Using the Multicomponent Aerosol FORmation Model (MAFOR) to Determine Improved VOC Emission Factors in Ship Plumes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements on Board and on Land
Ship Plume Event
2.2. MAFOR
2.2.1. Input Data and Model Configuration
2.2.2. Comparison Simulated against Measured Data
2.3. CMAQ and Ship Emission Dataset
2.4. VOC Emission Factor Scaling
3. Results and Discussion
3.1. Dilution of Gases and Particles between Ship and Remote Monitoring Station
3.2. Aerosol Size Distribution
3.3. Comparison between Simulated and Measured Data
3.4. Validation of New VOC EFnew,corr
3.5. Application of Adjusted VOC Ship Emissions in a Regional-Scale CTM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Date | Time | WD | SD | WDP | SSP | Vector | Travel | RH | Max. Meas. dN/dlogDp | Max. Sim. dN/dlogDp |
---|---|---|---|---|---|---|---|---|---|---|
21.07.2021 | 17:31:10 | 263 ± 16 | 14.8 ± 0.2 | 3.0 ± 0.6 | 6.3 ± 1.9 | 6.81 | 77.85 | 62.6 ± 1.6 | 4757.84 | 8196.38 |
02.08.2021 | 17:22:40 | 268. ± 12 | 17.0 ± 0.2 | 4.9 ± 1.1 | 6.7 ± 1.4 | 8.19 | 64.71 | 72.1 ± 1.4 | 3595.69 | 2540.21 |
30.08.2021 | 17:34:00 | 13. ± 19 | 37.9 ± 0.1 | 5.1 ± 0.8 | 6.6 ± 1.1 | 8.20 | 64.61 | 83.3 ± 1.6 | 10,054.93 | 2009.83 |
01.09.2021 | 17:30:10 | 290 ± 12 | 18.6 ± 0.2 | 3.2 ± 0.5 | 6.7 ± 1.8 | 7.37 | 71.90 | 72.2 ± 2.3 | 19,417.26 | 7751.90 |
03.09.2021 | 17:41:40 | 247 ± 10 | 18.3 ± 0.1 | 3.3 ± 0.6 | 5.4 ± 0.8 | 6.18 | 85.70 | 74.0 ± 1.3 | 10,283.38 | 12,648.08 |
08.07.2022 | 17:22:10 | 253 ± 13 | 16.1 ± 0.3 | 5.6 ± 0.9 | 6.6 ± 1.1 | 8.68 | 61.05 | 68.9 ± 1.2 | 5539.44 | 2194.99 |
24.07.2022 | 16:28:20 | 277 ± 22 | 17.7 ± 0.1 | 2.7 ± 0.9 | 6.2 ± 1.2 | 6.84 | 77.51 | 59.6 ± 2.8 | 7250.32 | 11,694.63 |
26.07.2022 | 17:30:30 | 276 ± 10 | 13.1 ± 0.1 | 5.8 ± 1.2 | 6.1 ± 2.2 | 8.33 | 63.60 | 57.3 ± 1.2 | 7350.02 | 2191.53 |
08.10.2022 | 16:29:30 | 258 ± 13 | 15.2 ± 0.2 | 4.8 ± 0.9 | 6.4 ± 2.1 | 8.03 | 66.04 | 71.7 ± 2.3 | 10,077.73 | 6174.34 |
19.07.2023 | 17:32:10 | 254 ± 15 | 17.4 ± 0.1 | 2.5 ± 0.5 | 5.3 ± 2.1 | 5.69 | 93.07 | 78.8 ± 1.8 | 2941.29 | 11,420.58 |
29.07.2023 | 16:40:50 | 267 ± 10 | 18.8 ± 0.2 | 5.1 ± 0.9 | 4.5 ± 2.4 | 6.89 | 76.91 | 70.1 ± 1.9 | 11,034.41 | 1453.65 |
26.08.2023 | 16:25:30 | 232 ± 9 | 14.6 ± 0.2 | 6.9 ± 0.8 | 6.0 ± 1.1 | 9.24 | 57.33 | 75.2 ± 1.4 | 6366.78 | 5407.44 |
28.08.2023 | 17:28:30 | 293 ± 13 | 17.5 ± 0.1 | 2.9 ± 0.7 | 5.9 ± 1.2 | 6.46 | 82.09 | 65.9 ± 1.6 | 9805.02 | 8832.01 |
Appendix C
MAFOR | Chosson et al. (2008) [67] | ||
---|---|---|---|
Calculation | Parameters (1) | Calculation | Parameters (2) |
a′ = 1.659 | a = 0.051 [min−1] | ||
b = 1.133 | b = 1.08 | ||
dil_time = input: time passed in plume [s] | t* = turn-over time scale [min] | ||
t = time passed in plume [min] |
Plume Width | Plume Height | ||
---|---|---|---|
wpl = plume width | hpl = plume height | ||
t = plume time t0 = reference time after plume release w0 = reference dimension of the plume at time t0 α = plume expansion rates in the horizontal | t = plume time t0 = reference time after plume release h0 = reference dimension of the plume at time t0 β = plume expansion rates in the vertical |
Appendix D
Substance | First-Guess Emission Factor (g/kg_fuel) | Emission Factor (g/kg_fuel) Received with Changing Factor 0.67 | Diluted Gases (g/m3) (1) | Substance Split | Recalculation to cm−3 | MAFOR Input after Dilution of 1/8 (in cm−3) | MAFOR Input VOCs without Dilution of 1/8 for VOCs (in cm−3) (6) |
---|---|---|---|---|---|---|---|
NOx | 40.91 (1) | 27.48 | 0.11 | NO | 2.041 × 1015 | 2.55 × 1014 | |
NO2 | 2.268 × 1014 | 2.83 × 1013 | |||||
SOx | 0.34 (2) | 0.23 | 0.00093 | SO2 | 8.74 × 1012 | 1.09 × 1012 | |
H2SO4 | 1 × 1010 (4) | 1.25 × 109 | |||||
SO3 | 8.74 × 108 (5) | 1.09 × 108 | |||||
CO | 23.64 (1) | 15.88 | 0.065 | 1.40 × 1015 | 1.75 × 1014 | ||
HCHO | 0.0022 (1) | 0.0015 | 6.15 × 10−6 | 1.23 × 1011 | 1.54 × 1010 | ||
TOL | 0.0078 (3) | 0.0052 | 2.15 × 10−5 | 1.41 × 1011 | 1.76 × 1010 | ||
XYL | 0.00295 (3) | 0.002 | 8.15 × 10−6 | 4.63 × 1010 | 5.78 × 109 | ||
TMB | 0.0028 (3) | 0.0019 | 7.68 × 10−6 | 3.85 × 1010 | 4.82 × 109 | ||
IVOC | 0.0076 (4) | 0.018 | 7.56 × 10−5 | 2.53 × 1011 | 4.21 × 1011 | ||
SVOC | 0.0105 (4) | 0.025 | 0.0001 | 2.51 × 1011 | 4.19 × 1011 | ||
ELVOC | 0.105 (4) | 0.25 | 0.001 | 1.96 × 1012 | 3.27 × 1012 |
Appendix E
Difference in Number Concentrations Compared to Measurements (in %) | ||||||||
Date | S1 | S2 | S3 | S4 | S5 | S6 | S7 | |S2| + |S3| + |S4| + |S5| |
21.07.2021 | 69.95 | 62.16 | 66.19 | −23.82 | −1.11 | 47.24 | 95.05 | 153 |
02.08.2021 | 72.62 | 52.49 | −77.02 | −174.3 | −71.18 | 70.1 | −29.35 | 375 |
30.08.2021 | −9.88 | 13.91 | −192.51 | −2.88 | −3.7 | 75.3 | 71.62 | 213 |
01.09.2021 | −0.33 | 18.67 | 0.25 | −185.7 | −60.78 | 56.9 | 99.2 | 265.4 |
03.09.2021 | −149.34 | 3.71 | 4.91 | 5.67 | 0.05 | 78.39 | 83.53 | 14.35 |
08.07.2022 | 46.03 | 26.9 | −234.71 | −398.34 | −156.89 | 42.85 | 90.65 | 816.83 |
24.07.2022 | 10.33 | 47.67 | 66.42 | −25.36 | −83.83 | 80.9 | 98.2 | 223 |
26.07.2022 | −42.65 | −51.75 | −177.08 | −92.6 | −166.39 | 0.47 | 82.84 | 487.8 |
08.10.2022 | 54.22 | 44.05 | −114.64 | −144.76 | −54.52 | 25.63 | 93.64 | 357.96 |
19.07.2023 | 90.85 | 70.46 | 86.88 | 9.08 | 18.33 | 23.3 | 97 | 184.8 |
29.07.2023 | −74.36 | −167.9 | −704.88 | −146.31 | −40.31 | −46.03 | 63.7 | 1059.4 |
26.08.2023 | 58.89 | 55.01 | −27.51 | −25.24 | −57.76 | 48.32 | 91.98 | 165.52 |
28.08.2023 | −4.94 | −0.98 | 45.46 | −19.47 | −47.33 | 56.62 | 94.03 | 113.25 |
Difference in Mean Diameter Compared to Measurements (in %) | ||||||||
Date | S1 | S2 | S3 | S4 | S5 | S6 | S7 | |S2| + |S3| + |S4| + |S5| |
21.07.2021 | −25.44 | 8.07 | −14.77 | 14.15 | −13.54 | 7.22 | 3.31 | 50.5 |
02.08.2021 | −11.88 | −2.3 | −22.01 | 14.71 | −4.4 | 34.46 | 1.02 | 43.43 |
30.08.2021 | −42.84 | −4.47 | −16.13 | 14.25 | −4.84 | −5.87 | −13.64 | 39.7 |
01.09.2021 | −27.02 | 6.17 | −15.8 | 14.35 | −7.57 | 7.7 | −2.55 | 43.89 |
03.09.2021 | 9.19 | −5.96 | 10.25 | −12.25 | 7.63 | −3.42 | 6.11 | 13.93 |
08.07.2022 | −14.22 | −2.37 | −22.88 | 18.31 | −13.45 | 16.75 | −3.02 | 57.01 |
24.07.2022 | −10.4 | 8.86 | −12 | 3.54 | −1.3 | 14.43 | −8.99 | 25.7 |
26.07.2022 | −25.94 | 1.31 | −14.26 | 12.43 | −10.76 | 4.41 | −10.26 | 38.8 |
08.10.2022 | −16.65 | −2.54 | −20.73 | 17.50 | −9.25 | 2.29 | 4.57 | 50.02 |
19.07.2023 | −30.19 | 12.03 | −13.41 | 6.74 | −10.21 | −2.91 | 2.68 | 42.38 |
29.07.2023 | −16.6 | −3.00 | −14.73 | 14.15 | −4.77 | −3.87 | 3.22 | 36.63 |
26.08.2023 | −25.28 | −0.95 | −16.17 | 2.84 | −3.81 | 9.60 | 3.72 | 23.77 |
28.08.2023 | −25.03 | 9.46 | −9.56 | 9.42 | −7.28 | 9.87 | 3.92 | 35.72 |
Appendix F
References
- Wang, C.; Corbett, J.J.; Firestone, J. Improving spatial representation of global ship emissions inventories. Environ. Sci. Technol. 2008, 42, 193–199. [Google Scholar] [CrossRef]
- Sofiev, M.; Winebrake, J.J.; Johansson, L.; Carr, E.W.; Prank, M.; Soares, J.; Vira, J.; Kouznetsov, R.; Jalkanen, J.-P.; Corbett, J.J. Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nat. Commun. 2018, 9, 406. [Google Scholar] [CrossRef] [PubMed]
- Ausmeel, S.; Eriksson, A.; Ahlberg, E.; Kristensson, A. Methods for identifying aged ship plumes and estimating contribution to aerosol exposure downwind of shipping lanes. Atmos. Meas. Tech. 2019, 12, 4479–4493. [Google Scholar] [CrossRef]
- Endresen, Ø.; Sørgård, E.; Sundet, J.K.; Dalsøren, S.B.; Isaksen, I.S.A.; Berglen, T.F.; Gravir, G. Emission from international sea transportation and environmental impact. J. Geophys. Res. 2003, 108, D17. [Google Scholar] [CrossRef]
- Klimont, Z.; Kupiainen, K.; Heyes, C.; Purohit, P.; Cofala, J.; Rafaj, P.; Borken-Kleefeld, J.; Schöpp, W. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 2017, 17, 8681–8723. [Google Scholar] [CrossRef]
- Heusinkveld, H.J.; Wahle, T.; Campbell, A.; Westerink, R.H.S.; Tran, L.; Johnston, H.; Stone, V.; Cassee, F.R.; Schins, R.P.F. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology 2016, 56 (Suppl. C), 94–106. [Google Scholar] [CrossRef]
- Chen, R.; Hu, B.; Liu, Y.; Xu, J.; Yang, G.; Xu, D.; Chen, C. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2016, 1860, 2844–2855. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Sang, N. Quasi-ultrafine particles promote cell metastasis via HMGB1-mediated cancer cell adhesion. Environ. Pollut. 2020, 256, 113390. [Google Scholar] [CrossRef]
- Callén, M.S.; Iturmendi, A.; López, J.M. Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environ. Pollut. 2014, 195, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Khaniabadi, Y.O.; Polosa, R.; Chuturkova, R.Z.; Daryanoosh, M.; Goudarzi, G.; Borgini, A.; Tittarelli, A.; Basiri, H.; Armin, H.; Nourmoradi, H.; et al. Human health risk assessment due to ambient PM10 and SO2 by an air quality modeling technique. Process Saf. Environ. Prot. 2017, 111, 346–354. [Google Scholar] [CrossRef]
- Amoatey, P.; Omidvarborna, H.; Baawain, M. The modeling and health risk assessment of PM2.5 from Tema Oil Refinery. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1181–1196. [Google Scholar] [CrossRef]
- Canu, I.G.; Bateson, T.F.; Bouvard, V.; Debia, M.; Dion, C.; Savolainen, K.; Yu, I.-J. Human exposure to carbon-based fibrous nanomaterials: A review. Int. J. Hyg. Environ. Health 2016, 219, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Burnett, R.T.; Turner, M.C.; Cohen, A.; Krewski, D.; Jerrett, M.; Gapstur, S.M.; Thun, M.J. Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: Shape of the exposure–response relationships. Environ. Health Perspect. 2011, 119, 1616–1621. [Google Scholar] [CrossRef] [PubMed]
- Burnett, R.T.; Pope, C.A.; Ezzati, M.; Olives, C.; Lim, S.S.; Mehta, S.; Shin, H.H.; Singh, G.; Hubbell, B.; Brauer, M.; et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 2014, 122, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Apte, J.S.; Marshall, J.D.; Cohen, A.J.; Brauer, M. Addressing Global Mortality from Ambient PM2.5. Environ. Sci. Technol. 2015, 49, 8057–8066. [Google Scholar] [CrossRef] [PubMed]
- Karamfilova, E. BRIEFING Implementation Appraisal, Revision of the EU Ambient Air Quality Directives, EPRS European Parliamentary Research Service. 2022. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/734679/EPRS_BRI(2022)734679_EN.pdf (accessed on 1 August 2023).
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons.: Hoboken, NJ, USA, 2006; ISBN 9780471720188. [Google Scholar]
- Yli-Juuti, T.; Mohr, C.; Riipinen, I. Open questions on atmospheric nanoparticle growth. Commun. Chem. 2020, 3, 106. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Moreno, F.J.; Alonso-Blanco, E.; Díaz, E.; Coz, E.; Molero, F.; Núñez, L.; Palacios, M.; Barreiro, M.; Fernández, J.; Salvador, P.; et al. On the influence of VOCs on new particle growth in a Continental-Mediterranean region. Environ. Res. Commun. 2022, 4, 125010. [Google Scholar] [CrossRef]
- Lu, Q.; Zhao, Y.; Robinson, A.L. Comprehensive organic emission profiles for gasoline, diesel, and gas-turbine engines including intermediate and semi-volatile organic compound emissions. Atmos. Chem. Phys. 2018, 18, 17637–17654. [Google Scholar] [CrossRef]
- Robinson, A.L.; Donahue, N.M.; Shrivastava, M.K.; Weitkamp, E.A.; Sage, A.M.; Grieshop, A.P.; Lane, T.E.; Pierce, J.R.; Pandis, S.N. Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 2007, 315, 1259–1262. [Google Scholar] [CrossRef]
- Wang, X.; Grose, M.A.; Caldow, R.; Osmondson, B.L.; Swanson, J.J.; Chow, J.C.; Watson, J.G.; Kittelson, D.B.; Li, Y.; Xue, J.; et al. Improvement of Engine Exhaust Particle Sizer (EEPS) size distribution measurement—II. Engine exhaust particles. J. Aerosol Sci. 2016, 92, 83–94. [Google Scholar] [CrossRef]
- Guo, S.; Hu, M.; Peng, J.; Wu, Z.; Zamora, M.L.; Shang, D.; Du, Z.; Zheng, J.; Fang, X.; Tang, R.; et al. Remarkable nucleation and growth of ultrafine particles from vehicular exhaust. Proc. Natl. Acad. Sci. USA 2020, 117, 3427–3432. [Google Scholar] [CrossRef]
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef]
- Almeida, J.; Schobesberger, S.; Kürten, A.; Ortega, I.K.; Kupiainen-Määttä, O.; Praplan, A.P.; Adamov, A.; Amorim, A.; Bianchi, F.; Breitenlechner, M.; et al. Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature 2013, 502, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Kulmala, M.; Kontkanen, J.; Junninen, H.; Lehtipalo, K.; Manninen, H.E.; Nieminen, T.; Petäjä, T.; Sipilä, M.; Schobesberger, S.; Rantala, P.; et al. Direct observations of atmospheric aerosol nucleation. Science 2013, 339, 943–946. [Google Scholar] [CrossRef]
- Pusfitasari, E.D.; Ruiz-Jimenez, J.; Tiusanen, A.; Suuronen, M.; Haataja, J.; Wu, Y.; Kangasluoma, J.; Luoma, K.; Petäjä, T.; Jussila, M.; et al. Vertical profiles of volatile organic compounds and fine particles in atmospheric air by using an aerial drone with miniaturized samplers and portable devices. Atmos. Chem. Phys. 2023, 23, 5885–5904. [Google Scholar] [CrossRef]
- Ge, X.; Wexler, A.S.; Clegg, S.L. Atmospheric amines—Part I. A review. Atmos. Environ. 2011, 45, 524–546. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prevot, A.S.H.; Zhang, Q.; Kroll, J.H.; Decarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.L.; et al. Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef]
- Guo, S.; Hu, M.; Zamora, M.L.; Peng, J.; Shang, D.; Zheng, J.; Du, Z.; Wu, Z.; Shao, M.; Zeng, L.; et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, J.; Ma, Q.; Chu, B.; Zhang, P.; Ma, J.; Liu, Y.; Zhong, C.; Liu, P.; Wang, Y.; et al. Measurement report: Effects of photochemical aging on the formation and evolution of summertime secondary aerosol in Beijing. Atmos. Chem. Phys. 2021, 21, 1341–1356. [Google Scholar] [CrossRef]
- Lee, P.K.H.; Brook, J.R.; Dabek-Zlotorzynska, E.; Mabury, S.A. Identification of the major sources contributing to PM2.5 observed in Toronto. Environ. Sci. Technol. 2003, 37, 4831–4840. [Google Scholar] [CrossRef] [PubMed]
- Debevec, C.; Sauvage, S.; Gros, V.; Sellegri, K.; Sciare, J.; Pikridas, M.; Stavroulas, I.; Leonardis, T.; Gaudion, V.; Depelchin, L.; et al. Driving parameters of biogenic volatile organic compounds and consequences on new particle formation observed at an eastern Mediterranean background site. Atmos. Chem. Phys. 2018, 18, 14297–14325. [Google Scholar] [CrossRef]
- Karl, M.; Bieser, J.; Geyer, B.; Matthias, V.; Jalkanen, J.-P.; Johansson, L.; Fridell, E. Impact of a nitrogen emission control area (NECA) on the future air quality and nitrogen deposition to seawater in the Baltic Sea region. Atmos. Chem. Phys. 2019, 19, 1721–1752. [Google Scholar] [CrossRef]
- Aksoyoglu, S.; Baltensperger, U.; Prévôt, A.S.H. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe. Atmos. Chem. Phys. 2016, 16, 1895–1906. [Google Scholar] [CrossRef]
- Nunes, R.A.O.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Calderay-Cayetano, F.; Durán-Grados, V.; Moreno-Gutiérrez, J.; Jalkanen, J.-P.; Hannuniemi, H.; Sousa, S.I.V. Shipping emissions in the Iberian Peninsula and the impacts on air quality. Atmos. Chem. Phys. 2020, 20, 9473–9489. [Google Scholar] [CrossRef]
- Fink, L.; Karl, M.; Matthias, V.; Oppo, S.; Kranenburg, R.; Kuenen, J.; Jutterström, S.; Moldanova, J.; Majamäki, E.; Jalkanen, J.-P. A multimodel evaluation of the potential impact of shipping on particle species in the Mediterranean Sea. Atmos. Chem. Phys. 2023, 23, 10163–10189. [Google Scholar] [CrossRef]
- Im, U.; Bianconi, R.; Solazzo, E.; Kioutsioukis, I.; Badia, A.; Balzarini, A.; Baró, R.; Bellasio, R.; Brunner, D.; Chemel, C.; et al. Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter. Atmos. Environ. 2015, 115, 421–441. [Google Scholar] [CrossRef]
- Frohn, L.M.; Ketzel, M.; Christensen, J.H.; Brandt, J.; Im, U.; Massling, A.; Andersen, C.; Plejdrup, M.S.; Nielsen, O.-K.; van der Gon, H.D.; et al. Modelling ultrafine particle number concentrations at address resolution in Denmark from 1979–2018—Part 1: Regional and urban scale modelling and evaluation. Atmos. Environ. 2021, 264, 118631. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Clouds and Aerosols; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781107415324. [Google Scholar] [CrossRef]
- González, Y.; Rodríguez, S.; García, J.C.G.; Trujillo, J.L.; García, R. Ultrafine particles pollution in urban coastal air due to ship emissions. Atmos. Environ. 2011, 45, 4907–4914. [Google Scholar] [CrossRef]
- Pirjola, L.; Pajunoja, A.; Walden, J.; Jalkanen, J.-P.; Rönkkö, T.; Kousa, A.; Koskentalo, T. Mobile measurements of ship emissions in two harbour areas in Finland. Atmos. Meas. Tech. 2014, 7, 149–161. [Google Scholar] [CrossRef]
- Vouitsis, I.; Portugal, J.; Kontses, A.; Karlsson, H.L.; Faria, M.; Elihn, K.; Juárez-Facio, A.T.; Amato, F.; Piña, B.; Samaras, Z. Transport-related airborne nanoparticles: Sources, different aerosol modes, and their toxicity. Atmos. Environ. 2023, 301, 119698. [Google Scholar] [CrossRef]
- Moldanova, J.; Fridell, E.; Winnes, H.; Holmin-Fridell, S.; Boman, J.; Jedynska, A.; Tishkova, V.; Demirdjian, B.; Joulie, S.; Bladt, H.; et al. Physical and chemical characterisation of PM emissions from two ships operating in European Emission Control Areas. Atmos. Meas. Tech. 2013, 6, 3577–3596. [Google Scholar] [CrossRef]
- Jonsson, Å.M.; Westerlund, J.; Hallquist, M. Size-resolved particle emission factors for individual ships. Geophys. Res. Lett. 2011, 38, L13809. [Google Scholar] [CrossRef]
- Karl, M.; Pirjola, L.; Karppinen, A.; Jalkanen, J.-P.; Ramacher, M.O.P.; Kukkonen, J. Modeling of the Concentrations of Ultrafine Particles in the Plumes of Ships in the Vicinity of Major Harbors. Int. J. Environ. Res. Public Health 2020, 17, 777. [Google Scholar] [CrossRef] [PubMed]
- Karl, M.; Ramacher, M.O.P.; Oppo, S.; Lanzi, L.; Majamäki, E.; Jalkanen, J.-P.; Lanzafame, G.M.; Temime-Roussel, B.; Le Berre, L.; D’anna, B. Measurement and Modeling of Ship-Related Ultrafine Particles and Secondary Organic Aerosols in a Mediterranean Port City. Toxics 2023, 11, 771. [Google Scholar] [CrossRef]
- Huszar, P.; Cariolle, D.; Paoli, R.; Halenka, T.; Belda, M.; Schlager, H.; Miksovsky, J.; Pisoft, P. Modeling the regional impact of ship emissions on NOx and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization. Atmos. Chem. Phys. 2010, 10, 6645–6660. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, Y.H.; Han, K.M.; Kim, J.; Song, C.H. Ozone production efficiency of a ship-plume: ITCT 2K2 case study. Chemosphere 2016, 143, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Murena, F.; Mocerino, L.; Quaranta, F.; Toscano, D. Impact on air quality of cruise ship emissions in Naples, Italy. Atmos. Environ. 2018, 187, 70–83. [Google Scholar] [CrossRef]
- Karl, M.; Pirjola, L.; Grönholm, T.; Kurppa, M.; Anand, S.; Zhang, X.; Held, A.; Sander, R.; Dal Maso, M.; Topping, D.; et al. Description and evaluation of the community aerosol dynamics model MAFOR v2.0. Geosci. Model Dev. 2022, 15, 3969–4026. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; He, J.; Chen, H.; Huang, X.; Wang, Y.; Yu, X.; Yang, W.; Zhang, R.; Zhu, M.; et al. Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area. Atmos. Chem. Phys. 2020, 20, 1887–1900. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, M.; Liu, H.; Fu, M.; Deng, F.; Lv, Z.; Man, H.; Jin, X.; Liu, S.; He, K. Characteristics of marine shipping emissions at berth: Profiles for particulate matter and volatile organic compounds. Atmos. Chem. Phys. 2018, 18, 9527–9545. [Google Scholar] [CrossRef]
- Karl, M.; Gross, A.; Pirjola, L.; Leck, C. A new flexible multicomponent model for the study of aerosol dynamics in the marine boundary layer. Tellus B Chem. Phys. Meteorol. 2011, 63, 1001–1025. [Google Scholar] [CrossRef]
- Jalkanen, J.-P.; Brink, A.; Kalli, J.; Pettersson, H.; Kukkonen, J.; Stipa, T. A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area. Atmos. Chem. Phys. 2009, 9, 9209–9223. [Google Scholar] [CrossRef]
- Jalkanen, J.-P.; Johansson, L.; Kukkonen, J.; Brink, A.; Kalli, J.; Stipa, T. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide. Atmos. Chem. Phys. 2012, 12, 2641–2659. [Google Scholar] [CrossRef]
- Johansson, L.; Jalkanen, J.-P.; Kalli, J.; Kukkonen, J. The evolution of shipping emissions and the costs of regulation changes in the northern EU area. Atmos. Chem. Phys. 2013, 13, 11375–11389. [Google Scholar] [CrossRef]
- Johansson, L.; Jalkanen, J.-P.; Kukkonen, J. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos. Environ. 2017, 167, 403–415. [Google Scholar] [CrossRef]
- US EPA Office of Research and Development. CMAQv5.0.2 (5.0.2); Zenodo: Genève, Switzerland, 2014. [CrossRef]
- Fink, L.; Karl, M.; Matthias, V.; Oppo, S.; Kranenburg, R.; Kuenen, J.; Moldanova, J.; Jutterström, S.; Jalkanen, J.-P.; Majamäki, E. Potential impact of shipping on air pollution in the Mediterranean region—A multimodel evaluation: Comparison of photooxidants NO2 and O3. Atmos. Chem. Phys. 2023, 23, 1825–1862. [Google Scholar] [CrossRef]
- Nordic Drones. AEROMON BH-12, Real-Time Data from the Air. 2023. Available online: https://nordicdrones.fi/en/products/product-information/aeromon-bh-12/ (accessed on 20 September 2023).
- Kangasniemi, O.; Simonen, P.; Moldanová, J.; Timonen, H.; Barreira, L.M.F.; Hellén, H.; Jalkanen, J.-P.; Majamäki, E.; D’anna, B.; Lanzafame, G.; et al. Volatility of a Ship’s Emissions in the Baltic Sea Using Modelling and Measurements in Real-World Conditions. Atmosphere 2023, 14, 1175. [Google Scholar] [CrossRef]
- Sander, R.; Kerkweg, A.; Jöckel, P.; Lelieveld, J. Technical note: The new comprehensive atmospheric chemistry module MECCA. Atmos. Chem. Phys. 2005, 5, 445–450. [Google Scholar] [CrossRef]
- Sander, R.; Baumgaertner, A.; Gromov, S.; Harder, H.; Jöckel, P.; Kerkweg, A.; Kubistin, D.; Regelin, E.; Riede, H.; Sandu, A.; et al. The atmospheric chemistry box model CAABA/MECCA-3.0. Geosci. Model Dev. 2011, 4, 373–380. [Google Scholar] [CrossRef]
- Schack, C.J.; Pratsinis, S.E.; Friedlander, S. A general correlation for deposition of suspended particles from turbulent gases to completely rough surfaces. Atmos. Environ. (1967) 1985, 19, 953–960. [Google Scholar] [CrossRef]
- Chosson, F.; Paoli, R.; Cuenot, B. Ship plume dispersion rates in convective boundary layers for chemistry models. Atmos. Chem. Phys. 2008, 8, 4841–4853. [Google Scholar] [CrossRef]
- von Glasow, R.; Lawrence, M.G.; Sander, R.; Crutzen, P.J. Modeling the chemical effects of ship exhaust in the cloud-free marine boundary layer. Atmos. Chem. Phys. 2003, 3, 233–250. [Google Scholar] [CrossRef]
- Vehkamäki, H.; Kulmala, M.; Napari, I.; Lehtinen, K.E.J.; Timmreck, C.; Noppel, M.; Laaksonen, A. An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions. J. Geophys. Res. Atmos. 2002, 107, AAC 3-1–AAC 3-10. [Google Scholar] [CrossRef]
- Vehkamäki, H.; Kulmala, M.; Lehtinen, K.E.J.; Noppel, M. Modelling binary homogeneous nucleation of water−sulfuric acid vapours: Parameterisation for high temperature emissions. Environ. Sci. Technol. 2003, 37, 3392–3398. [Google Scholar] [CrossRef] [PubMed]
- Kulmala, M.; Vehkamäki, H.; Petäjä, T.; Maso, M.D.; Lauri, A.; Kerminen, V.-M.; Birmili, W.; McMurry, P. Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci. 2004, 35, 143–176. [Google Scholar] [CrossRef]
- Fridell, E.; Salberg, H.; Salo, K. Measurements of Emissions to Air from a Marine Engine Fueled by Methanol. J. Mar. Sci. Appl. 2021, 20, 138–143. [Google Scholar] [CrossRef]
- Kerminen, V.-M.; Pirjola, L.; Boy, M.; Eskola, A.; Teinilä, K.; Laakso, L.; Asmi, A.; Hienola, J.; Lauri, A.; Vainio, V.; et al. Interaction between SO2 and submicron atmospheric particles. Atmos. Res. 2000, 54, 41–57. [Google Scholar] [CrossRef]
- Donahue, N.M.; Robinson, A.L.; Stanier, C.O.; Pandis, S.N. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 2006, 40, 2635–2643. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Appel, K.W.; Napelenok, S.L.; Foley, K.M.; Pye, H.O.T.; Hogrefe, C.; Luecken, D.J.; Bash, J.O.; Roselle, S.J.; Pleim, J.E.; Foroutan, H.; et al. Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geosci. Model Dev. 2017, 10, 1703–1732. [Google Scholar] [CrossRef] [PubMed]
- Whitten, G.Z.; Heo, G.; Kimura, Y.; McDonald-Buller, E.; Allen, D.T.; Carter, W.P.; Yarwood, G. A new condensed toluene mechanism for Carbon Bond: CB05-TU☆. Atmos. Environ. 2010, 44, 5346–5355. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42−–NO3−–Cl−–H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef]
- Carlton, A.G.; Bhave, P.V.; Napelenok, S.L.; Edney, E.O.; Sarwar, G.; Pinder, R.W.; Pouliot, G.A.; Houyoux, M. Model representation of secondary organic aerosol in CMAQv4.7. Environ. Sci. Technol. 2010, 44, 8553–8560. [Google Scholar] [CrossRef] [PubMed]
- Pye, H.O.T.; Pouliot, G.A. Modeling the role of alkanes, polycyclic aromatic hydrocarbons, and their oligomers in secondary organic aerosol formation. Environ. Sci. Technol. 2012, 46, 6041–6047. [Google Scholar] [CrossRef] [PubMed]
- Foley, K.M.; Roselle, S.J.; Appel, K.W.; Bhave, P.V.; Pleim, J.E.; Otte, T.L.; Mathur, R.; Sarwar, G.; Young, J.O.; Gilliam, R.C.; et al. Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7. Geosci. Model Dev. 2010, 3, 205–226. [Google Scholar] [CrossRef]
- Kelly, J.T.; Bhave, P.V.; Nolte, C.G.; Shankar, U.; Foley, K.M. Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model. Geosci. Model Dev. 2010, 3, 257–273. [Google Scholar] [CrossRef]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Agrawal, H.; Welch, W.A.; Henningsen, S.; Miller, J.W.; Cocker, D.R. Emissions from main propulsion engine on container ship at sea. J. Geophys. Res. 2010, 115, D23205. [Google Scholar] [CrossRef]
- Agrawal, H.; Welch, W.A.; Miller, J.W.; Cocker, D.R. Emission measurements from a crude oil tanker at sea. Environ. Sci. Technol. 2008, 42, 7098–7103. [Google Scholar] [CrossRef] [PubMed]
- Sippula, O.; Stengel, B.; Sklorz, M.; Streibel, T.; Rabe, R.; Orasche, J.; Lintelmann, J.; Michalke, B.; Abbaszade, G.; Radischat, C.; et al. Particle emissions from a marine engine: Chemical composition and aromatic emission profiles under various operating conditions. Environ. Sci. Technol. 2014, 48, 11721–11729. [Google Scholar] [CrossRef]
- Reichle, L.J.; Cook, R.; Yanca, C.A.; Sonntag, D.B. Development of organic gas exhaust speciation profiles for nonroad spark-ignition and compression-ignition engines and equipment. J. Air Waste Manag. Assoc. 2015, 65, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Schultze, M.; Rockel, B. Direct and semi-direct effects of aerosol climatologies on long-term climate simulations over Europe. Clim. Dyn. 2018, 50, 3331–3354. [Google Scholar] [CrossRef]
- Petrik, R.; Geyer, B.; Rockel, B. On the diurnal cycle and variability of winds in the lower planetary boundary layer: Evaluation of regional reanalyses and hindcasts. Tellus A Dyn. Meteorol. Oceanogr. 2022, 73, 1804294. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Maricq, M.M.; Xu, N.; Chase, R.E. Measuring Particulate Mass Emissions with the Electrical Low Pressure Impactor. Aerosol Sci. Technol. 2006, 40, 68–79. [Google Scholar] [CrossRef]
- Lähde, T.; Rönkkö, T.; Virtanen, A.; Schuck, T.J.; Pirjola, L.; Hämeri, K.; Kulmala, M.; Arnold, F.; Rothe, D.; Keskinen, J. Heavy Duty diesel engine exhaust aerosol particle and ion measurements. Environ. Sci. Technol. 2009, 43, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Rönkkö, T.; Lähde, T.; Heikkilä, J.; Pirjola, L.; Bauschke, U.; Arnold, F.; Schlager, H.; Rothe, D.; Yli-Ojanperä, J.; Keskinen, J. Effects of gaseous sulphuric acid on diesel exhaust nanoparticle formation and characteristics. Environ. Sci. Technol. 2013, 47, 11882–11889. [Google Scholar] [CrossRef]
- Rönkkö, T.; Virtanen, A.; Kannosto, J.; Keskinen, J.; Lappi, M.; Pirjola, L. Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle. Environ. Sci. Technol. 2007, 41, 6384–6389. [Google Scholar] [CrossRef]
- Arnold, F.; Pirjola, L.; Rönkkö, T.; Reichl, U.; Schlager, H.; Lähde, T.; Heikkilä, J.; Keskinen, J. First online measurements of sulfuric acid gas in modern heavy-duty diesel engine exhaust: Implications for nanoparticle formation. Environ. Sci. Technol. 2012, 46, 11227–11234. [Google Scholar] [CrossRef] [PubMed]
- Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F. Model studies of volatile diesel exhaust particle formation: Are organic vapours involved in nucleation and growth? Atmos. Chem. Phys. 2015, 15, 10435–10452. [Google Scholar] [CrossRef]
- Celik, S.; Drewnick, F.; Fachinger, F.; Brooks, J.; Darbyshire, E.; Coe, H.; Paris, J.-D.; Eger, P.G.; Schuladen, J.; Tadic, I.; et al. Influence of vessel characteristics and atmospheric processes on the gas and particle phase of ship emission plumes: In situ measurements in the Mediterranean Sea and around the Arabian Peninsula. Atmos. Chem. Phys. 2020, 20, 4713–4734. [Google Scholar] [CrossRef]
- Murphy, B.N.; Woody, M.C.; Jimenez, J.L.; Carlton, A.M.G.; Hayes, P.L.; Liu, S.; Ng, N.L.; Russell, L.M.; Setyan, A.; Xu, L.; et al. Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: Impacts on source strength and partitioning. Atmos. Chem. Phys. 2017, 17, 11107–11133. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.; Knipping, E.; Yarwood, G. 1.5-Dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ. Atmos. Environ. 2014, 95, 158–164. [Google Scholar] [CrossRef]
- Lee, B.-K.; Choi, S.-D.; Shin, B.; Kim, S.-J.; Lee, S.-J.; Kim, D.-G.; Lee, G.; Kang, H.-J.; Kim, H.-S.; Park, D.-Y. Sensitivity analysis of volatile organic compounds to PM2.5 concentrations in a representative industrial city of Korea. Asian J. Atmos. Environ. 2023, 17, 3. [Google Scholar] [CrossRef]
- Benchrif, A.; Tahri, M.; Oujidi, B.; Bounouira, H.; Zahry, F. Comprehensive Analysis of PM10 and PM2.5 Composition in four Moroccan Cities: Emission Sources and Geographical Variations. Presented at the IGAC-iCACGP ECR Conference, Online, 17 November 2023. [Google Scholar]
- Birmili, W.; Weinhold, K.; Rasch, F.; Sonntag, A.; Sun, J.; Merkel, M.; Wiedensohler, A.; Bastian, S.; Schladitz, A.; Löschau, G.; et al. Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN). Earth Syst. Sci. Data 2016, 8, 355–382. [Google Scholar] [CrossRef]
MODE | Dp (m) | SIG | H2SO4 | OC | NH4 | NO3 | MSAp | SALT | PBA | EC | ASH | MTOT |
---|---|---|---|---|---|---|---|---|---|---|---|---|
v | v | v | v | v | nv | nv | nv | nv | ||||
BACKGROUND AEROSOL | ||||||||||||
NU | 9.90 × 10−9 | 1.70 | 0.001 | 0.002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.003 |
AI | 2.3 × 10−8 | 1.52 | 0.32 | 0.25 | 0.15 | 0.15 | 0 | 0.07 | 0 | 0.27 | 0.17 | 1.38 |
AS1 | 1.0 × 10−7 | 1.75 | 5 | 4 | 3 | 3 | 0 | 1 | 0 | 4 | 3 | 23 |
AS2 | 7.0 × 10−7 | 2.10 | 14 | 11 | 7 | 7 | 0 | 3 | 0 | 12 | 7 | 61 |
SHIP AEROSOL | ||||||||||||
NU | 9.6 × 10−9 | 1.65 | 0 | 0.026 | 0 | 0 | 0 | 0 | 0.011 | 0 | 0 | 0.05 |
AI | 1.5 × 10−8 | 1.35 | 283 | 989.9 | 57 | 38 | 0 | 0 | 424.24 | 94.3 | 0 | 1886.14 |
AS1 | 1.3 × 10−7 | 1.75 | 1206 | 3657 | 241 | 161 | 0 | 0 | 1567.47 | 563 | 643 | 8038.47 |
AS2 | 7.5 × 10−7 | 2.10 | 10,726 | 32,535 | 0 | 0 | 0 | 0 | 13,943.78 | 3575 | 10,726 | 71,505.78 |
Difference in Number Concentrations Compared to Measurements (in %) | ||||||||
CF | S1 | S2 | S3 | S4 | S5 | S6 | S7 | |S2| + |S3| + |S4| + |S5| |
0.50 | 38.66 | 37.72 | −206.51 | 3.63 | −7.79 | 77.70 | 82.83 | −172.94 |
1.00 | −11.27 | 37.30 | −117.90 | 3.91 | −6.48 | 77.81 | 82.95 | −83.17 |
1.50 | −55.61 | 33.30 | −69.65 | 4.16 | −5.22 | 77.93 | 83.07 | −37.41 |
2.00 | −87.14 | 27.74 | −40.20 | 4.41 | −3.97 | 78.04 | 83.18 | −12.02 |
2.50 | −110.05 | 21.19 | −20.72 | 4.68 | −2.71 | 78.15 | 83.29 | 2.44 |
3.00 | −128.98 | 13.76 | −6.94 | 5.05 | −1.46 | 78.26 | 83.40 | 10.41 |
3.10 | −132.14 | 12.34 | −4.90 | 5.13 | −1.23 | 78.28 | 83.42 | 11.33 |
3.20 | −136.16 | 10.46 | −2.42 | 5.24 | −0.94 | 78.31 | 83.45 | 12.33 |
3.30 | −139.28 | 8.95 | −0.57 | 5.33 | −0.71 | 78.32 | 83.47 | 13.00 |
3.40 | −142.35 | 7.39 | 1.19 | 5.42 | −0.48 | 78.35 | 83.49 | 13.52 |
3.50 | −146.31 | 5.37 | 3.31 | 5.56 | −0.18 | 78.37 | 83.51 | 14.05 |
3.60 | −149.34 | 3.71 | 4.91 | 5.67 | 0.05 | 78.39 | 83.53 | 14.35 |
3.70 | −152.30 | 2.08 | 6.39 | 5.80 | 0.26 | 78.41 | 83.55 | 14.53 |
3.80 | −155.24 | 0.42 | 7.80 | 5.93 | 0.49 | 78.43 | 83.57 | 14.63 |
3.90 | −158.95 | −1.71 | 9.48 | 6.10 | 0.75 | 78.46 | 83.60 | 14.63 |
4.00 | −162.00 | −3.53 | 10.82 | 6.26 | 0.98 | 78.48 | 83.62 | 14.52 |
4.50 | −177.29 | −13.13 | 16.62 | 7.16 | 2.02 | 78.58 | 83.72 | 12.67 |
5.00 | −193.18 | −23.97 | 21.42 | 8.37 | 3.10 | 78.69 | 83.83 | 8.93 |
Difference in Mean Diameter Compared to Measurements (in %) | ||||||||
CF | S1 | S2 | S3 | S4 | S5 | S6 | S7 | |S2| + |S3| + |S4| + |S5| |
0.50 | 8.55 | 6.66 | 10.53 | −12.23 | 7.91 | −3.32 | 6.23 | 162.50 |
1.00 | 10.35 | 3.10 | 12.30 | −12.28 | 7.88 | −3.34 | 6.21 | 137.99 |
1.50 | 11.58 | 0.29 | 12.63 | −12.33 | 7.84 | −3.35 | 6.19 | 117.65 |
2.00 | 11.49 | −1.91 | 12.40 | −12.37 | 7.80 | −3.37 | 6.17 | 100.36 |
2.50 | 10.82 | −3.59 | 11.88 | −12.39 | 7.75 | −3.38 | 6.15 | 85.21 |
3.00 | 10.04 | −4.86 | 11.20 | −12.36 | 7.70 | −3.40 | 6.13 | 72.03 |
3.10 | 9.90 | −5.05 | 11.07 | −12.35 | 7.69 | −3.40 | 6.13 | 60.29 |
3.20 | 9.73 | −5.29 | 10.89 | −12.33 | 7.68 | −3.41 | 6.12 | 49.45 |
3.30 | 9.60 | −5.46 | 10.75 | −12.31 | 7.67 | −3.41 | 6.12 | 39.75 |
3.40 | 9.47 | −5.62 | 10.60 | −12.30 | 7.66 | −3.41 | 6.12 | 30.62 |
3.50 | 9.31 | −5.81 | 10.40 | −12.27 | 7.64 | −3.42 | 6.11 | 21.99 |
3.60 | 9.19 | −5.96 | 10.25 | −12.25 | 7.63 | −3.42 | 6.11 | 13.93 |
3.70 | 9.07 | −6.09 | 10.09 | −12.22 | 7.62 | −3.42 | 6.10 | 13.93 |
3.80 | 8.96 | −6.21 | 9.93 | −12.19 | 7.60 | −3.43 | 6.10 | 14.39 |
3.90 | 8.82 | −6.35 | 9.73 | −12.16 | 7.58 | −3.43 | 6.10 | 14.39 |
4.00 | 8.70 | −6.46 | 9.56 | −12.12 | 7.57 | −3.43 | 6.09 | 14.39 |
4.50 | 8.16 | −6.88 | 8.67 | −11.92 | 7.48 | −3.45 | 6.07 | 20.30 |
5.00 | 7.63 | −7.12 | 7.71 | −11.64 | 7.38 | −3.47 | 6.05 | 27.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fink, L.; Karl, M.; Matthias, V.; Weigelt, A.; Irjala, M.; Simonen, P. Using the Multicomponent Aerosol FORmation Model (MAFOR) to Determine Improved VOC Emission Factors in Ship Plumes. Toxics 2024, 12, 432. https://doi.org/10.3390/toxics12060432
Fink L, Karl M, Matthias V, Weigelt A, Irjala M, Simonen P. Using the Multicomponent Aerosol FORmation Model (MAFOR) to Determine Improved VOC Emission Factors in Ship Plumes. Toxics. 2024; 12(6):432. https://doi.org/10.3390/toxics12060432
Chicago/Turabian StyleFink, Lea, Matthias Karl, Volker Matthias, Andreas Weigelt, Matti Irjala, and Pauli Simonen. 2024. "Using the Multicomponent Aerosol FORmation Model (MAFOR) to Determine Improved VOC Emission Factors in Ship Plumes" Toxics 12, no. 6: 432. https://doi.org/10.3390/toxics12060432
APA StyleFink, L., Karl, M., Matthias, V., Weigelt, A., Irjala, M., & Simonen, P. (2024). Using the Multicomponent Aerosol FORmation Model (MAFOR) to Determine Improved VOC Emission Factors in Ship Plumes. Toxics, 12(6), 432. https://doi.org/10.3390/toxics12060432