Acute Toxicity of Commercial Wildfire Retardants to Two Daphniid Species (Ceriodaphnia dubia and Daphnia magna)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fire Retardant (FR) Formulations
2.2. Chemical Analysis
2.3. The Solubilization of FRs
2.4. Maintenance of Test Organisms
2.5. Preparation of the Test Solution
2.6. Acute Toxicity Tests
3. Results
3.1. Chemical and Solubilized Compounds of FRs
N-Borate 1.5% | N-Phosphate+ 1.5% | N-Phosphate− 2% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total Elements | Ions * | Total Elements | Ions | Total Elements | Ions | ||||||
N | 2662 | NO2− | 114 | N | 2940 | NO2− | <DL | N | 507 | NO2− | <DL |
P | 1232 | NO3− | 5.23 | P | 2937 | NO3− | 1428 | P | 621 | NO3− | 613 |
K | 1.0 | NH4+ | 1039 | K | 18.6 | NH4+ | 2296 | K | 1.8 | NH4+ | 1674 |
Ca | <DL | K+ | 7.87 | Ca | 13.89 | K+ | 13.67 | Ca | <DL | K+ | <DL |
Mg | 0.21 | PO43− | <DL | Mg | 26.96 | PO43− | 1047 | Mg | <DL | PO43− | 34.64 |
Al | <DL | Ca2+ | 50.36 | Al | 97.75 | Ca2+ | 62.27 | Al | <DL | Ca2+ | 203 |
Fe | <DL | Mg2+ | 44.66 | Fe | 427 | Mg2+ | 33.46 | Fe | 0.03 | Mg2+ | 75 |
S | 13.30 | SO42− | <DL | S | 229 | SO42− | 28 | S | 0.68 | SO42− | 0.17 |
B | 1953 | Na+ | 49.5 | B | 4.79 | Na+ | 24.03 | B | <DL | Na+ | 30.5 |
pH | 9.1 | Cl− | 15.14 | pH | 6.95 | Cl− | 5.69 | pH | 7.78 | Cl− | 36 |
DO | 4.8 | Br− | 8.6 | DO | 5.4 | Br− | 48.15 | DO | 7.0 | Br− | 6.75 |
EC | 2960 | F− | <DL | EC | 11,040 | F− | 15.5 | EC | 3910 | F− | <DL |
Li | <DL | Li | <DL | Li | <DL |
Ions | N-Borate 0.15% | N-Phosphate+ 0.075% | N-Phosphate− 0.02% |
---|---|---|---|
F− | <DL | 0.78 | <DL |
Cl− | 1.51 | 0.28 | 0.36 |
NO2− | 11.37 | <DL | <DL |
Br− | 0.86 | 2.41 | 0.07 |
NO3− | 0.53 | 71.24 | 6.13 |
PO43− | <DL | 52.35 | 0.35 |
SO42− | <DL | 1.40 | 0.002 |
Li | <DL | <DL | <DL |
Na+ | 4.95 | 1.20 | 0.30 |
NH4+ | 103.9 | 114.8 | 16.74 |
K+ | 0.79 | 0.68 | <DL |
Ca2+ | 5.04 | 3.11 | 2.03 |
Mg2+ | 4.47 | 1.67 | 0.75 |
pH (C0–C5) | 7.42–7.31 * | 7.67–7.2 | 7.38–7.68 |
DO (C0–C5) ** | 7.1–6.0 | 6.1–6.7 | 5.4–5.3 |
EC (C0–C5) | 225–848 | 187–448 | 219–256 |
3.2. Acute Immobilization Tests
4. Discussion
4.1. Potential Impact of the Nutrient Increment on Water Ecosystems
4.2. The Toxicity of Evaluated FRs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- He, T.; Lamont, B.B.; Pausas, J.G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. Camb. Philos. Soc. 2019, 94, 1983–2010. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, S.T.; Fornazari, T.; Cóstola, A.; Morellato, L.P.C.; Silva, T.S.F. Drivers of fire occurrence in a mountainous Brazilian cerrado savanna: Tracking long-term fire regimes using remote sensing. Ecol. Indic. 2017, 78, 270–281. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Hanel, M.; Borthwick, A.G.L.; Duan, Q.; Ji, D.; Li, H. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int. 2019, 128, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Xiao, C.; Feng, Z.; Li, W.; Zhang, X. Occurrence frequencies and regional variations in Visible Infrared Imaging Radiometer Suite (VIIRS) global active fires. Glob. Chang. Biol. 2020, 26, 2970–2987. [Google Scholar] [CrossRef] [PubMed]
- Brando, P.M.; Soares-Filho, B.; Rodrigues, L.; Assunção, A.; Morton, D.; Tuchschneider, D.; Fernandes, E.C.M.; Macedo, M.N.; Oliveira, U.; Coe, M.T. The gathering firestorm in southern Amazonia. Sci. Adv. 2020, 6, eaay1632. [Google Scholar] [CrossRef] [PubMed]
- Soares-Filho, B.; Oliveira, U.; Van der Hoff, R.; Carvalho-Ribeiro, S.; Oliveira, A.; Scheepers, L.; Vargas, B.; Rajão, R. Costs and effectiveness of public and private fire management programs in the Brazilian Amazon and Cerrado. For. Policy Econ. 2021, 127, 102447. [Google Scholar] [CrossRef]
- Moura, L.C.; Scariot, A.O.; Schmidt, I.B.; Beatty, R.; Russell-Smith, J. The legacy of colonial fire management policies on traditional livelihoods and ecological sustainability in savannas: Impacts, consequences, new directions. J. Environ. Manag. 2019, 232, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, I.B.; Eloy, L. Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora 2020, 268, 151613. [Google Scholar] [CrossRef]
- Campanharo, W.; Lopes, A.; Anderson, L.; da Silva, T.; Aragão, L. Translating fire impacts in southwestern amazonia into economic costs. Remote Sens. 2019, 11, 764. [Google Scholar] [CrossRef]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.J.; Nyman, P.; Haydon, S. Wildfire effects on water quality in forest catchments: A review with implications for water supply. J. Hydrol. 2011, 396, 170–192. [Google Scholar] [CrossRef]
- Spencer, C.N.; Gabel, K.O.; Hauer, F.R. Wildfire effects on stream food webs and nutrient dynamics in Glacier National Park, USA. For. Ecol. Manag. 2003, 178, 141–153. [Google Scholar] [CrossRef]
- Brito, D.Q.; Passos, C.J.S.; Muniz, D.H.; Oliveira-Filho, E.C. Aquatic ecotoxicity of ashes from Brazilian savanna wildfires. Environ. Sci. Pollut. Res. 2017, 24, 19671–19682. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.M.; Loureiro, C.; Guiomar, N.; Pezzatti, G.B.; Manso, F.T.; Lopes, L. The dynamics and drivers of fuel and fire in the Portuguese public forest. J. Environ. Manag. 2014, 146, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.C. O Uso de Retardantes no Combate a Incêndios florestais. In Proceedings of the Revista Científica do Corpo de Bombeiros Militar de Pernambuco XVIII Seminário Nacional de Bombeiros, Foz do Iguaçu, Brazil, 21–23 November 2018; pp. 59–75, Edição Especial XVIII SENABOM-ISSN 2359-4829. Available online: http://www.revistaflammae.com (accessed on 15 May 2023).
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Chelsea Nagy, R.; Fusco, E.J.; Mahood, A.L. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 11. [Google Scholar] [CrossRef] [PubMed]
- Angeler, D.G.; Rodríguez, M.; Martín, S.; Moreno, J.M. Assessment of application-rate dependent effects of a long-term fire-retardant chemical (Fire Trol 934®) on Typha domingensis germination. Environ. Int. 2004, 30, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, J.P.; Myers, M.S.; Strickland, S.A.; van Gaest, A.; Arkoosh, M.R. Toxicity of forest fire retardant chemicals to stream-type chinook salmon undergoing parr-smolt transformation. Environ. Toxicol. Chem. 2012, 32, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Tobin, B.W.; Schwartz, B.F.; Kelly, M.; Despain, J.D. Fire retardant and post-fire nutrient mobility in a mountain surface water—Karst groundwater system: The Hidden Fire Sequoia National Park California USA. Environ. Earth Sci. 2015, 73, 951–960. [Google Scholar] [CrossRef]
- Buhl, K.J.; Hamilton, S.J. Acute Toxicity of Fire-Control Chemicals, Nitrogenous Chemicals, and Surfactants to Rainbow Trout. Trans. Am. Fish. Soc. 2000, 129, 408–418. [Google Scholar] [CrossRef]
- Boulton, A.J.; Moss, G.L.; Smithyman, D. Short-term effects of aerially applied fire-suppressant foams on water chemistry and macroinvertebrates instreams after natural wild-fire on Kangaroo Island, South Australia. Hydrobiologia 2003, 498, 177–189. [Google Scholar] [CrossRef]
- Graetz, S.; Ji, M.; Hunter, S.; Sibley, P.K.; Prosse, R.S. Deterministic risk assessment of firefighting water additives to aquatic organisms. Ecotoxicology 2020, 29, 1377–1389. [Google Scholar] [CrossRef]
- Angeler, D.G.; Martín, S.; Moreno, J.M. Daphnia emergence: A sensitive indicator of fire-retardant stress in temporary wetlands. Environ. Int. 2005, 31, 615–620. [Google Scholar] [CrossRef]
- Ozeri, L.; Blaustein, L.; Polevikov, A.; Kneitel, J.; Rahav, E.; Horwitz, R. Effects of a fire retardant on the Near Eastern Fire Salamander Salamandra infraimmaculata and aquatic community structure: An experimental approach. Hydrobiologia 2021, 848, 4713–4729. [Google Scholar] [CrossRef]
- Folha de São Paulo. Ministério de Salles Anunciou Uso de Retardante Quimico Contra Fogo na Amazonia Legal. 2020. Available online: https://www1.folha.uol.com.br/colunas/painel/2020/10/ministerio-de-salles-anunciou-uso-de-retardante-quimico-contra-fogo-na-amazonia-legal.shtml (accessed on 12 March 2021).
- Giménez, A.; Pastor, E.; Zárate, L.; Planas, E.; Arnaldos, J. Long-term Forest fire retardants: A review of quality, effectiveness, application and environmental considerations. Int. J. Wildland Fire 2004, 13, 1–15. [Google Scholar] [CrossRef]
- EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. In Manual of Soil Analysis Methods, 2nd ed.; National Research Center of Soils: Rio de Janeiro, Brazil, 1997. [Google Scholar]
- Altshuler, I.; Demiri, B.; Xu, S.; Constantin, A.; Yan, N.D.; Cristescu, M.E. An integrated multi-disciplinary approach for studying multiple stressors in freshwater ecosystems: Daphnia as a model organism. Integr. Comp. Biol. 2011, 51, 623–633. [Google Scholar] [CrossRef] [PubMed]
- ABNT 13373; Associação Brasileira de Normas Técnicas Ecotoxicologia aquática–Toxicidade Crônica-Método de ensaio com Ceriodaphnia spp. (Cladocera, Crustacea). ABNT: Rio de Janeiro, Brazil, 2010.
- ABNT 12713; Associação Brasileira de Normas Técnicas. Ecotoxicologia Aquatica–Toxicidade Aguda-Método de Ensaio com Daphnia spp. (Cladocera, Crustacea). ABNT: Rio de Janeiro, Brazil, 2016.
- OECD Organization for Economic Cooperation and Development. OECD Guidelines for the Testing of Chemicals: Daphnia sp., Acute Immobilization Test, No. 202; OECD Organization for Economic Cooperation and Development: Paris, France, 2004. [Google Scholar]
- OECD Organization for Economic Cooperation and Development. OECD Guidelines for the Testing of Chemicals: Daphnia magna Reproduction Test, No. 211; OECD Organization for Economic Cooperation and Development: Paris, France, 2012. [Google Scholar]
- Couto-Vázquez, A.; García-Marco, S.; González-Prieto, S.J. Long-term effects of fire and three firefighting chemicals on a soil–plant system. Int. J. Wildland Fire 2011, 20, 856–865. [Google Scholar] [CrossRef]
- Libonati, R.; DaCamara, C.C.; Peres, L.F.; Sander de Carvalho, L.A.; Garcia, L.C. Rescue Brazil’s burning Pantanal wetlands. Nature 2020, 588, 217–219. [Google Scholar] [CrossRef]
- Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Wildland Fire, 2nd ed.; Wiley: New York, NY, USA, 1996; p. 7. [Google Scholar]
- Simplício, N.D.C.S.; Muniz, D.H.D.F.; Rocha, F.R.M.; Martins, D.C.; Dias, Z.M.B.; Farias, B.P.D.C.; Oliveira-Filho, E.C. Comparative Analysis between Ecotoxicity of Nitrogen-, Phosphorus-, and Potassium-Based Fertilizers and their Active Ingredients. Toxics 2016, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Earl, S.R.; Blinn, D.W. Effects of wildfire ash on water chemistry and biota in South-Western USA streams. Freshw. Biol. 2003, 48, 1015–1030. [Google Scholar] [CrossRef]
- Pereira, P.; Úbeda, X. Spatial distribution of heavy metals released from ashes after a wildfire. J. Environ. Eng. Landsc. Manag. 2010, 18, 13–22. [Google Scholar] [CrossRef]
- Campos, I.; Abrantes, N.; Vidal, T.; Bastos, A.C.; Gonçalves, F.; Keizer, J.J. Assessment of the toxicity of ash-loaded runoff from a recently burnt eucalypt plantation. Eur. J. For. Res. 2012, 131, 1889–1903. [Google Scholar] [CrossRef]
- Costa, M.R.; Calvão, A.R.; Aranha, J. Linking wildfire effects on soil and water chemistry of the Marão River watershed, Portugal, and biomass changes detected from Landsat imagery. Appl. Geochem. 2014, 44, 93–102. [Google Scholar] [CrossRef]
- Bitner, K.; Gallaher, B.; Mullen, K. Review of wildfire effects on chemical water quality. In Review of Wildfire Effects on Chemical Water Quality; Hinojosa, H., Ed.; Los Alamos National Laboratory: Los Alamos, NM, USA, 2001. [Google Scholar]
- Pereira, P.; Úbeda, X.; Martin, D.; Mataix-Solera, J.; Guerrero, C. Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula. Environ. Res. 2011, 111, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Stiernström, S.; Linde, M.; Hemström, K.; Wik, O.; Ytreberg, E.; Bengtsson, B.E.; Breitholtz, M. Improved understanding of key elements governing the toxicity of energy ash eluates. Waste Manag. 2013, 33, 842–849. [Google Scholar] [CrossRef]
- Khanna, P.K.; Raison, R.J.; Falkiner, R.A. Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils. For. Ecol. Manag. 1994, 66, 107–125. [Google Scholar] [CrossRef]
- Gaikowski, M.P.; Hamilton, S.J.; Buhl, K.J.; McDonald, S.F.; Summers, C.H. Acute toxicity of firefighting chemical formulations to four life stages of fathead minnow. Ecotoxicol. Environ. Saf. 1996, 34, 252–263. [Google Scholar] [CrossRef]
- Angeler, D.G.; Sánchez, B.; García, G.; Moreno, J.M. Community ecotoxicology: Invertebrate emergence from Fire Trol 934 contaminated vernal pool and salt marsh sediments under contrasting photoperiod and temperature regimes. Aquat. Toxicol. 2006, 78, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, M.M.; Hoekstra, A.Y. Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water. Environ. Sci. Technol. 2015, 49, 12860–12868. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.A.; Bouwman, A.F.; Mayorga, E.; Seitzinger, S. Magnitudes and sources of dissolved inorganic phosphorus inputs to surface fresh waters and the coastal zone: A new global model. Glob. Biogeochem. Cycles 2010, 24, GB1003. [Google Scholar] [CrossRef]
- Sutter, G.; Flores, B.G.; Laskey, G.; Jurak, S. Investigating the Impacts of Ammonium Phosphate-Based Fire Retardants on Cyanobacteria (Anabaena) Growth. Humboldt J. Microbiol. 2023, 23, 17–24. [Google Scholar]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Academic Press: New York, NY, USA, 2001; p. 1006. [Google Scholar]
- Cheng, S.-Y.; Chen, J.-C. Study on the oxyhemocyanin, deoxyhemocyanin, oxygen affinity and acid–base balance of Marsupenaeus japonicus following exposure to combined elevated nitrite and nitrate. Aquatic. Toxicol. 2002, 61, 181–193. [Google Scholar] [CrossRef]
- Alonso, A.; Camargo, J.A. Short-term toxicity of ammonia, nitrite, and nitrate to the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca). Bull. Environ. Contam. Toxicol. 2003, 70, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Scott, G.; Crunkilton, R.L. Acute and chronic toxicity of nitrate to fathead minnows (Pimephales promelas), Ceriodaphnia dubia and Daphnia magna. Environ. Toxicol. Chem. 2000, 19, 2918–2922. [Google Scholar] [CrossRef]
- Soucek, D.J.; Kennedy, J. Effects of hardness, chloride, and acclimation on the acute toxicity of sulfate to freshwater inverstebrates. Environ. Toxicol. Chem. 2005, 24, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Mount, D.R.; Gulley, D.D.; Hockett, J.R.; Garrison, T.D.; Evans, J.M. Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna and Pimephales promelas (fathead minnows). Environ. Toxicol. Chem. 1997, 16, 2009–2019. [Google Scholar] [CrossRef]
- Cooney, J.D. Fresh water tests. In Fundamentals of Aquatic Toxicology: Effects, Environmental Fate and Risk Assessment; Rand, G.M., Ed.; Taylor & Francis: Washington, DC, USA, 1995; pp. 71–102. [Google Scholar]
- Atkinson, C.A.; Jolley, D.F.; Simpson, S.L. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 2007, 69, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Restrepo, J.B.; Flohr, L.; Melegari, S.P.; da Costa, C.H.; Fuzinatto, C.F.; de Castilhos, A.B.; Matias, W.G. Correlation between acute toxicity for Daphnia magna, Aliivibrio fischeri and physicochemical variables of the leachate produced in landfill simulator reactors. Environ. Technol. 2017, 38, 2898–2906. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M. Ecotoxicology Monitoring; VCH: Weinheim, Germany, 1993. [Google Scholar]
- Tsidiris, V.; Petala, M.; Samaras, P.; Hadjispyrou, S.; Sakellaropoulos, G.; Kungolos, A. Interactive toxic effects of heavy metals and humic acids on Vibrio fischeri. Ecotoxicol. Environ. Saf. 2006, 63, 158–167. [Google Scholar] [CrossRef] [PubMed]
- CETESB. Technology Company and Environmental Sanitation of São Paulo. Water Quality Variables. 2010. Available online: http://www.cetesb.sp.gov.br/Agua/rios/variaveis.asp (accessed on 10 March 2022).
- Garcia, V.S.G.; Tallarico, L.d.F.; Rosa, J.M.; Suzuki, C.F.; Roubicek, D.A.; Nakano, E.; Borrely, S.I. Multiple adverse effects of textile effluents and reactive Red 239 dye to aquatic organisms. Environ. Sci. Pollut. Res. 2021, 28, 63202–63214. [Google Scholar] [CrossRef]
- Baillieul, M.; De, W.B.; Blust, R. Effect of salinity on the swimming velocity of the water flea Daphnia magna. Physiol. Zool. 1998, 71, 703–707. [Google Scholar] [CrossRef]
- Derry, A.M.; Prepas, E.E.; Hebert, P.D.N. A comparison of zooplankton communities in saline lakewater with variable anion composition. Hydrobiologia 2003, 505, 199–215. [Google Scholar] [CrossRef]
- Al-Seria, M.H.M. Salinity effects on survival and life history of Daphnia magna. Int. J. Aquat. Sci. 2019, 10, 19–26. [Google Scholar] [CrossRef]
- Vignatti, A.; Cabrera, G.; Echaniz, S. Efectos de la salinidad sobre parâmetros biológicos de Daphnia spinulata Birabén, 1917 (Crustacea, Cladocera). In X Congreso de Ecología y Manejo de Ecosistemas Acuáticos Pampeanos; Cortelezzi, A., Entraigas, I., Grosman, F., Masso, I., Eds.; Encuentro de saberes para la gestión responsable de ecosistemas acuáticos pampeanos; Universidad Nacional del Centro de la Provincia de Buenos Aires: Tandil, Argentina, 2019; pp. 378–380. [Google Scholar]
- Sarma, S.S.S.; Nandini, S.; Morales-Ventura, J.; Delgado-Martínez, I.; González-Valverde, L. Effects of NaCl salinity on the population dynamics of freshwater zooplankton (rotifers and cladocerans). Aquat. Ecol. 2006, 40, 349–360. [Google Scholar] [CrossRef]
- Echaniz, S.A.; Vignatti, A.M.; Segundo, J.D. Cambios en la diversidad y biomassa zooplanctónica durante una estación de crecimiento en un lago somero temporário hiposalino de La Pampa. BioScriba 2011, 4, 1–12. [Google Scholar]
- Martínez-Jerónimo, F.; Martínez-Jerónimo, L. Chronic effect of NaCl salinity ona freshwater strain of Daphnia magna Straus (crustacea: Cladocera): A demographic study. Ecotoxicol. Environ. Saf. 2007, 67, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Versteeg, D.J.; Stalmans, M.; Dyer, S.D.; Janssen, C. Ceriodaphnia and Daphnia: A comparison of their sensitivity to xenobiotics and utility as atest species. Chemosphere 1997, 34, 869–892. [Google Scholar] [CrossRef]
- Connors, K.A.; Brill, J.L.; Norberg-King, T.; Barron, M.G.; Carr, G.; Belanger, S.E. Daphnia magna and Ceriodaphnia dubia have similar sensitivity in standard acute and chronic toxicity tests. Environ. Toxicol. Chem. 2022, 41, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Freitas, E.C.; Rocha, O. Acute and chronic effects of atrazine and sodium dodecyl sulfate on the tropical freshwater cladoceran Pseudosida ramosa. Ecotoxicology 2012, 21, 1347–1357. [Google Scholar] [CrossRef]
- Do Hong, L.C.; Becker-van Slooten, K.; Tarradellas, J. Tropical ecotoxicity testing with Ceriodaphnia cornuta. Environ. Toxicol. 2004, 19, 497–504. [Google Scholar] [CrossRef]
- Calfee, R.D.; Little, E.E. The effects of ultraviolet-B radiation on the toxicity of fire-fighting chemicals. Environ. Toxicol. Chem. SETAC 2003, 22, 1525–1531. [Google Scholar]
- McDonald, S.F.; Hamilton, S.J.; Buhl, K.J.; Heisinger, J.F. Acute toxicity of fire control chemicals to Daphnia magna (Straus) and Selenastrum capricornutum (Printz). Ecotoxicol. Environ. Saf. 1996, 33, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, K.; Jonsson, B.; Kronberg, B.; Lindman, B. Surfactants and Polymers in Aqueous Solution; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002; 568p. [Google Scholar]
- Song, U.; Mun, S.; Waldman, B.; Lee, E.J. Effects of three fire-suppressant foams on the germination and physiological responses of plants. Environ. Manag. 2014, 54, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Badmus, S.O.; Amusa, H.K.; Oyehan, T.A.; Saleh, T.A. Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation techniques. Environ. Sci. Pollut. Res. 2021, 28, 62085–62104. [Google Scholar] [CrossRef] [PubMed]
- Nunes, R.F.; Teixeira, A.C.S.C. An overview on surfactants as pollutants of concern: Occurrence, impacts and persulfate-based remediation Technologies. Chemosphere 2022, 300, 134507. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, D.S.; Bawa-Allah, K.A. Differential toxicities of anionic and nonionic surfactants in fish. Environ. Sci. Pollut. Res. 2020, 27, 16754–16762. [Google Scholar] [CrossRef] [PubMed]
- Sobrino-Figueroa, A. Toxic effect of commercial detergents on organisms from different trophic levels. Environ. Sci. Pollut. Res. 2018, 25, 13283–13291. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Prosser, R.S. Potential risk to aquatic biota from aerial application of firefighting water additives. Environ. Pollut. 2023, 316, 120651. [Google Scholar] [CrossRef] [PubMed]
- García, M.T.; Campos, E.; Marsal, A.; Ribosa, I. Biodegradability and toxicity of sulphonate-based surfactants in aerobic and anaerobic aquatic environments. Water Res. 2009, 43, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Hou, C.; Li, M.; Qian, Y. Modulation of lipid metabolism in juvenile yellow catfish (Pelteobagrus fulvidraco) as affected by feeding frequency and environmental ammonia. Fish Physiol. Biochem. 2019, 45, 115–122. [Google Scholar] [CrossRef]
- Loewengart, G. Toxicity of boron to rainbow trout: A weight-of-the-evidence assessment. Environ. Toxicol. Chem. 2001, 20, 796–803. [Google Scholar] [CrossRef]
- Maier, K.J.; Knight, A.W. The toxicity of waterborne boron to Daphnia magna and Chironomus decorus and the effects of water hardness and sulfate on boron toxicity. Arch. Environ. Contam. Toxicol. 1991, 20, 282–287. [Google Scholar] [CrossRef] [PubMed]
- IBAMA. Instituto Brasileiro do Meio Ambiente e Recursos Naturais. Parecer Técnico n° 514/2018-COASP/CGASQ/DIQUA. Brasília. 2018. Available online: http://www.ibama.gov.br/phocadownload/quimicos-ebiologicos/retardantes-de-chamas/2018-SEI_IBAMA-Parecer-Tecnico-5142018-9COASP-CGASQ-DIQUA.pdf (accessed on 15 April 2023).
- McDonald, S.F.; Hamilton, S.J.; Buhl, K.J.; Heisinger, J.F. Acute toxicity of fire-retardant and foam-suppressant chemicals to Hyalella azteca (Saussure). Environ. Toxicol. Chem. 1997, 16, 1370–1376. [Google Scholar]
- Pane, L.; Mariottini, G.L.; Giacco, E. Ecotoxicological assessmentof the micelle encapsulator F-500. Ecotoxicol. Environ. Saf. 2015, 118, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Belanger, S.E.; Sanderson, H.; Fisk, P.R.; Schäfers, C.; Mudge, S.M.; Willing, A.; Kasai, Y.; Nielsen, A.M.; Dyer, S.D.; Toy, R. Assessment of the environmental risk of long-chain aliphatic alcohols. Ecotoxicol. Environ. Saf. 2009, 72, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- du Plooy, S.J.; Carrasco, N.K.; Perissinotto, R. Effects of zooplankton grazing on the bloom-forming Cyanothece sp. in a subtropical estuarine lake. J. Plankton Res. 2017, 39, 826–835. [Google Scholar] [CrossRef]
- Adams, R.; Simmons, D. Ecological effects of firefighting foams and retardants: A summary. Aust. For. 1999, 62, 307–314. [Google Scholar] [CrossRef]
- Rehmann, C.R.; Jackson, P.R.; Puglis, H.J. Predicting the spatiotemporal exposure of aquatic species to intrusions of fire retardant in streams with limited data. Sci. Total Environ. 2021, 782, 146879. [Google Scholar] [CrossRef]
Type of Formulation | Known Constituents | Density (g/mL) | Recommended Application Rate (%) * |
---|---|---|---|
N-Borate | Organo-mineral fertilizer | 1.35 | 15 |
N-Phosphate+ | Ammonium polyphosphate-based liquid concentrate (80–100%) that contains performance additives (5–10%), attapulgus clay (1–5%) and iron-oxide color (1–5%) as well as ammonium polyphosphate | 1.476 | 15.38 |
N-Phosphate− | Biodegradable product based on neutralized phosphorus esters, synthetic surfactants, and preservatives; N, P and K used for soil and plants. | 1.108 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, D.Q.; Henke-Oliveira, C.; Oliveira-Filho, E.C. Acute Toxicity of Commercial Wildfire Retardants to Two Daphniid Species (Ceriodaphnia dubia and Daphnia magna). Toxics 2024, 12, 548. https://doi.org/10.3390/toxics12080548
Brito DQ, Henke-Oliveira C, Oliveira-Filho EC. Acute Toxicity of Commercial Wildfire Retardants to Two Daphniid Species (Ceriodaphnia dubia and Daphnia magna). Toxics. 2024; 12(8):548. https://doi.org/10.3390/toxics12080548
Chicago/Turabian StyleBrito, Darlan Quinta, Carlos Henke-Oliveira, and Eduardo Cyrino Oliveira-Filho. 2024. "Acute Toxicity of Commercial Wildfire Retardants to Two Daphniid Species (Ceriodaphnia dubia and Daphnia magna)" Toxics 12, no. 8: 548. https://doi.org/10.3390/toxics12080548
APA StyleBrito, D. Q., Henke-Oliveira, C., & Oliveira-Filho, E. C. (2024). Acute Toxicity of Commercial Wildfire Retardants to Two Daphniid Species (Ceriodaphnia dubia and Daphnia magna). Toxics, 12(8), 548. https://doi.org/10.3390/toxics12080548