 415. https://doi.org/10.3390/toxics12060415
APA StylePires, P., Pereira, A. M. P. T., Pena, A., & Silva, L. J. G. (2024). Non-Steroidal Anti-Inflammatory Drugs in the Aquatic Environment and Bivalves: The State of the Art. Toxics, 12(6), 415. https://doi.org/10.3390/toxics12060415