Inflammatory Bowel Disease Therapies and Acute Liver Injury
Abstract
:1. Introduction
2. Aminosalicylates
3. Immunosuppressants
4. Biologic Therapies
4.1. Tumor Necrosis Factor Inhibitors
4.2. Anti-Integrin Antibodies
4.3. Anti-Interleukin 12/23 Antibodies
4.4. Janus Kinase Inhibitors
4.5. Sphingosine-1-Phosphate (S1P) Receptor Modulators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, Z.; Wang, S.; Li, J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front. Med. 2021, 8, 2681. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Abbas, A.M.; Whang, N.; Balart, L.A.; Bazzano, L.A.; Kelly, T.N. Incidence of Liver Toxicity in Inflammatory Bowel Disease Patients Treated with Methotrexate: A Meta-Analysis of Clinical Trials. Inflamm. Bowel Dis. 2012, 18, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Núñez F, P.; Quera, R.; Bay, C.; Castro, F.; Mezzano, G. Drug-Induced Liver Injury Used in the Treatment of Inflammatory Bowel Disease. J. Crohn’s Colitis 2022, 16, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL clinical practice guidelines on the management of acute (fulminant) liver failure. J. Hepatol. 2017, 66, 1047–1081. [Google Scholar] [CrossRef] [PubMed]
- Hoofnagle, J.H.; Björnsson, E.S. Drug-Induced Liver Injury—Types and Phenotypes. N. Engl. J. Med. 2019, 381, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Navarro, V.J.; Senior, J.R. Drug-related hepatotoxicity. N. Engl. J. Med. 2006, 354, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Fyfe, B.; Zaldana, F.; Liu, C. The Pathology of Acute Liver Failure. Clin. Liver Dis. 2018, 22, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, F.; López-Sanromán, A.; Algaba, A.; Van-Domselaar, M.; Gisbert, J.P.; GARCÍA-GARZÓN, S.; Garrido, E.; Piqueras, B.; DE LA Poza, G.; Guerra, I. Mercaptopurine rescue after azathioprine-induced liver injury in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2010, 31, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Bonkovsky, H.L.; Fontana, R.; Lee, W.; Stolz, A.; Talwalkar, J.; Reddy, K.R.; Watkins, P.B.; Navarro, V.; Barnhart, H.; et al. Features and Outcomes of 899 Patients With Drug-Induced Liver Injury: The DILIN Prospective Study. Gastroenterology 2015, 148, 1340–1352.e7. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Chalasani, N.P.; Lee, W.M.; Fontana, R.J.; Bonkovsky, H.L.; Watkins, P.B.; Hayashi, P.H.; Davern, T.J.; Navarro, V.; Reddy, R.; et al. Hepatic histological findings in suspected drug-induced liver injury: Systematic evaluation and clinical associations. Hepatology 2014, 59, 661–670. [Google Scholar] [CrossRef]
- Martinez, M.A.; Vuppalanchi, R.; Fontana, R.J.; Stolz, A.; Kleiner, D.E.; Hayashi, P.H.; Gu, J.; Hoofnagle, J.H.; Chalasani, N. Clinical and Histologic Features of Azithromycin-Induced Liver Injury. Clin. Gastroenterol. Hepatol. 2015, 13, 369–376.e3. [Google Scholar] [CrossRef] [PubMed]
- Katarey, D.; Verma, S. Drug-induced liver injury. Clin. Med. 2016, 16, s104–s109. [Google Scholar] [CrossRef] [PubMed]
- Lucena, M.I.; Andrade, R.J.; Kaplowitz, N.; García-Cortes, M.; Fernández, M.C.; Romero-Gomez, M.; Bruguera, M.; Hallal, H.; Robles-Diaz, M.; Rodriguez-González, J.F.; et al. Phenotypic characterization of idiosyncratic drug-induced liver injury: The influence of age and sex. Hepatology 2009, 49, 2001–2009. [Google Scholar] [CrossRef] [PubMed]
- Boicean, A.; Birlutiu, V.; Ichim, C.; Brusnic, O.; Onișor, D.M. Fecal Microbiota Transplantation in Liver Cirrhosis. Biomedicines 2023, 11, 2930. [Google Scholar] [CrossRef] [PubMed]
- Sciuto, M.; Catanzaro, R. Composition of gut microbiota and its correlations with neurological, intestinal, cardiovascular and metabolic diseases. Acta Microbiol. Immunol. Hung. 2023, 70, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.-K.; Ai, Y.; Cheng, Z.-L.; Yang, L.; Hou, X.-H. Contribution of gut microbiota to drug-induced liver injury. Hepatobiliary Pancreat. Dis. Int. 2023, 22, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Lv, L.; Shi, D.; Ye, J.; Fang, D.; Guo, F.; Li, Y.; He, X.; Li, L. Protective Effect of Akkermansia muciniphila against Immune-Mediated Liver Injury in a Mouse Model. Front. Microbiol. 2017, 8, 1804. [Google Scholar] [CrossRef] [PubMed]
- Boicean, A.; Birsan, S.; Ichim, C.; Boeras, I.; Roman-Filip, I.; Blanca, G.; Bacila, C.; Fleaca, R.S.; Dura, H.; Roman-Filip, C. Has-miR-129-5p’s involvement in different disorders, from digestive cancer to neurodegenerative diseases. Biomedicines 2023, 11, 2058. [Google Scholar] [CrossRef] [PubMed]
- Robles-Díaz, M.; Medina-Caliz, I.; Stephens, C.; Andrade, R.J.; Lucena, M.I. Biomarkers in DILI: One More Step Forward. Front. Pharmacol. 2016, 7, 267. [Google Scholar] [CrossRef]
- Heidari, R.; Rasti, M.; Shirazi Yeganeh, B.; Niknahad, H.; Saeedi, A.; Najibi, A. Sulfasalazine-induced renal and hepatic injury in rats and the protective role of taurine. BioImpacts 2016, 6, 3–8. [Google Scholar] [CrossRef]
- Núñez, F.P.; Castro, F.; Mezzano, G.; Quera, R.; Diaz, D.; Castro, L. Hepatobiliary manifestations in inflammatory bowel disease: A practical approach. World J. Hepatol. 2022, 14, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, P.; Colombel, J.F.; Aboubakr, A.; Narula, N. Systematic review: Safety of mesalazine in ulcerative colitis. Aliment. Pharmacol. Ther. 2018, 47, 1597–1609. [Google Scholar] [CrossRef] [PubMed]
- D’Haens, G.; Safroneeva, E.; Thorne, H.; Laoun, R. Assessing the Clinical and Endoscopic Efficacy of Extended Treatment Duration with Different Doses of Mesalazine for Mild-to-Moderate Ulcerative Colitis beyond 8 Weeks of Induction. Inflamm. Intest. Dis. 2023, 8, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Shi, Y.; Ge, Z.; Qian, J. Effects of mesalamine combined with live combined Bifidobacterium, Lactobacillus and Enterococcus capsules on intestinal mucosa barrier function and intestinal microbiota in mildly active Crohn’s disease patients. J. Investig. Surg. 2024, 37, 2297565. [Google Scholar] [CrossRef] [PubMed]
- Barnhill, M.S.; Steinberg, J.M.; Jennings, J.J.; Lewis, J.H. Hepatotoxicty of Agents Used in the Management of Inflammatory Bowel Disease: A 2020 Update. Curr. Gastroenterol. Rep. 2020, 22, 47. [Google Scholar] [CrossRef]
- Sun, J.; Yuan, Y. Mesalazine Modified-Release Tablet in the Treatment of Ulcerative Colitis in the Remission Phase: A Chinese, Multicenter, Single-Blind, Randomized Controlled Study. Adv. Ther. 2016, 33, 410–422. [Google Scholar] [CrossRef]
- Watanabe, A.; Nishida, T.; Osugi, N.; Kitanaka, T.; Minoura, Y.; Okabe, S.; Sakamoto, N.; Fujii, Y.; Sugimoto, A.; Nakamatsu, D.; et al. 5-Aminosalicylic Acid-Induced Liver Injury in a Patient with Ulcerative Colitis: A Case Report. Case Rep. Gastroenterol. 2024, 18, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Mazza, S.; Soro, S.; Verga, M.C.; Elvo, B.; Ferretti, F.; Cereatti, F.; Drago, A.; Grassia, R. Liver-side of inflammatory bowel diseases: Hepatobiliary and drug-induced disorders. World J. Hepatol. 2021, 13, 1828–1849. [Google Scholar] [CrossRef]
- ter Horst, P.; Smolders, E.J.; den Besten-Bertholee, D. Mercaptopurine and Metabolites in Breast Milk. Breastfeed. Med. 2020, 15, 277–279. [Google Scholar] [CrossRef]
- Wong, D.R.; Coenen, M.J.H.; Derijks, L.J.J.; Vermeulen, S.H.; van Marrewijk, C.J.; Klungel, O.H.; Scheffer, H.; Franke, B.; Guchelaar, H.J.; de Jong, D.J.; et al. Early prediction of thiopurine-induced hepatotoxicity in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2017, 45, 391–402. [Google Scholar] [CrossRef]
- Stocco, G.; Martelossi, S.; Barabino, A.; Decorti, G.; Bartoli, F.; Montico, M.; Gotti, A.; Ventura, A. Glutathione-S-transferase genotypes and the adverse effects of azathioprine in young patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2007, 13, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, O.S.; Lewis, J.H. Hepatotoxicity of Agents Used in the Management of Inflammatory Bowel Disease. Dig. Dis. 2010, 28, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, M.; Ordas, I.; Cabre, E.; Garcia-Sanchez, V.; Bastida, G.; Peñalva, M.; Gomollón, F.; García-Planella, E.; Merino, O.; Gutiérrezet, A.; et al. Safety of thiopurine therapy in inflammatory bowel disease: Long-term follow-up study of 3931 patients. Inflamm. Bowel Dis. 2013, 19, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Broekman, M.; Coenen, M.; Marrewijk, C.; Wanten, G.J.A.; Wong, D.R.; Verbeek, A.L.M.; Klungel, O.H.; Hooymans, P.M.; Guchelaar, H.J.; Schefferet, H.; et al. More Dose-dependent Side Effects with Mercaptopurine over Azathioprine in IBD Treatment Due to Relatively Higher Dosing. Inflamm. Bowel Dis. 2017, 23, 1873–1881. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.J.; Chalasani, N.; Björnsson, E.S.; Suzuki, A.; Kullak-Ublick, G.A.; Watkins, P.B.; Devarbhavi, H.; Merz, M.; Lucena, M.I.; Kaplowitz, N. Drug-induced liver injury. Nat. Rev. Dis. Primers 2019, 5, 58. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, B.; Al-Sabti, R.; Reau, N. Late-Onset Acute Liver Injury From Azathioprine. ACG Case Rep. J. 2022, 9, e00847. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, K.; Sasaki, E.; Higuchi, S.; Takai, S.; Tsuneyama, K.; Fukami, T.; Nakajima, M.; Yokoi, T. Involvement of oxidative stress and immune- and inflammation-related factors in azathioprine-induced liver injury. Toxicol. Lett. 2013, 224, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Munnig-Schmidt, E.; Zhang, M.; Mulder, C.J.; Barclay, M.L. Late-onset Rise of 6-MMP Metabolites in IBD Patients on Azathioprine or Mercaptopurine. Inflamm. Bowel Dis. 2018, 24, 892–896. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, S.B.; Allin, K.H.; Burisch, J.; Jensen, C.B.; Hansen, S.; Gluud, L.L.; Theede, K.; Nielsen, A.M.; Jess, T.; Kiszka-Kanowitz, M. Outcome of concomitant treatment with thiopurines and allopurinol in patients with inflammatory bowel disease: A nationwide Danish cohort study. United Eur. Gastroenterol. J. 2020, 8, 68–76. [Google Scholar] [CrossRef]
- Pierik, M.; Rutgeerts, P.; Vlietinck, R.; Vermeire, S. Pharmacogenetics in inflammatory bowel disease. World J. Gastroenterol. 2006, 12, 3657–3667. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liu, Y.; Zhang, Y.; Ke, Z.; Zhang, Y.; Liu, Y. Patients with IBD receiving Methotrexate are at higher risk of liver injury compared with patients with non-IBD diseases: A meta-analysis and systematic review. Front. Med. 2021, 8, 774824. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, R.; Branco, C.C.; Macedo, G. Liver manifestations and complications in inflammatory bowel disease: A review. World J. Hepatol. 2021, 13, 1956–1967. [Google Scholar] [CrossRef] [PubMed]
- Feagan, B.G.; McDonald, J.W.; Panaccione, R.; Enns, R.A.; Bernstein, C.N.; Ponich, T.P.; Bourdages, R.; Macintosh, D.G.; Dallaire, C.; Cohen, A.; et al. Methotrexate in combination with infliximab is no more effective than infliximab alone in patients with Crohn’s disease. Gastroenterology 2014, 146, 681–688 e1. [Google Scholar] [CrossRef] [PubMed]
- Fournier, M.R.; Klein, J.; Minuk, G.Y.; Bernstein, C.N. Changes in Liver Biochemistry During Methotrexate Use for Inflammatory Bowel Disease. Am. J. Gastroenterol. 2010, 105, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Lama, Y.; Taxonera, C.; Lopez-Sanroman, A.; Perez-Calle, J.L.; Bermejo, F.; Pajares, R.; McNicholl, A.G.; Opio, V.; Mendoza, J.L.; López, P.; et al. Methotrexate in inflammatory bowel disease: A multicenter retrospective study focused on long-term efficacy and safety. The Madrid experience. Eur. J. Gastroenterol. Hepatol. 2012, 24, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Lie, E.; van der Heijde, D.; Uhlig, T.; Heiberg, M.S.; Koldingsnes, W.; Rødevand, E.; Kaufmann, C.; Mikkelsen, K.; Kvien, T.K. Effectiveness and retention rates of methotrexate in psoriatic arthritis in comparison with methotrexate-treated patients with rheumatoid arthritis. Ann. Rheum. Dis. 2009, 69, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Askari, B.S.; Krajinovic, M. Dihydrofolate Reductase Gene Variations in Susceptibility to Disease and Treatment Outcomes. Curr. Genom. 2010, 11, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Vejnović, D.; Milić, V.; Popović, B.; Damnjanović, T.; Maksimović, N.; Bunjevački, V.; Krajinović, M.; Novaković, I.; Damjanov, N.; Jekić, B. Association of C35T polymorphism in dihydrofolate reductase gene with toxicity of methotrexate in rheumatoid arthritis patients. Expert Opin. Drug Metab. Toxicol. 2019, 15, 253–257. [Google Scholar] [CrossRef]
- Björnsson, E.S.; Gu, J.; Kleiner, D.E.; Chalasani, N.; Hayashi, P.H.; Hoofnagle, J.H. DILIN Investigators Azathioprine and 6-Mercaptopurine-induced liver injury: Clinical features and outcomes. J. Clin. Gastroenterol. 2017, 51, 63–69. [Google Scholar] [CrossRef]
- Lu, H.; Lin, J.; Xu, C.; Sun, M.; Zuo, K.; Zhang, X.; Li, M.; Huang, H.; Li, Z.; Wu, W.; et al. Cyclosporine modulates neutrophil functions via the SIRT6-HIF-1α-glycolysis axis to alleviate severe ulcerative colitis. Clin. Transl. Med. 2021, 11, e334. [Google Scholar] [CrossRef]
- Korolczuk, A.; Caban, K.; Amarowicz, M.; Czechowska, G.; Irla-Miduch, J. Oxidative Stress and Liver Morphology in Experimental Cyclosporine A-Induced Hepatotoxicity. BioMed. Res. Int. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Akbulut, S.; Elbe, H.; Eris, C.; Dogan, Z.; Toprak, G.; Yalcin, E.; Otan, E.; Turkoz, Y. Effects of antioxidant agents against cyclosporine-induced hepatotoxicity. J. Surg. Res. 2015, 193, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.; Sinopoulou, V.; Akobeng, A.K.; Pana, M.; Gasiea, R.; Moran, G.W. Tacrolimus (FK506) for induction of remission in corticosteroid-refractory ulcerative colitis. Cochrane Database Syst. Rev. 2022, 2022, CD007216. [Google Scholar] [CrossRef] [PubMed]
- Terzi, F.; Ciftci, M.K. Protective effect of silymarin on tacrolimus-induced kidney and liver toxicity. BMC Complement. Med. Ther. 2022, 22, 331. [Google Scholar] [CrossRef] [PubMed]
- Rundquist, S.; Sachs, M.C.; Eriksson, C.; Olén, O.; Montgomery, S.; Halfvarson, J.; The SWIBREG Study Group. Drug survival of anti-TNF agents compared with vedolizumab as a second-line biological treatment in inflammatory bowel disease: Results from nationwide Swedish registers. Aliment. Pharmacol. Ther. 2021, 53, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Ghabril, M.; Bonkovsky, H.L.; Kum, C.; Davern, T.; Hayashi, P.H.; Kleiner, D.E.; Serrano, J.; Rochon, J.; Fontana, R.J.; Bonacini, M.; et al. Liver Injury From Tumor Necrosis Factor-α Antagonists: Analysis of Thirty-four Cases. Clin. Gastroenterol. Hepatol. 2013, 11, 558–564.e3. [Google Scholar] [CrossRef] [PubMed]
- Björnsson, H.K.; Gudbjornsson, B.; Björnsson, E.S. Infliximab-induced liver injury: Clinical phenotypes, autoimmunity and the role of corticosteroid treatment. J. Hepatol. 2022, 76, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Parekh, R.; Kaur, N. Liver Injury Secondary to Anti-TNF-Alpha Therapy in Inflammatory Bowel Disease: A Case Series and Review of the Literature. Case Rep. Gastrointest. Med. 2014, 2014, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Aby, E.S.; Lake, J.R.; Vaughn, B.P. The Impact of Biologics for the Management of Inflammatory Bowel Disease on Liver Enzymes. Clin. Liver Dis. 2020, 16, 212–217. [Google Scholar] [CrossRef]
- Alikhan, M.M.; Mansoor, E.; Satyavada, S.; Greer, K.; Xin, W.; Cohen, S.; Cooper, G.; Katz, J. Infliximab-induced acute liver failure in a patient with Crohn’s disease requiring orthotopic liver transplantation. ACG Case Rep. J. 2021, 8, e00586. [Google Scholar] [CrossRef]
- Parisi, I.; O’beirne, J.; Rossi, R.E.; Tsochatzis, E.; Manousou, P.; Theocharidou, E.; Hamilton, M.; Murray, C.; Epstein, O.; Burroughs, A.K. Elevated liver enzymes in inflammatory bowel disease: The role and safety of infliximab. Eur. J. Gastroenterol. Hepatol. 2016, 28, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Worland, T.; Chin, K.L.; van Langenberg, D.; Garg, M.; Nicoll, A. Retrospective study of idiosyncratic drug-induced liver injury from infliximab in an inflammatory bowel disease cohort: The IDLE study. Ann. Gastroenterol. 2020, 33, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Björnsson, E.S.; Gunnarsson, B.I.; Gröndal, G.; Jonasson, J.G.; Einarsdottir, R.; Ludviksson, B.R.; Gudbjörnsson, B.; Olafsson, S. Risk of Drug-Induced Liver Injury From Tumor Necrosis Factor Antagonists. Clin. Gastroenterol. Hepatol. 2015, 13, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Zachou, M.; Pikramenos, K.; Panoutsakou, M.; Lalla, E.; Androutsakos, T. Infliximab (IFX)-Biosimilar Induced Drug-Induced Liver Injury (DILI): A Case Report. Cureus 2022, 14, e32525. [Google Scholar] [CrossRef]
- Kashima, S.; Sawada, K.; Moriichi, K.; Fujiya, M. A case report of drug-induced liver injury due to the infliximab biosimilar CT-P13 on switching from original infliximab in a patient with Crohn’s disease. Ther. Adv. Drug Saf. 2022, 13. [Google Scholar] [CrossRef]
- Koller, T.; Galambosova, M.; Filakovska, S.; Kubincova, M.; Hlavaty, T.; Toth, J.; Krajcovicova, A.; Payer, J. Drug-induced liver injury in inflammatory bowel disease: 1-year prospective observational study. World J. Gastroenterol. 2017, 23, 4102–4111. [Google Scholar] [CrossRef]
- Hahn, L.; Asmussen, D.; Benson, J. Drug Induced-Hepatotoxicity with Concurrent Use of Adalimumab and Mesalamine for the Treatment of Crohn’s Disease. Gastroenterol. Hepatol. 2015, 2, 00034. [Google Scholar] [CrossRef]
- Park, S.C.; Jeen, Y.T. Anti-integrin therapy for inflammatory bowel disease. World J. Gastroenterol. 2018, 24, 1868–1880. [Google Scholar] [CrossRef]
- Dotan, I.; Allez, M.; Danese, S.; Keir, M.; Tole, S.; McBride, J. The role of integrins in the pathogenesis of inflammatory bowel disease: Approved and investigational anti-integrin therapies. Med. Res. Rev. 2020, 40, 245–262. [Google Scholar] [CrossRef]
- –Gubatan, J.; Keyashian, K.; Rubin, S.J.S.; Wang, J.; Buckman, C.A.; Sinha, S. Anti-Integrins for the Treatment of Inflammatory Bowel Disease: Current Evidence and Perspectives. Clin. Exp. Gastroenterol. 2021, 14, 333–342. [Google Scholar] [CrossRef]
- Mascarenhas Saraiva, M.; Ribeiro, T.; Dias, E.; Lopes, J.; Cardoso, H.; Macedo, G. Vedolizumab-induced liver injury. GE Port. J. Gastroenterol. 2020, 28, 410–415. [Google Scholar] [CrossRef] [PubMed]
- D’Haens, G.; Baert, F.; Danese, S.; Kobayashi, T.; Loftus Jr, E.V.; Sandborn, W.J.; Dornic, Q.; Lindner, D.; Kisfalvi, K.; Marins, E.G.; et al. Efficacy of vedolizumab during intravenous induction therapy in ulcerative colitis and Crohn’s disease: Post hoc analysis of patient-reported outcomes from the VISIBLE 1 and 2 studies. Eur. J. Gastroenterol. Hepatol. 2024, 36, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Colombel, J.F.; Sands, B.E.; Rutgeerts, P.; Sandborn, W.; Danese, S.; D’Haens, G.; Panaccione, R.; Loftus, E.V., Jr.; Sankoh, S.; Fox, I.; et al. The safety of vedolizumab for ulcerative colitis and Crohn’s disease. Gut 2017, 66, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Santoiemma, P.P.; Maddur, H.; Moore, C.M. A Case of Drug-Induced Liver Injury Secondary to Natalizumab. Case Rep. Hepatol. 2020, 2020, 7976585. [Google Scholar] [CrossRef] [PubMed]
- Cunha-Silva, M.; de Moraes, P.B.S.; de Carvalho, P.R.; da Costa, L.B.E.; Assis-Mendonça, G.R.; Lalli, C.A.; Fernandes, G.C.A.; Monteiro, F.B.; Lamas, G.M.; Damasceno, A.; et al. Acute Hepatitis with Positive Autoantibodies: A Case of Natalizumab-Induced Early-Onset Liver Injury. Am. J. Case Rep. 2022, 23, e936318-1–e936318-5. [Google Scholar] [CrossRef] [PubMed]
- Sands, B.E.; Sandborn, W.J.; Panaccione, R.; O’Brien, C.D.; Zhang, H.; Johanns, J.; Adedokun, O.J.; Li, K.; Peyrin-Biroulet, L.; Van Assche, G.; et al. Ustekinumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2019, 381, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Elhag, D.A.; Kumar, M.; Saadaoui, M.; Akobeng, A.K.; Al-Mudahka, F.; Elawad, M.; Al Khodor, S. Inflammatory Bowel Disease Treatments and Predictive Biomarkers of Therapeutic Response. Int. J. Mol. Sci. 2022, 23, 6966. [Google Scholar] [CrossRef] [PubMed]
- Samah, A.S.; Ruth, T.; Roua, K.; Louis, V.R. Ustekinumab-induced autoimmune hepatitis: About a case report. Pan Afr. Med, J. 2023, 44, 1. [Google Scholar] [CrossRef]
- Herrera-Deguise, C.; Serra-Ruiz, X.; Lastiri, E.; Borruel, N. JAK inhibitors: A new dawn for oral therapies in inflammatory bowel diseases. Front. Med. 2023, 10, 1089099. [Google Scholar] [CrossRef]
- Higashiyama, M.; Hokari, R. New and emerging treatments for inflammatory bowel disease. Digestion 2023, 104, 74–81. [Google Scholar] [CrossRef]
- Guo, L.; Feng, S.; Sun, B.; Jiang, X.; Liu, Y. Benefit and risk profile of tofacitinib for the treatment of alopecia areata: A systemic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Mardani, M.; Mohammadshahi, J.; Abolghasemi, S.; Teimourpour, R. Drug-induced liver injury due to tofacitinib: A case report. J. Med. Case Rep. 2023, 17, 97. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.; Yates, M.; Adas, M.; Bechman, K.; Galloway, J. The safety of JAK-1 inhibitors. Rheumatology 2021, 60, ii24–ii30. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jeldres, T.; Alvarez-Lobos, M.; Rivera-Nieves, J. Targeting Sphingosine-1-Phosphate Signaling in Immune-Mediated Diseases: Beyond Multiple Sclerosis. Drugs 2021, 81, 985–1002. [Google Scholar] [CrossRef] [PubMed]
- Paik, J. Ozanimod: A Review in Ulcerative Colitis. Drugs 2022, 82, 1303–1313. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; D’haens, G.; Wolf, D.C.; Jovanovic, I.; Hanauer, S.B.; Ghosh, S.; Petersen, A.; Hua, S.Y.; Lee, J.H.; et al. Ozanimod as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2021, 385, 1280–1291. [Google Scholar] [CrossRef]
DILI Forms | Biohumoral Parameters | Symptoms | Histology |
---|---|---|---|
Direct/indirect (mild-moderate) | ↑ transaminases and/or AP ± bilirubin | mild/absent | |
Direct/indirect (severe) | ↑↑ transaminases and/or AP ± bilirubin | jaundice, pruritus | centrilobular or panlobular necrosis with mild inflammation |
Idiosyncratic: | |||
| ALT > 2N and/or ALT/AP ≥ 5 | mild/absent | cholestasis in the small bile canaliculi |
| AP > 2N and/or ALT/AP ≤ 2 | jaundice, pruritus | |
| ALT > 2N, AP > 2 and ALT/AP = 2–5 | mild/absent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catanzaro, R.; Marotta, F.; Yazdani, A.; Sciuto, M. Inflammatory Bowel Disease Therapies and Acute Liver Injury. Toxics 2024, 12, 421. https://doi.org/10.3390/toxics12060421
Catanzaro R, Marotta F, Yazdani A, Sciuto M. Inflammatory Bowel Disease Therapies and Acute Liver Injury. Toxics. 2024; 12(6):421. https://doi.org/10.3390/toxics12060421
Chicago/Turabian StyleCatanzaro, Roberto, Francesco Marotta, Azam Yazdani, and Morena Sciuto. 2024. "Inflammatory Bowel Disease Therapies and Acute Liver Injury" Toxics 12, no. 6: 421. https://doi.org/10.3390/toxics12060421
APA StyleCatanzaro, R., Marotta, F., Yazdani, A., & Sciuto, M. (2024). Inflammatory Bowel Disease Therapies and Acute Liver Injury. Toxics, 12(6), 421. https://doi.org/10.3390/toxics12060421