Effective Technique and Mechanism for Simultaneous Adsorption of As(III/V) from Wastewater by Fe-ZIF-8@MXene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Synthesis of Materials
2.2.1. ZIF-8 Synthesis
2.2.2. Preparation of Fe-ZIF-8@MXene
2.3. Real Water Samples
2.4. Batch Adsorption Experiments
2.5. Adsorption Kinetics of As(III) and As(V) by Fe-ZIF-8@MXene
2.6. Adsorption Isotherms
2.7. Analytical and Characteristic Methods
3. Results
3.1. Characterization and Evaluation of the Adsorbent
3.2. Effect of Temperature and Concentration
3.3. Effect of pH
3.4. Effect of Time and Adsorbent Dose on Adsorption Process
3.5. Adsorption Kinetics and Isotherms
3.6. Practical Application of Fe-ZIF-8@MXene in Authentic Wastewater
3.7. Possible Mechanism for Adsorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Gao, B.; Zimmerman, A.R.; Li, Y.; Ma, L.; Harris, W.G.; Migliaccio, K.W. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour. Technol. 2015, 175, 391–395. [Google Scholar] [CrossRef]
- Niazi, N.K.; Bibi, I.; Shahid, M.; Ok, Y.S.; Burton, E.D.; Wang, H.; Shaheen, S.M.; Rinklebe, J.; Lüttge, A. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environ. Pollut. 2018, 232, 31–41. [Google Scholar] [CrossRef]
- Guo, S.; Jiang, M.; Lin, J.; Khan, N.I.; Owens, G.; Chen, Z. Arsenic speciation, oxidation and immobilization in an unsaturated soil in the presence of green synthesized iron oxide nanoparticles and humic acid. Chemosphere 2023, 311, 137198. [Google Scholar] [CrossRef]
- Souza, T.G.F.; Ciminelli, V.S.T. Arsenic removal and fixation by iron (oxyhydr)oxides: What is new? Curr. Opin. Environ. Sci. Health 2023, 33, 100466. [Google Scholar] [CrossRef]
- Rahman, M.M.; Chowdhury, U.K.; Mukherjee, S.C.; Mondal, B.K.; Paul, K.; Lodh, D.; Biswas, B.K.; Chanda, C.R.; Basu, G.K.; Saha, K.C.; et al. Chronic arsenic toxicity in Bangladesh and West Bengal, India--a review and commentary. J. Toxicol. Clin. Toxicol. 2001, 39, 683–700. [Google Scholar] [CrossRef]
- Liu, C.-H.; Chuang, Y.-H.; Chen, T.-Y.; Tian, Y.; Li, H.; Wang, M.-K.; Zhang, W. Mechanism of Arsenic Adsorption on Magnetite Nanoparticles from Water: Thermodynamic and Spectroscopic Studies. Enviton. Sci. Technol. 2015, 49, 7726–7734. [Google Scholar] [CrossRef]
- Liang, T.; Li, L.; Zhu, C.; Liu, X.; Li, H.; Su, Q.; Ye, J.; Geng, B.; Tian, Y.; Sardar, M.F.; et al. Adsorption of As(V) by the Novel and Efficient Adsorbent Cerium-Manganese Modified Biochar. Water 2020, 12, 2720. [Google Scholar] [CrossRef]
- Bhowmick, S.; Pramanik, S.; Singh, P.; Mondal, P.; Chatterjee, D.; Nriagu, J. Arsenic in groundwater of West Bengal, India: A review of human health risks and assessment of possible intervention options. Sci. Total Environ. 2018, 612, 148–169. [Google Scholar] [CrossRef]
- Ritchie, J.A. Arsenic and Antimony in Some New Zealand Thermal Waters; Department of Scientific and Industrial Research (DSIR): Rotorua, New Zealand, 1961. [Google Scholar]
- Muehe, E.M.; Morin, G.; Scheer, L.; Pape, P.L.; Esteve, I.; Daus, B.; Kappler, A. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides. Environ. Sci. Technol. 2016, 50, 2281–2291. [Google Scholar] [CrossRef]
- Asere, T.G.; Verbeken, K.; Tessema, D.A.; Fufa, F.; Stevens, C.V.; Du Laing, G. Adsorption of As(III) versus As(V) from aqueous solutions by cerium-loaded volcanic rocks. Environ. Sci. Pollut. Res. Int. 2017, 24, 20446–20458. [Google Scholar] [CrossRef]
- Xue, Q.; Ran, Y.; Tan, Y.; Peacock, C.L.; Du, H. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments. Chemosphere 2019, 224, 103–110. [Google Scholar] [CrossRef]
- Kim, J.; Benjamin, M.M. Modeling a novel ion exchange process for arsenic and nitrate removal. Water Res. 2004, 38, 2053–2062. [Google Scholar] [CrossRef]
- Lim, K.T.; Shukor, M.Y.; Wasoh, H. Physical, chemical, and biological methods for the removal of arsenic compounds. Biomed. Res. Int. 2014, 2014, 503784. [Google Scholar] [CrossRef]
- Cui, J.; Jing, C. A review of arsenic interfacial geochemistry in groundwater and the role of organic matter. Ecotoxicol. Environ. Saf. 2019, 183, 109550. [Google Scholar] [CrossRef]
- Shahzad, A.; Jang, J.; Lim, S.-R.; Lee, D.S. Unique selectivity and rapid uptake of molybdenum-disulfide-functionalized MXene nanocomposite for mercury adsorption. Environ. Res. 2020, 182, 109005. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. A general kinetic model for adsorption: Theoretical analysis and modeling. J. Mol. Liq. 2019, 288, 111100. [Google Scholar] [CrossRef]
- Deng, M.; Wu, X.; Zhu, A.; Zhang, Q.; Liu, Q. Well-dispersed TiO2 nanoparticles anchored on Fe3O4 magnetic nanosheets for efficient arsenic removal. J. Environ. Manag. 2019, 237, 63–74. [Google Scholar] [CrossRef]
- Asere, T.G.; Stevens, C.V.; Du Laing, G. Use of (modified) natural adsorbents for arsenic remediation: A review. Sci. Total Environ. 2019, 676, 706–720. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, M.; Tang, C.; Quan, K.; Tong, Q.; Cao, H.; Jiang, J.; Yang, H.; Zhang, J. ZIF-8@MXene-reinforced flame-retardant and highly conductive polymer composite electrolyte for dendrite-free lithium metal batteries. J. Colloid Interface Sci. 2022, 620, 478–485. [Google Scholar] [CrossRef]
- Kumar, P.; Pournara, A.; Kim, K.-H.; Bansal, V.; Rapti, S.; Manos, M.J. Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Prog. Mater. Sci. 2017, 86, 25–74. [Google Scholar] [CrossRef]
- He, X.; Deng, F.; Shen, T.; Yang, L.; Chen, D.; Luo, J.; Luo, X.; Min, X.; Wang, F. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight. J. Colloid Interface Sci. 2019, 539, 223–234. [Google Scholar] [CrossRef]
- Zhuang, S.; Cheng, R.; Wang, J. Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks. Chem. Eng. J. 2019, 359, 354–362. [Google Scholar] [CrossRef]
- Chen, M.; Xie, Z.; Yang, Y.; Gao, B.; Wang, J. Contrasting effects of dissimilatory Fe(III)/As(V) reduction on arsenic mobilization of Al coprecipitated ferrihydrite in simulated groundwater. Chem. Geol. 2023, 639, 121731. [Google Scholar] [CrossRef]
- McCann, C.M.; Peacock, C.L.; Hudson-Edwards, K.A.; Shrimpton, T.; Gray, N.D.; Johnson, K.L. In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil. J. Hazard. Mater. 2018, 342, 724–731. [Google Scholar] [CrossRef]
- Solé-Sardans, M.; Gamisans, X.; Dorado, A.D.; Lao-Luque, C. Exploring Arsenic Adsorption at low Concentration onto Modified Leonardite. Water Air Soil Pollut. 2016, 227, 128. [Google Scholar] [CrossRef]
- Gallegos-Garcia, M.; Ramírez-Muñiz, K.; Song, S. Arsenic Removal from Water by Adsorption Using Iron Oxide Minerals as Adsorbents: A Review. Miner. Process. Extr. Metall. Rev. 2012, 33, 301–315. [Google Scholar] [CrossRef]
- Jaffari, Z.H.; Abuabdou, S.M.A.; Ng, D.-Q.; Bashir, M.J.K. Insight into two-dimensional MXenes for environmental applications: Recent progress, challenges, and prospects. FlatChem 2021, 28, 100256. [Google Scholar] [CrossRef]
- Ishtiaq, R.; Zahra, N.; Iftikhar, S.; Rubab, F.; Sultan, K.; Abbas, A.; Lam, S.-M.; Jaffari, Z.H.; Park, K.Y. Adsorption of Cr(VI) ions onto fluorine-free niobium carbide (MXene) and machine learning prediction with high precision. J. Environ. Chem. Eng. 2024, 12, 112238. [Google Scholar] [CrossRef]
- Jaffari, Z.H.; Abbas, A.; Umer, M.; Kim, E.-S.; Cho, K.H. Crystal graph convolution neural networks for fast and accurate prediction of adsorption ability of Nb2CTx towards Pb(ii) and Cd(ii) ions. J. Mater. Chem. A 2023, 11, 9009–9018. [Google Scholar] [CrossRef]
- Cacho-Bailo, F.; Seoane, B.; Téllez, C.; Coronas, J. ZIF-8 continuous membrane on porous polysulfone for hydrogen separation. J. Membr. Sci. 2014, 464, 119–126. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, S.; Jia, J.; Xu, F.; Long, Z.; Hou, X. Ultrasensitive determination of inorganic arsenic by hydride generation-atomic fluorescence spectrometry using Fe3O4@ZIF-8 nanoparticles for preconcentration. Microchem. J. 2016, 124, 578–583. [Google Scholar] [CrossRef]
- Alchouron, J.; Navarathna, C.; Chludil, H.D.; Dewage, N.B.; Perez, F.; Hassan, E.B.; Pittman, C.U., Jr.; Vega, A.S.; Mlsna, T.E. Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic(V) remediation. Sci. Total Environ. 2020, 706, 135943. [Google Scholar] [CrossRef]
- Zang, S.Y.; Shao, J.H.; Sun, C.T.; Wang, J.; Zhou, H.F. Adsorption technology and mechanism of As(III) and As(V) in wastewater by iron modified rice husk biochar. Indian J. Chem. Technol. 2022, 29, 495–502. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Zhang, G.; Wang, X.; Zang, S.-Y.; Jia, Y. Removal of As(V) and As(III) Species from Wastewater by Adsorption on Coal Fly Ash. Desalination. Water. Treat. 2019, 151, 242–250. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Z.; Wang, Z.; Feng, X.; Wang, Y.; Wu, A. Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions. Dalton Trans. 2016, 45, 12653–12660. [Google Scholar] [CrossRef]
- Zhu, S.; Zhao, J.; Zhao, N.; Yang, X.; Chen, C.; Shang, J. Goethite modified biochar as a multifunctional amendment for cationic Cd(II), anionic As(III), roxarsone, and phosphorus in soil and water. J. Clean. Prod. 2020, 247, 119579. [Google Scholar] [CrossRef]
- Zang, S.Y.; Zhang, R.; Lv, M.H.; Li, Y.; Zhou, H.F. Adsorption Technology and Mechanism of Roxarsone and Arsenic(V) Combined Pollution in Wastewater by Modified Plant Ash Biochar. Russ. J. Phys. Chem. A 2023, 97, 248–256. [Google Scholar] [CrossRef]
- Dubois, L.H.; Nuzzo, R.G. Synthesis, Structure, and Properties of Model Organic Surfaces. Langmuir 1992, 43, 437–463. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, Y.; Zhang, Q.; Niu, L.; You, T.; Ivaska, A. Immobilization of ionic liquid with polyelectrolyte as carrier. Chem. Commun. 2005, 4193–4195. [Google Scholar] [CrossRef]
- He, M.; Yao, J.; Liu, Q.; Wang, K.; Chen, F.; Wang, H. Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater. 2014, 184, 55–60. [Google Scholar] [CrossRef]
- Vithanage, M.; Herath, I.; Joseph, S.; Bundschuh, J.; Bolan, N.; Ok, Y.S.; Kirkham, M.B.; Rinklebe, J. Interaction of arsenic with biochar in soil and water: A critical review. Carbon 2017, 113, 219–230. [Google Scholar] [CrossRef]
- Hu, J.; Tong, Z.; Hu, Z.; Chen, G.; Chen, T. Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes. J. Colloid Interface Sci. 2012, 377, 355–361. [Google Scholar] [CrossRef]
- Mudzielwana, R.; Gitari, M.W.; Ndungu, P.G.J.F.i.C. Enhanced As(III) and As(V) Adsorption From Aqueous Solution by a Clay Based Hybrid Sorbent. Front. Chem. 2020, 7, 1–10. [Google Scholar] [CrossRef]
- Zhou, L.; Li, N.; Owens, G.; Chen, Z. Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chem. Eng. J. 2019, 362, 628–637. [Google Scholar] [CrossRef]
- Zhu, H.; Jia, Y.; Wu, X.; Wang, H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 2009, 172, 1591–1596. [Google Scholar] [CrossRef]
- O’Reilly, S.E.; Strawn, D.G.; Sparks, D.L. Residence Time Effects on Arsenate Adsorption/Desorption Mechanisms on Goethite. Soil Sci. Soc. Am. J. 2001, 65, 67–77. [Google Scholar] [CrossRef]
Parameters | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|
qe (mg·g−1) | K1 (h−1) | R2 | qe (mg·g−1) | K2 (g·mg−1·h−1) | R2 | |
1 mg/LAs(III) | 10.6047 | 0.0138 | 0.9876 | 8.9286 | 0.0030 | 0.9914 |
2 mg/L/As(III) | 18.1301 | 0.0122 | 0.9833 | 16.8067 | 0.0013 | 0.9904 |
3 mg/L/As(III) | 21.5874 | 0.0087 | 0.9722 | 21.3675 | 0.0012 | 0.9924 |
5 mg/L/As(III) | 23.5993 | 0.0059 | 0.9207 | 22.9358 | 0.0008 | 0.9976 |
10 mg/L/As(III) | 23.9552 | 0.0046 | 0.9781 | 29.6736 | 0.0007 | 0.9997 |
1 mg/L/As(V) | 3.4261 | 0.0068 | 0.9550 | 8.8183 | 0.0112 | 0.9992 |
2 mg/L/As(V) | 6.2158 | 0.0065 | 0.9523 | 16.5017 | 0.0058 | 0.9993 |
3 mg/L/As(V) | 11.7382 | 0.0066 | 0.9787 | 24.1546 | 0.0027 | 0.9991 |
5 mg/L/As(V) | 26.5705 | 0.0080 | 0.9824 | 38.7597 | 0.0011 | 0.9997 |
10 mg/L/As(V) | 43.7925 | 0.0081 | 0.9870 | 60.6061 | 0.0007 | 0.9983 |
T (°C)/Adsorbates | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qmax (mg/g) | KL (L/mg) | R2 | KF (mg/g) | n | R2 | |
15/As(III) | 21.1864 | 1.9424 | 0.9980 | 12.4767 | 3.5002 | 0.8224 |
25/As(III) | 26.0417 | 1.5000 | 0.9882 | 14.2004 | 3.2510 | 0.8652 |
35/As(III) | 28.0899 | 1.4016 | 0.9884 | 14.7503 | 3.1786 | 0.8920 |
15/As(V) | 65.7895 | 0.6609 | 0.9975 | 22.9245 | 1.7550 | 0.9733 |
25/As(V) | 70.9220 | 0.7500 | 0.9918 | 26.1879 | 1.8067 | 0.9888 |
35/As(V) | 79.4225 | 0.6455 | 0.9909 | 24.5358 | 1.7492 | 0.9853 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, S.; Zhang, Q.; Hu, B.; Zhang, Y.; Pu, J.H.; Lv, M. Effective Technique and Mechanism for Simultaneous Adsorption of As(III/V) from Wastewater by Fe-ZIF-8@MXene. Toxics 2024, 12, 419. https://doi.org/10.3390/toxics12060419
Zang S, Zhang Q, Hu B, Zhang Y, Pu JH, Lv M. Effective Technique and Mechanism for Simultaneous Adsorption of As(III/V) from Wastewater by Fe-ZIF-8@MXene. Toxics. 2024; 12(6):419. https://doi.org/10.3390/toxics12060419
Chicago/Turabian StyleZang, Shuyan, Qing Zhang, Baoli Hu, Yaqian Zhang, Jaan H. Pu, and Meiheng Lv. 2024. "Effective Technique and Mechanism for Simultaneous Adsorption of As(III/V) from Wastewater by Fe-ZIF-8@MXene" Toxics 12, no. 6: 419. https://doi.org/10.3390/toxics12060419
APA StyleZang, S., Zhang, Q., Hu, B., Zhang, Y., Pu, J. H., & Lv, M. (2024). Effective Technique and Mechanism for Simultaneous Adsorption of As(III/V) from Wastewater by Fe-ZIF-8@MXene. Toxics, 12(6), 419. https://doi.org/10.3390/toxics12060419