Vertical Distribution Characteristics and Ecological Risk Assessment of Mercury and Arsenic in Ice, Water, and Sediment at a Cold-Arid Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Evaluation
2.2.1. Detection of Mercury and Arsenic
2.2.2. Quality Assurance and Quality Control
2.3. Methods and Analysis
2.3.1. Sediment Quality Guidelines (SQGs)
2.3.2. Single-Factor Pollution Index
2.3.3. Geo-Accumulation Index (Igeo)
2.3.4. Risk Assessment Code
2.3.5. Human Health Risk Assessment
2.3.6. Monte Carlo Simulation and Uncertainty Analysis
- Fit the distribution function types of heavy metal data and rank the system based on goodness of fit statistics. Select the optimal fit probability distribution based on the results.
- Utilize the risk assessment model, which employs the same deterministic method as the input data, for risk prediction.
- Construct the mathematical model of the potential ecological risk function based on the reference value and toxicity response coefficient. Incorporate the results of each variable into the model to construct the probability density distribution function for potential ecological risk evaluation.
- Employ the model to calculate the contribution of heavy metals and obtain the risk distribution. In this study, the Oracle Crystal Ball software (version 11.1.24, Oracle, Redwood Shores, CA, USA) was used to perform 10,000 independent iterations, enhancing the accuracy and stability of the results. Additionally, the Oracle Crystal Ball software (version: 11.1.24) was employed to conduct sensitivity analysis, reflecting the impact of each parameter on the risk results. The higher the sensitivity value, the greater the impact on the ecological risk results [48]. The probability distribution of random variables of the model is shown in Table 1.
2.4. Statistical Analysis
3. Results and Discussion
3.1. Hg and As in Ice
3.1.1. Distribution of Hg and As in Ice
3.1.2. Vertical Distribution of Hg and As in Ice
3.2. Hg and As in Water
3.2.1. Concentration Distribution of Hg and As in Water
3.2.2. Vertical Distribution of Hg and As in Water
3.3. Distribution of Hg and As in Sediment
3.3.1. Distribution of Hg and As in Sediments
3.3.2. Vertical Distribution of Hg and As in Sediments
3.3.3. Different Fractions and Bioavailability of Hg and As in Sediments
3.4. Pollution Characteristics of Hg and As in Frozen Period
3.4.1. Single-Factor Pollution Index Characteristics
3.4.2. Geo-Accumulation Index (Igeo) Characteristics
3.4.3. Risk Assessment
3.5. Human Health Risk Assessment
3.5.1. Traditional Health Risk Assessment
3.5.2. Probabilistic Health Risk Assessment
3.5.3. Parameter Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Wang, Z.; Zhao, H.; Peros, M.; Yang, Q.; Liu, S.; Li, H.; Wang, S.; Bu, Z. Mercury and arsenic in the surface peat soils of the Changbai Mountains, northeastern China: Distribution, environmental controls, sources, and ecological risk assessment. Environ. Sci. Pollut. Res. Int. 2018, 25, 34595–34609. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Camacho, C.; Salas-Moreno, M.; Marrugo-Madrid, S.; Paternina-Uribe, R.; Marrugo-Negrete, J.; Diez, S. A human health risk assessment of methylmercury, arsenic and metals in a tropical river basin impacted by gold mining in the Colombian Pacific region. Environ. Res. 2022, 212, 113120. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Wang, D.; Du, H.; Sun, T.; Zhao, Z.; Wei, S. Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China. Environ. Sci. Pollut. Res. Int. 2015, 22, 20007–20018. [Google Scholar] [CrossRef] [PubMed]
- Cesario, R.; Mota, A.M.; Caetano, M.; Nogueira, M.; Canario, J. Mercury and methylmercury transport and fate in the water column of Tagus estuary (Portugal). Mar. Pollut. Bull. 2018, 127, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Seelen, E.A.; Chen, C.Y.; Balcom, P.H.; Buckman, K.L.; Taylor, V.F.; Mason, R.P. Historic contamination alters mercury sources and cycling in temperate estuaries relative to uncontaminated sites. Water Res. 2021, 190, 116684. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Lei, P.; Lan, W.; Li, T.; Zhang, H.; Zhong, H.; Pan, K. Litterfall-derived organic matter enhances mercury methylation in mangrove sediments of South China. Sci. Total Environ. 2021, 765, 142763. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Feng, X.B.; Wang, W.X. In vivo mercury methylation and demethylation in freshwater tilapia quantified by mercury stable isotopes. Environ. Sci. Technol. 2013, 47, 7949–7957. [Google Scholar] [CrossRef] [PubMed]
- Sharif, A.; Monperrus, M.; Tessier, E.; Bouchet, S.; Pinaly, H.; Rodriguez-Gonzalez, P.; Maron, P.; Amouroux, D. Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France). Sci. Total Environ. 2014, 496, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Taylor, V.F.; Buckman, K.L.; Seelen, E.A.; Mazrui, N.M.; Balcom, P.H.; Mason, R.P.; Chen, C.Y. Organic carbon content drives methylmercury levels in the water column and in estuarine food webs across latitudes in the Northeast United States. Environ. Pollut. 2019, 246, 639–649. [Google Scholar] [CrossRef]
- Khan, M.U.; Rai, N. Distribution, geochemical behavior, and risk assessment of arsenic in different floodplain aquifers of middle Gangetic basin, India. Environ. Geochem. Health 2023, 45, 2099–2115. [Google Scholar] [CrossRef]
- Xin, Y.; Zheng, D.; Li, X. Mercury and Arsenic Storage Estimation, Source Apportion, and Pollution Assessment in the Greater Khingan Mountains Wetlands, Northeast China. Water Air Soil Pollut. 2021, 232, 430. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Zhang, L.; Mei, Y. Spatial variation and influence factor analysis of soil heavy metal as based on geoDetector. Stoch. Environ. Res. Risk Assess. 2021, 35, 2021–2030. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Yuan, Z.; Liu, H.; Lam, P.K.S. Presence of arsenic, mercury and vanadium in aquatic organisms of Laizhou Bay and their potential health risk. Mar. Pollut. Bull. 2017, 125, 334–340. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, X.; Zhang, S.; Lu, J.; Li, W.; Sun, B.; Zhao, S.; Yao, D.; Huotari, J. The spatial distribution and abundance of microplastics in lake waters and ice during ice-free and ice-covered periods. Environ. Pollut. 2023, 323, 121268. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, R.; Shi, X.; Zhang, S.; Sun, B.; Zhao, S.; Huotari, J. Application of a microplastic trap to the determination of the factors controlling the lakebed deposition of microplastics. Sci. Total Environ. 2022, 843, 156883. [Google Scholar] [CrossRef]
- Zhao, S.; Shi, X.; Li, C.; Zhang, H.; Wu, Y. Seasonal variation of heavy metals in sediment of Lake Ulansuhai, China. Chem. Ecol. 2013, 30, 1–14. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, T.; Zhang, B.T.; Liu, Y.; Shao, P.; Sun, C.; Zhang, Y.; Bi, J.; Dong, Y.; Wang, S.; et al. Spatial-temporal distributions and influential factors of phthalate acid esters in sediments of three lakes in Inner Mongolia. Environ. Sci. Pollut. Res. Int. 2022, 29, 32800–32812. [Google Scholar] [CrossRef]
- Qin, Y.; Tao, Y. Pollution status of heavy metals and metalloids in Chinese lakes: Distribution, bioaccumulation and risk assessment. Ecotoxicol. Environ. Saf. 2022, 248, 114293. [Google Scholar] [CrossRef]
- Yu, H.; Shi, X.; Zhao, S.; Sun, B.; Liu, Y.; Arvola, L.; Li, G.; Wang, Y.; Pan, X.; Wu, R.; et al. Primary productivity of phytoplankton and its influencing factors in cold and arid regions: A case study of Wuliangsuhai Lake, China. Ecol. Indic. 2022, 144, 109545. [Google Scholar] [CrossRef]
- US EPA. Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry, Revision E (August 2002). 2002; pp. 1–38. Available online: https://www.epa.gov/sites/default/files/2015-08/documents/method_1631e_2002.pdf (accessed on 10 July 2024).
- Zhang, Q.; Wang, S.; Nan, Z.; Li, Y.; Zang, F. Accumulation, fractionation, and risk assessment of mercury and arsenic in the soil-wheat system from the wastewater-irrigated soil in Baiyin, northwest China. Environ. Sci. Pollut. Res. Int. 2018, 25, 14856–14867. [Google Scholar] [CrossRef]
- Rauret, G.; Lo’pez-Sa´nchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ureb, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- Certificate of Standard Substances for Soil Composition Analysis; Institute for Geochemical Exploration: Langfang, China, 2010. Available online: https://www.ncrm.org.cn/Web/Ordering/MaterialDetail?autoID=7459 (accessed on 17 July 2024).
- Certificate of Mercury Standard Solution; Beijing North Weiye Measurement Technology Research Institute Co., Ltd.: Beijing, China, 2021; Available online: https://www.ncrm.org.cn/Web/Ordering/MaterialDetail?autoID=24551 (accessed on 17 July 2024).
- Certificate of Standard Solution of Arsenic; Beijing North Weiye Measurement Technology Research Institute Co., Ltd.: Beijing, China, 2021; Available online: https://www.ncrm.org.cn/Web/Ordering/MaterialDetail?autoID=24549 (accessed on 17 July 2024).
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Chen, R.; Han, L.; Liu, Z.; Zhao, Y.; Li, R.; Xia, L.; Fan, Y. Assessment of Soil-Heavy Metal Pollution and the Health Risks in a Mining Area from Southern Shaanxi Province, China. Toxics 2022, 10, 385. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Xue, J.; Yuan, L.; Yao, W.; Wu, H. Study on spatial distribution, potential sources and ecological risk of heavy metals in the surface water and sediments at Shanghai Port, China. Mar. Pollut. Bull. 2022, 181, 113923. [Google Scholar] [CrossRef]
- GB5084-2021; Standard for Irrigation Water Quality. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2021. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/202102/t20210209_821075.shtml (accessed on 10 July 2024).
- Li, Y.; Chen, H.; Teng, Y. Source apportionment and source-oriented risk assessment of heavy metals in the sediments of an urban river-lake system. Sci. Total Environ. 2020, 737, 140310. [Google Scholar] [CrossRef]
- Magni, L.F.; Castro, L.N.; Rendina, A.E. Evaluation of heavy metal contamination levels in river sediments and their risk to human health in urban areas: A case study in the Matanza-Riachuelo Basin, Argentina. Environ. Res. 2021, 197, 110979. [Google Scholar] [CrossRef]
- Elizabeth, M.; Brian, G.; Honway, L.; Michael, W.; Di, P. Metal partitioning in soil profiles in the vicinity of an industrial complex New South Wales Australia. Geochem. Explor. Environ. Anal. 2004, 4, 171–179. [Google Scholar]
- Dan, S.F.; Udoh, E.C.; Wang, Q. Contamination and ecological risk assessment of heavy metals, and relationship with organic matter sources in surface sediments of the Cross River Estuary and nearshore areas. J. Hazard. Mater. 2022, 438, 129531. [Google Scholar] [CrossRef]
- Jain, C.K. Metal fractionation study on bed sediments of River Yamuna, India. Water Res. 2004, 38, 569–578. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Zhao, Z.; Cai, Y. Heavy metal pollution in reservoirs in the hilly area of southern China: Distribution, source apportionment and health risk assessment. Sci. Total Environ. 2018, 634, 158–169. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, Y.; Quan, X. Health risk assessment of heavy metals and pesticides: A case study in the main drinking water source in Dalian, China. Chemosphere 2020, 242, 125113. [Google Scholar] [CrossRef]
- Onjia, A. Concentration unit mistakes in health risk assessment of polycyclic aromatic hydrocarbons in soil, sediment, and indoor/road dust. Front. Environ. Sci. 2024, 12, 1370397. [Google Scholar] [CrossRef]
- Yu, H.; Lin, M.; Peng, W.; He, C. Seasonal changes of heavy metals and health risk assessment based on Monte Carlo simulation in alternate water sources of the Xinbian River in Suzhou City, Huaibei Plain, China. Ecotoxicol. Environ. Saf. 2022, 236, 113445. [Google Scholar] [CrossRef]
- Bux, R.K.; Haider, S.I.; Mallah, A.; Shah, Z.U.; Solangi, A.R.; Moradi, O.; Karimi-Maleh, H. Spatial analysis and human health risk assessment of elements in ground water of District Hyderabad, Pakistan using ArcGIS and multivariate statistical analysis. Environ. Res. 2022, 210, 112915. [Google Scholar] [CrossRef]
- Shaabani, Z.; Esmaili-Sari, A.; Moradi, A.M.; Taghavi, L.; Farsad, F. Possible health risk assessment for heavy metal concentrations in water, sediment, and fish species and Turkmen pregnant women’s biomonitoring in Miankaleh Peninsula, Iran. Environ. Sci. Pollut. Res. Int. 2022, 29, 37187–37203. [Google Scholar] [CrossRef]
- Lei, M.; Zhou, J.; Zhou, Y.; Sun, Y.; Ji, Y.; Zeng, Y. Spatial distribution, source apportionment and health risk assessment of inorganic pollutants of surface water and groundwater in the southern margin of Junggar Basin, Xinjiang, China. J. Environ. Manag. 2022, 319, 115757. [Google Scholar] [CrossRef]
- Qiao, J.; Zhu, Y.; Jia, X.; Shao, M.; Niu, X.; Liu, J. Distributions of arsenic and other heavy metals, and health risk assessments for groundwater in the Guanzhong Plain region of China. Environ. Res. 2020, 181, 108957. [Google Scholar] [CrossRef]
- Shou, Y.; Zhao, J.; Zhu, Y.; Qiao, J.; Shen, Z.; Zhang, W.; Han, N.; Nunez-Delgado, A. Heavy metals pollution characteristics and risk assessment in sediments and waters: The case of Tianjin, China. Environ. Res. 2022, 212, 113162. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection. Exposure Factors Handbook of Chinese Population for Adults; China Environmental Science Press: Beijing, China, 2013. [Google Scholar]
- Ministry of Environmental Protection. Exposure Factors Handbook of Chinese Population for Children; China Environmental Science Press: Beijing, China, 2016. [Google Scholar]
- Wang, S.; Kalkhajeh, Y.K.; Qin, Z.; Jiao, W. Spatial distribution and assessment of the human health risks of heavy metals in a retired petrochemical industrial area, south China. Environ. Res. 2020, 188, 109661. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, L.; Wang, H.; Martin, J.D. Bioavailability and health risk of toxic heavy metals (As, Hg, Pb and Cd) in urban soils: A Monte Carlo simulation approach. Environ. Res. 2022, 214, 113772. [Google Scholar] [CrossRef]
- Lei, M.; Li, K.; Guo, G.; Ju, T. Source-specific health risks apportionment of soil potential toxicity elements combining multiple receptor models with Monte Carlo simulation. Sci. Total Environ. 2022, 817, 152899. [Google Scholar] [CrossRef]
- Jafarzadeh, N.; Heidari, K.; Meshkinian, A.; Kamani, H.; Mohammadi, A.A.; Conti, G.O. Non-carcinogenic risk assessment of exposure to heavy metals in underground water resources in Saraven, Iran: Spatial distribution, monte-carlo simulation, sensitive analysis. Environ. Res. 2022, 204, 112002. [Google Scholar] [CrossRef]
- Jonsson, S.; Nerentorp Mastromonaco, M.G.; Gårdfeldt, K.; Mason, R.P. Distribution of total mercury and methylated mercury species in Central Arctic Ocean water and ice. Mar. Chem. 2022, 242, 104105. [Google Scholar] [CrossRef]
- Nerentorp Mastromonaco, M.G.; Gardfeldt, K.; Langer, S.; Dommergue, A. Seasonal Study of Mercury Species in the Antarctic Sea Ice Environment. Environ. Sci. Technol. 2016, 50, 12705–12712. [Google Scholar] [CrossRef]
- Zheng, J. Archives of total mercury reconstructed with ice and snow from Greenland and the Canadian High Arctic. Sci. Total Environ. 2015, 509–510, 133–144. [Google Scholar] [CrossRef]
- Zheng, J.; Pelchat, P.; Vaive, J.; Bass, D.; Ke, F. Total mercury in snow and ice samples from Canadian High Arctic ice caps and glaciers: A practical procedure and method for total Hg quantification at low pg g−1 level. Sci. Total Environ. 2014, 468–469, 487–494. [Google Scholar] [CrossRef]
- Potocki, M.; Dixon, D.A.; Kurbatov, A.V.; Casassa, G.; Zamora, R.; Handley, M.J.; Introne, D.; Grigholm, B.; Korotkikh, E.V.; Birkel, S.D.; et al. Trace metal emission history captured in a Chilean ice core. Atmos. Environ. 2022, 276, 119002. [Google Scholar] [CrossRef]
- Schwanck, F.; Simões, J.C.; Handley, M.; Mayewski, P.A.; Bernardo, R.T.; Aquino, F.E. Anomalously high arsenic concentration in a West Antarctic ice core and its relationship to copper mining in Chile. Atmos. Environ. 2016, 125, 257–264. [Google Scholar] [CrossRef]
- Bastos, W.R.; Dorea, J.G.; Lacerda, L.D.; Almeida, R.; Costa-Junior, W.A.; Baia, C.C.; Sousa-Filho, I.F.; Sousa, E.A.; Oliveira, I.A.S.; Cabral, C.S.; et al. Dynamics of Hg and MeHg in the Madeira River basin (Western Amazon) before and after impoundment of a run-of-river hydroelectric dam. Environ. Res. 2020, 189, 109896. [Google Scholar] [CrossRef]
- Emmerton, C.A.; Cooke, C.A.; Wentworth, G.R.; Graydon, J.A.; Ryjkov, A.; Dastoor, A. Total Mercury and Methylmercury in Lake Water of Canada’s Oil Sands Region. Environ. Sci. Technol. 2018, 52, 10946–10955. [Google Scholar] [CrossRef]
- Cui, L.; Li, J.; Gao, X.; Tian, B.; Zhang, J.; Wang, X.; Liu, Z. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake. Front. Environ. Sci. Eng. 2021, 16, 41. [Google Scholar]
- Wang, S.; Xing, D.; Jia, Y.; Li, B.; Wang, K. The distribution of total mercury and methyl mercury in a shallow hypereutrophic lake Lake Taihu in two seasons. Appl. Geochem. 2012, 27, 343–351. [Google Scholar] [CrossRef]
- Makokha, V.A.; Qi, Y.; Shen, Y.; Wang, J. Concentrations, Distribution, and Ecological Risk Assessment of Heavy Metals in the East Dongting and Honghu Lake, China. Expo. Health 2015, 8, 31–41. [Google Scholar] [CrossRef]
- Li, G.; Liu, G.; Zhou, C.; Chou, C.L.; Zheng, L.; Wang, J. Spatial distribution and multiple sources of heavy metals in the water of Chaohu Lake, Anhui, China. Environ. Monit. Assess. 2012, 184, 2763–2773. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, L.; Liang, T.; Xiao, J.; Li, J.; Wei, H.; Dong, L. Major ion and dissolved heavy metal geochemistry, distribution, and relationship in the overlying water of Dongting Lake, China. Environ. Geochem. Health 2019, 41, 1091–1104. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Cheng, C.; Feng, H.; Hong, Z.; Zhu, Q.; Kolencik, M.; Chang, X. Assessment of metal mobility in sediment, commercial fish accumulation and impact on human health risk in a large shallow plateau lake in southwest of China. Ecotoxicol. Environ. Saf. 2020, 194, 110346. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhou, S.; Wu, P.; Qu, K. Assessment of the distribution, bioavailability and ecological risks of heavy metals in the lake water and surface sediments of the Caohai plateau wetland, China. PLoS ONE 2017, 12, e0189295. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Shi, M.; Mao, Y.; Liu, W.; Li, M.; Yu, Y.; Yu, H.; Cheng, C.; Zhang, Z.; Zhang, J.; et al. The characteristics of polycyclic aromatic hydrocarbons and heavy metals in water and sediment of dajiuhu subalpine wetland, shennongjia, central China, 2018-2020: Insights for sources, sediment-water exchange, and ecological risk. Chemosphere 2022, 309, 136788. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xu, M.; Liu, Q.; Wang, Z.; Zhao, L.; Chen, Y. Study of heavy metal pollution, ecological risk and source apportionment in the surface water and sediments of the Jiangsu coastal region, China: A case study of the Sheyang Estuary. Mar. Pollut. Bull. 2018, 137, 601–609. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, Q.; Ma, X.; Han, M. Assessment of heavy metals contamination and water quality characterization in the Nanming River, Guizhou Province. Environ. Geochem. Health 2021, 43, 1273–1286. [Google Scholar] [CrossRef]
- Faseyi, C.A.; Miyittah, M.K.; Sowunmi, A.A.; Yafetto, L. Water quality and health risk assessments of illegal gold mining-impacted estuaries in Ghana. Mar. Pollut. Bull. 2022, 185, 114277. [Google Scholar] [CrossRef]
- Ali, M.M.; Rahman, S.; Islam, M.S.; Rakib, M.R.J.; Hossen, S.; Rahman, M.Z.; Kormoker, T.; Idris, A.M.; Phoungthong, K. Distribution of heavy metals in water and sediment of an urban river in a developing country: A probabilistic risk assessment. Int. J. Sediment Res. 2022, 37, 173–187. [Google Scholar] [CrossRef]
- Naddafi, K.; Mesdaghinia, A.; Abtahi, M.; Hassanvand, M.S.; Beiki, A.; Shaghaghi, G.; Shamsipour, M.; Mohammadi, F.; Saeedi, R. Assessment of burden of disease induced by exposure to heavy metals through drinking water at national and subnational levels in Iran, 2019. Environ. Res. 2022, 204, 112057. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Wu, J.; Zhan, S.; Jin, M. Spatial Distributions, Sources and Risk Assessment of Toxic Elements in Waters of a Central Asian Basin. Water Resour. Manag. 2022, 36, 6187–6203. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, K.; Chen, Y.; Qu, C.; Wu, C. Arsenic in water, sediment, and fish of lakes from the Central Tibetan Plateau. J. Geochem. Explor. 2020, 210, 106454. [Google Scholar] [CrossRef]
- Karaouzas, I.; Kapetanaki, N.; Mentzafou, A.; Kanellopoulos, T.D.; Skoulikidis, N. Heavy metal contamination status in Greek surface waters: A review with application and evaluation of pollution indices. Chemosphere 2021, 263, 128192. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Xu, N.; Liu, B.; Zhou, L.; Wang, J.; Wang, C.; Dai, B.; Xiong, W. Metal concentrations and risk assessment in water, sediment and economic fish species with various habitat preferences and trophic guilds from Lake Caizi, Southeast China. Ecotoxicol. Environ. Saf. 2018, 157, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lao, Q.; Su, Q.; Liu, G.; Shen, Y.; Chen, F.; Lei, X.; Qing, S.; Wei, C.; Zhang, C.; Gao, J. Spatial distribution of and historical changes in heavy metals in the surface seawater and sediments of the Beibu Gulf, China. Mar. Pollut. Bull. 2019, 146, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Jiang, W.; Li, F.; Pan, Y.; Wang, C.; Tian, H. Occurrence, partition, and risk of seven heavy metals in sediments, seawater, and organisms from the eastern sea area of Shandong Peninsula, Yellow Sea, China. J. Environ. Manag. 2021, 279, 111771. [Google Scholar] [CrossRef]
- Li, D.; Chang, F.; Zhang, Y.; Duan, L.; Liu, Q.; Li, H.; Hu, G.; Zhang, X.; Gao, Y.; Zhang, H. Arsenic migration at the sediment-water interface of anthropogenically polluted Lake Yangzong, Southwest China. Sci. Total Environ. 2023, 879, 163205. [Google Scholar] [CrossRef]
- Liu, S.; Guo, H.; Lu, H.; Zhang, Z.; Zhao, W. The provenance of deep groundwater and its relation to arsenic distribution in the northwestern Hetao Basin, Inner Mongolia. Environ. Geochem. Health 2020, 42, 1429–1451. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Zhang, J.; Yin, H.; Hu, W.; Zhu, J.; Wang, X. Ecological risk assessment and source apportionment of metals in the surface sediments of river systems in Lake Taihu Basin, China. Environ. Sci. Pollut. Res. Int. 2020, 27, 25943–25955. [Google Scholar] [CrossRef] [PubMed]
- Bi, B.; Liu, X.; Guo, X.; Lu, S. Occurrence and risk assessment of heavy metals in water, sediment, and fish from Dongting Lake, China. Environ. Sci. Pollut. Res. Int. 2018, 25, 34076–34090. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Liu, X.; Zhang, Z.; Zhang, Q. Speciation characteristics and ecological risk assessment of heavy metals in sediments from Caohai Lake, Guizhou Province. Stoch. Environ. Res. Risk Assess. 2022, 36, 3929–3944. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Chen, H.; Li, Q.; Yu, C.; Huang, X.; Guo, H. Water environment in the Tibetan Plateau: Heavy metal distribution analysis of surface sediments in the Yarlung Tsangpo River Basin. Environ. Geochem. Health 2020, 42, 2451–2469. [Google Scholar] [CrossRef] [PubMed]
- Obodai, J.; Amaning Adjei, K.; Duncan, A.E.; Nii Odai, S. Potentially Toxic Elements (PTEs) contamination and ecological risk of sediment in the upper course of the Ankobra River, Ghana. Environ. Monit. Assess. 2022, 194, 446. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Liu, E.; Zhang, E.; Li, K.; Shen, J. Spatial distribution, contamination and ecological risk assessment of heavy metals in surface sediments of Erhai Lake, a large eutrophic plateau lake in southwest China. Catena 2016, 145, 193–203. [Google Scholar] [CrossRef]
- Morales-García, S.S.; Meza-Olvera, E.; Shruti, V.C.; Sedeño-Díaz, J.E. Assessment of metal contamination and their ecological risks in wetland sediments of the former Texcoco saline lake, Mexico. J. Soils Sediments 2020, 20, 2912–2930. [Google Scholar] [CrossRef]
- Jahromi, F.A.; Keshavarzi, B.; Moore, F.; Abbasi, S.; Busquets, R.; Hooda, P.S.; Jaafarzadeh, N. Source and risk assessment of heavy metals and microplastics in bivalves and coastal sediments of the Northern Persian Gulf, Hormogzan Province. Environ. Res. 2021, 196, 110963. [Google Scholar] [CrossRef] [PubMed]
- Strady, E.; Dinh, Q.T.; Némery, J.; Nguyen, T.N.; Guédron, S.; Nguyen, N.S.; Denis, H.; Nguyen, P.D. Spatial variation and risk assessment of trace metals in water and sediment of the Mekong Delta. Chemosphere 2017, 179, 367–378. [Google Scholar] [CrossRef]
- Jimenez-Oyola, S.; Valverde-Armas, P.E.; Romero-Crespo, P.; Capa, D.; Valdivieso, A.; Coronel-Leon, J.; Guzman-Martinez, F.; Chavez, E. Heavy metal(loid)s contamination in water and sediments in a mining area in Ecuador: A comprehensive assessment for drinking water quality and human health risk. Environ. Geochem. Health 2023, 45, 4929–4949. [Google Scholar] [CrossRef] [PubMed]
- Varol, M.; Canpolat, O.; Eris, K.K.; Caglar, M. Trace metals in core sediments from a deep lake in eastern Turkey: Vertical concentration profiles, eco-environmental risks and possible sources. Ecotoxicol. Environ. Saf. 2020, 189, 110060. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Hu, J.; Yin, D.; He, T.; Tian, X.; Ran, S.; Zhou, X. Mercury and methylmercury in Hg-contaminated paddy soil and their uptake in rice as regulated by DOM from different agricultural sources. Environ. Sci. Pollut. Res. Int. 2023, 30, 77181–77192. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Sun, G.; Li, Z.; Zhang, L.; Feng, X.; Li, X.; Wu, T. Total mercury and mercury isotope signatures in reservoir sediment reflecting the landscape changes and agricultural activities in northeast China. Catena 2021, 197, 104983. [Google Scholar] [CrossRef]
- Alonso, D.L.; Perez, R.; Okio, C.; Castillo, E. Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurban paramo, Colombia. J. Environ. Manag. 2020, 264, 110478. [Google Scholar] [CrossRef]
- Chen, T.; Liu, Q.; Zheng, Y.; Zhou, L. Correlation patterns between magnetic parameters and heavy metals of core sediments in the Yellow River Estuary and their environmental implications. Mar. Pollut. Bull. 2020, 160, 111590. [Google Scholar] [CrossRef]
- Song, Z.; Gao, H.; Zhang, W.; Wang, D. Influence of flocculation conditioning on environmental risk of heavy metals in dredged sediment. J. Environ. Manag. 2021, 297, 113313. [Google Scholar] [CrossRef]
- You, M.; Hu, Y.; Meng, Y. Chemical speciation and bioavailability of potentially toxic elements in surface sediment from the Huaihe River, Anhui Province, China. Mar. Pollut. Bull. 2023, 188, 114616. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Song, J.; Tan, M.L.; Kung, H.T.; Johnson, V.C. Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China. Environ. Res. 2021, 202, 111702. [Google Scholar] [CrossRef]
Parameter | Unit | Distribution Pattern | Distribution | References | |
---|---|---|---|---|---|
Adult | Children | ||||
AT | d | Point distribution | Carcinogenic: 25,550 Non-carcinogenic: 25,550 | Carcinogenic: 25,550 Non-carcinogenic: 3650 | [48] |
BW | kg | Log-normal distribution | (59.78, 1.07) | (16.68, 1.48) | [41,49] |
IR | L/d | Log-normal distribution | (1.23, 0.27) | (1.12, 0.27) | [41,49] |
ED | a | Uniform distribution | (0, 70) | (0, 10) | [41,50] |
EF | d/a | Triangular distribution | Min: 180 possible value: 350 Max: 365 | [41,49] | |
RfDi | mg/kg × a | Point distribution | 0.0003(Hg) | [41,49] | |
SFi | kg × d/mg | Point distribution | 1.5(As) | [41,49] | |
Hg ice | ng/L | Log-normal distribution | (7.90, 4.35) | This study | |
As ice | μg/L | Log-normal distribution | (2.48, 3.22) | This study | |
Hg water | μg/L | Log-normal distribution | (0.37, 0.23) | This study | |
As water | μg/L | Log-normal distribution | (5.72, 1.70) | This study |
Location | Region and Country | Hg (ng/L) | As (μg/L) | Reference |
---|---|---|---|---|
Wuliangsuhai Lake | China | 8.20 | 2.34 | This study |
Arctic Ocean | Sweden | 0.54 | - | [50] |
Weddell Sea | Antarctica | 4.70 | - | [51] |
High Arctic (2015) | Canada | 3.20 | - | [52] |
High Arctic (2014) | Canada | 3.68 | - | [53] |
Tupungatito Glacier | Chile | - | 0.96 | [54] |
West Antarctic | Chile | - | 4.32 | [55] |
Location | Region and Country | Hg (μg/L) | As (μg/L) | Reference |
---|---|---|---|---|
Wuliangsuhai Lake | China | 0.36 | 5.72 | This study |
Taihu Lake | China | 0.03 | 12.4 | [58,59] |
Honghu Lake | China | 0.01 | 3.99 | [60] |
Chaohu Lake | China | 0.74 | 0.33 | [61] |
Dongting Lake | China | 0.04 | 3.62 | [60,62] |
Dianchi Lake | China | 10.0 | 15.0 | [63] |
Caohai Wetland | China | 0.07 | 1.94 | [64] |
Dajiuhu Wetland | China | 0.01 | 0.53 | [65] |
Sheyang Estuary | China | 0.03 | 1.83 | [66] |
Nanming River | China | 0.01 | 1.40 | [67] |
Wujiang River | China | 0.03 | 0.91 | [68] |
Bhairab River | Bangladesh | - | 4.09 | [69] |
Iran’s drinking water | Iran | 0.7 | 2.30 | [70] |
Lake Balkhash | Kazakhstan | - | 40.27 | [71] |
Fresh water lakes in central Tibetan Plateau | China | - | 4.90 | [72] |
Saline lakes in central Tibetan Plateau | China | - | 980.56 | [72] |
Greek surface waters | Greece | 0.05 | 30.0 | [73] |
Caizi Lake | China | 0.04 | 3.21 | [74] |
Beibu Gulf | China | 0.10 | 0.74 | [75] |
Shandong Peninsula | China | 0.04 | 0.98 | [76] |
Location | Region and Country | Hg (mg/kg) | As (mg/kg) | Reference |
---|---|---|---|---|
Wuliangsuhai Lake | China | 0.04 | 7.47 | This study |
Taihu Lake | China | 0.10 | 13.3 | [79] |
Honghu Lake | China | 0.16 | 31.7 | [60] |
Chaohu Lake | China | 0.13 | 12.0 | [60] |
Dongting Lake | China | 0.18 | 29.2 | [80] |
Dianchi Lake | China | 0.89 | 30.5 | [63] |
Caohai Wetland | China | 0.24 | 12.9 | [81] |
Dajiuhu Wetland | China | 0.06 | 11.6 | [65] |
Sheyang Estuary | China | 0.02 | 12.9 | [66] |
Lhasa River | China | 0.03 | 22.4 | [82] |
Nanming River | China | 0.03 | 12.9 | [67] |
Wujiang River | China | 0.19 | 15.2 | [68] |
Ankobra Estuary | Ghana | 0.28 | 50.1 | [83] |
Erhai Lake | China | 0.17 | 26.9 | [84] |
Texcoco saline Lakes | Mexico | 0.75 | 0.43 | [85] |
Hormozgan Province Coastal | Turkey | 0.02 | 5.92 | [86] |
Caizi Lake | China | 0.05 | 41.0 | [74] |
Beibu Gulf | China | 0.06 | 7.82 | [75] |
Shandong Peninsula | China | 0.03 | 7.84 | [76] |
TEL | 0.17 | 5.90 | [26] | |
PEL | 0.48 | 17.0 | [26] |
Sampling Point | Depth (cm) | As | Hg | Sampling Point | Depth (cm) | As | Hg |
---|---|---|---|---|---|---|---|
J11 | 5 | 0.5% | 10.5% | M14 | 5 | 0.5% | 3.5% |
10 | 1.3% | 9.8% | 10 | 0.8% | 8.2% | ||
15 | - | - | 15 | 0.4% | 6.7% | ||
20 | - | - | 20 | - | - | ||
25 | - | - | 25 | - | - | ||
J13 | 5 | 0.5% | 7.7% | N13 | 5 | 1.5% | 6.6% |
10 | 0.5% | 4.5% | 10 | 2.0% | 9.4% | ||
15 | 0.5% | 10.7% | 15 | 1.5% | 2.6% | ||
20 | 0.8% | 5.6% | 20 | 3.2% | 7.5% | ||
25 | 0.8% | 5.5% | 25 | - | - | ||
K12 | 5 | 0.2% | 6.3% | P9 | 5 | 1.8% | 15.8% |
10 | 0.4% | 5.1% | 10 | 1.3% | 2.5% | ||
15 | 0.4% | 10.3% | 15 | 3.7% | 8.4% | ||
20 | - | - | 20 | - | - | ||
25 | - | - | 25 | - | - | ||
L11 | 5 | 0.6% | 4.1% | P11 | 5 | 2.2% | 3.8% |
10 | 0.4% | 10.2% | 10 | 1.7% | 13.1% | ||
15 | 0.5% | 7.6% | 15 | - | - | ||
20 | - | - | 20 | - | - | ||
25 | - | - | 25 | - | - | ||
M12 | 5 | 0.6% | 13.1% | Q8 | 5 | 2.8% | 5.8% |
10 | 0.8% | 6.1% | 10 | 2.3% | 7.1% | ||
15 | 0.6% | 6.6% | 15 | 2.1% | 10.6% | ||
20 | - | - | 20 | 2.5% | 12.5% | ||
25 | - | - | 25 | - | - |
Element | Ice | Water | ||||
---|---|---|---|---|---|---|
Adult | Children | Mean | Adult | Children | Mean | |
As | 2.19 × 10−5~5.12 × 10−4 | 3.16 × 10−5~7.39 × 10−4 | 1.06 × 10−4, 1.54 × 10−4 | 2.19 × 10−5~5.12 × 10−4 | 3.16 × 10−5~7.39 × 10−4 | 2.60 × 10−4, 3.75 × 10−4 |
Hg | 5.04 × 10−5~1.86 × 10−3 | 7.82 × 10−5~2.68 × 10−3 | 7.97 × 10−4, 1.15 × 10−3 | 1.94 × 10−4~8.95 × 10−2 | 2.79 × 10−3~1.29 × 10−1 | 3.17 × 10−2, 5.35 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Z.; Zhao, S.; Shi, X.; Lu, J.; Liu, Y.; Liu, Y.; Zhao, Y. Vertical Distribution Characteristics and Ecological Risk Assessment of Mercury and Arsenic in Ice, Water, and Sediment at a Cold-Arid Lake. Toxics 2024, 12, 540. https://doi.org/10.3390/toxics12080540
Cui Z, Zhao S, Shi X, Lu J, Liu Y, Liu Y, Zhao Y. Vertical Distribution Characteristics and Ecological Risk Assessment of Mercury and Arsenic in Ice, Water, and Sediment at a Cold-Arid Lake. Toxics. 2024; 12(8):540. https://doi.org/10.3390/toxics12080540
Chicago/Turabian StyleCui, Zhimou, Shengnan Zhao, Xiaohong Shi, Junping Lu, Yu Liu, Yinghui Liu, and Yunxi Zhao. 2024. "Vertical Distribution Characteristics and Ecological Risk Assessment of Mercury and Arsenic in Ice, Water, and Sediment at a Cold-Arid Lake" Toxics 12, no. 8: 540. https://doi.org/10.3390/toxics12080540
APA StyleCui, Z., Zhao, S., Shi, X., Lu, J., Liu, Y., Liu, Y., & Zhao, Y. (2024). Vertical Distribution Characteristics and Ecological Risk Assessment of Mercury and Arsenic in Ice, Water, and Sediment at a Cold-Arid Lake. Toxics, 12(8), 540. https://doi.org/10.3390/toxics12080540