Photocatalytic Degradation of Carbofuran in Water Using Laser-Treated TiO2: Parameters Influence Study, Cyto- and Phytotoxicity Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Synthesis of Photocatalysts
2.3. Photocatalytic Process and Modifications of Parameters
2.3.1. Photodegradation Reactor
2.3.2. Modifications of Experimental Parameters
2.4. Analytical Methods and Performance Indices
2.5. Practical Application, Stability, Reusability, and Effect of Various Scavengers on Photocatalyst Performance
2.6. Toxicity Experiments
2.6.1. Cytotoxicity Experiment—Cell Culture and Treatment
2.6.2. Phytotoxicity Experiment
3. Results
3.1. Modifications the Experimental Parameters for Photocatalytic Degradation of CBF
3.1.1. Stirring Effect
3.1.2. Effect of Light Intensity
3.1.3. Effect of TiO2 Photocatalyst Active Surface Area
3.1.4. Effect of Initial CBF Concentration
3.2. Effect of Scavengers on Photocatalyst Performance
3.3. Mineralization of CBF
Substrate/Area | Pollutant/Concentration | Degradation | Light Source | Ref. | |
---|---|---|---|---|---|
TiO2 (Ti foil) | Barrier Nanotubular Mixed/1 cm2 | Polystyrene nanoparticles/ 0.9% w/v | 16.2% 19.7% 23.5% | 50 h/UV light, 0.021 mW/cm2 | [47] |
TiO2 (Ti foil) | Nanotube arrays/1 cm2 | Rhodamine B/10 μM Bisphenol A/50 μM | 88% 36% | 300 min/UV-A light, 2 mW/cm2 | [48] |
TiO2 (Ti mesh) | Nanotube arrays/6.25 cm2 | Toluene/10 ppm | 90% | 30 min/UV-A light 15 W | [49] |
TiO2 (Ti foil) | Nanotube arrays/3 cm2 | Methyl orange/16.4 mg/L | 97.29% | 240 min/Xe lamp 10 mW/cm2 | [50] |
TiO2 (Ti mesh) | Nanotube arrays/6.75 cm2 | Chloramphenicol/10 mg/L | 91% | 120 min/Xe lamp 300 W/Visible light | [51] |
TiO2 (Ti mesh) | Nanotube arrays/4 cm2 | Carbofuran/15 mg/L | 90.3% | 150 min/Sunlight simulation 300 W, 1300 W/m2 | This study |
3.4. Effect of Photocatalytic Treatment of CBF on Cytotoxicity and Phytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeoh, J.X.; Siti Nurul, S.N.A.; Syukri, F.; Koyama, M.; Nourouzi Mobarekeh, M. Comparison between Conventional Treatment Processes and Advanced Oxidation Processes in Treating Slaughterhouse Wastewater: A Review. Water 2022, 14, 3778. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Ameta, S.C. Introduction. In Advanced Oxidation Processes for Waste Water Treatment: Emerging Green Chemical Technology; Academic Press: Cambridge, MA, USA, 2018; pp. 1–12. [Google Scholar] [CrossRef]
- Sadeghfar, F.; Ghaedi, M.; Zalipour, Z. Advanced Oxidation. Interface Sci. Technol. 2021, 32, 225–324. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Pan, X.; Tang, S.; Chen, X.; Liu, H.; Yu, C.; Gao, Q.; Zhao, X.; Yang, H.; Gao, H.; Wang, S. Temperature-Controlled Synthesis of TiO2 Photocatalyst with Different Crystalline Phases and Its Photocatalytic Activity in the Degradation of Different Mixed Dyes. Russ. J. Phys. Chem. A 2022, 96, S210–S218. [Google Scholar] [CrossRef]
- Chen, J.Q.; Wang, D.; Zhu, M.X.; Gao, C.J. Photocatalytic Degradation of Dimethoate Using Nanosized TiO2 Powder. Desalination 2007, 207, 87–94. [Google Scholar] [CrossRef]
- Pellegrino, F.; Pellutiè, L.; Sordello, F.; Minero, C.; Ortel, E.; Hodoroaba, V.D.; Maurino, V. Influence of Agglomeration and Aggregation on the Photocatalytic Activity of TiO2 Nanoparticles. Appl. Catal. B Environ. 2017, 216, 80–87. [Google Scholar] [CrossRef]
- Li, G.; Lv, L.; Fan, H.; Ma, J.; Li, Y.; Wan, Y.; Zhao, X.S. Effect of the Agglomeration of TiO2 Nanoparticles on Their Photocatalytic Performance in the Aqueous Phase. J. Colloid Interface Sci. 2010, 348, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Juang, Y.; Liu, Y.; Nurhayati, E.; Thuy, N.T.; Huang, C.; Hu, C.C. Anodic Fabrication of Advanced Titania Nanotubes Photocatalysts for Photoelectrocatalysis Decolorization of Orange G Dye. Chemosphere 2016, 144, 2462–2468. [Google Scholar] [CrossRef]
- Lee, A.R.; Kim, J. Highly Ordered TiO2 Nanotube Electrodes for Efficient Quasi-Solid-State Dye-Sensitized Solar Cells. Energies 2020, 13, 6100. [Google Scholar] [CrossRef]
- Moseke, C.; Hage, F.; Vorndran, E.; Gbureck, U. TiO2 Nanotube Arrays Deposited on Ti Substrate by Anodic Oxidation and Their Potential as a Long-Term Drug Delivery System for Antimicrobial Agents. Appl. Surf. Sci. 2012, 258, 5399–5404. [Google Scholar] [CrossRef]
- Ji, B.; Yan, G.; Zhao, W.; Zhao, X.; Ni, J.; Duan, J.; Chen, Z.; Yang, Z. Titanium Mesh-Supported TiO2 Nano-Film for the Photocatalytic Degradation of Ethylene under a UV-LED. Ceram. Int. 2020, 46, 20830–20837. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.; Wan, J.; Yu, X. Hydrothermal Synthesis of TiO2 Nanosheets Photoelectrocatalyst on Ti Mesh for Degradation of Norfloxacin: Influence of Pickling Agents. Mater. Sci. Semicond. Process. 2016, 43, 47–54. [Google Scholar] [CrossRef]
- Zhong, M.; Zhang, G.; Yang, X. Preparation of Ti Mesh Supported WO3/TiO2 Nanotubes Composite and Its Application for Photocatalytic Degradation under Visible Light. Mater. Lett. 2015, 145, 216–218. [Google Scholar] [CrossRef]
- Qiu, L.; Wang, Q.; Liu, Z.; Zhao, Q.; Tian, X.; Li, H.; Gao, S. Preparation of 3D TiO2 Nanotube Arrays Photoelectrode on Ti Mesh for Photoelectric Conversion and Photoelectrocatalytic Removal of Pollutant. Sep. Purif. Technol. 2018, 207, 206–212. [Google Scholar] [CrossRef]
- Tošić, M.; Rajić, V.; Pjević, D.; Stojadinović, S.; Krstulović, N.; Dimitrijević-Branković, S.; Momčilović, M. Synergy of Nd:YAG Picosecond Pulsed Laser Irradiation and Electrochemical Anodization in the Formation of TiO2 Nanostructures for the Photocatalytic Degradation of Pesticide Carbofuran. Photonics 2024, 11, 284. [Google Scholar] [CrossRef]
- Mahalakshmi, M.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Photocatalytic Degradation of Carbofuran Using Semiconductor Oxides. J. Hazard. Mater. 2007, 143, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, S.; Liu, H.; Yan, W.; Yang, L.; Yi, B. Photocatalytic Degradation of Carbofuran in TiO2 Aqueous Solution: Kinetics Using Design of Experiments and Mechanism by HPLC/MS/MS. J. Environ. Sci. 2013, 25, 1680–1686. [Google Scholar] [CrossRef]
- Vishnuganth, M.A.; Remya, N.; Kumar, M.; Selvaraju, N. Carbofuran Removal in Continuous-Photocatalytic Reactor: Reactor Optimization, Rate-Constant Determination and Carbofuran Degradation Pathway Analysis. J. Environ. Sci. Heal. Part B Pestic. Food Contam. Agric. Wastes 2017, 52, 353–360. [Google Scholar] [CrossRef]
- Hmimou, A.; Maslouhi, A.; Tamoh, K.; Candela, L. Experimental Monitoring and Numerical Study of Pesticide (Carbofuran) Transfer in an Agricultural Soil at a Field Site. Comptes Rendus Geosci. 2014, 346, 255–261. [Google Scholar] [CrossRef]
- López-Bao, J.V.; Mateo-Tomás, P. Wipe out Highly Hazardous Pesticides to Deter Wildlife Poisoning: The Case of Carbofuran and Aldicarb. Biol. Conserv. 2022, 275, 109747. [Google Scholar] [CrossRef]
- Baharudin, N.S.; Ahmad, H.; Hossain, M.S. Understanding the Degradation of Carbofuran in Agricultural Area: A Review of Fate, Metabolites, and Toxicity. Pertanika J. Sci. Technol. 2024, 32, 285–322. [Google Scholar] [CrossRef]
- Ogada, D.L. The Power of Poison: Pesticide Poisoning of Africa’s Wildlife. Ann. N. Y. Acad. Sci. 2014, 1322, 1–20. [Google Scholar] [CrossRef]
- Radio Television of Serbia. Orlovi Belorepani Sve Češće Žrtve Trovanja Pesticidima. Available online: https://www.rts.rs/lat/vesti/drustvo/2557886/orlovi-belorepani-sve-cesca-zrtva-trovanja-pesticidima.html (accessed on 12 July 2024).
- Radio Television of Serbia. Masovno Trovanje Ptica Grabljivica i Šakala Kod Smedereva. Available online: https://www.rts.rs/lat/vesti/drustvo/2637878/masovno-trovanje-ptica-grabljivica-i-sakala-kod-smedereva-.html (accessed on 12 July 2024).
- Radio Television of Serbia. Platio Kaznu 400.000 Dinara Zbog Trovanja Ždralova. Available online: https://www.rts.rs/lat/vesti/srbija-danas/2908128/platio-kaznu-400.000-dinara-zbog-trovanja-zdralova.html?print=true (accessed on 12 July 2024).
- Rial-berriel, C.; Acosta-Dacal, A.; Zumbado, M.; Alberto, L.; Rodr, Á.; Mac, A.; Boada, L.D.; Martin-cruz, B.; Su, A.; Miguel, Á.; et al. Epidemiology of Animal Poisonings in the Canary Islands (Spain) during the Period 2014–2021. Toxics 2021, 9, 267. [Google Scholar] [CrossRef]
- Song, B.; Yang, H.; Wang, W.; Yang, Y.; Qin, M.; Li, F.; Zhou, C. Disinfection Byproducts Formed from Oxidation of Pesticide Micropollutants in Water: Precursor Sources, Reaction Kinetics, Formation, Influencing Factors, and Toxicity. Chem. Eng. J. 2023, 475, 146310. [Google Scholar] [CrossRef]
- Ramesh Gupta, C. Invited Review: Carbofuran Toxicity. J. Toxicol. Environ. Health 1994, 43, 383–418. [Google Scholar] [CrossRef]
- Moreira, S.; Silva, R.; Carrageta, D.F.; Alves, M.G.; Seco-Rovira, V.; Oliveira, P.F.; de Lourdes Pereira, M. Carbamate Pesticides: Shedding Light on Their Impact on the Male Reproductive System. Int. J. Mol. Sci. 2022, 23, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhang, X.; Zang, S.; Wang, H. Photo-Induced Toxicity of Pesticides in Aqueous Environment: A Review. J. Clean. Prod. 2023, 402, 136726. [Google Scholar] [CrossRef]
- Louros, V.L.; Ferreira, L.M.; Silva, V.G.; Silva, C.P.; Martins, M.A.; Otero, M.; Esteves, V.I.; Lima, D.L.D. Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites. Toxics 2021, 9, 330. [Google Scholar] [CrossRef]
- Zheng, X.; Yuan, J.; Shen, J.; Liang, J.; Che, J.; Tang, B.; He, G. A Carnation-like rGO/Bi2O2CO3/BiOCl Composite: Efficient Photocatalyst for the Degradation of Ciprofloxacin. J. Mater. Sci. Mater. Electron. 2019, 30, 5986–5994. [Google Scholar] [CrossRef]
- Rengaraj, S.; Li, X.Z. Enhanced Photocatalytic Reduction Reaction over Bi3+–TiO2 Nanoparticles in Presence of Formic Acid as a Hole Scavenger. Chemosphere 2007, 66, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Salcedo, M.; Monge, M.; Tena, M.T. AuAg Nanoparticles Grafted on TiO2@N-Doped Porous Carbon: Improved Depletion of Ciprofloxacin under Visible Light through Plasmonic Photocatalysis. Nanomaterials 2022, 12, 2524. [Google Scholar] [CrossRef]
- Roehm, N.W.; Rodgers, G.H.; Hatfield, S.M.; Glasebrook, A.L. An Improved Colorimetric Assay for Cell Proliferation and Viability Utilizing the Tetrazolium Salt XTT. J. Immunol. Methods 1991, 142, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Ilić, N.; Davidović, S.; Milić, M.; Lađarević, J.; Onjia, A.; Dimitrijević-Branković, S.; Mihajlovski, K. Green Biocatalyst for Decolorization of Azo Dyes from Industrial Wastewater: Coriolopsis Trogii 2SMKN Laccase Immobilized on Recycled Brewer’s Spent Grain. Environ. Sci. Pollut. Res. 2024, 31, 32072–32090. [Google Scholar] [CrossRef] [PubMed]
- Eskandarian, M.R.; Choi, H.; Fazli, M.; Rasoulifard, M.H. Effect of UV-LED Wavelengths on Direct Photolytic and TiO2 Photocatalytic Degradation of Emerging Contaminants in Water. Chem. Eng. J. 2016, 300, 414–422. [Google Scholar] [CrossRef]
- Yeganeh, M.; Farzadkia, M.; Jafari, A.J.; Sobhi, H.R.; Esrafili, A.; Gholami, M. Utilization of the Copper Recovered from Waste Printed Circuit Boards as a Metal Precursor for the Synthesis of TiO2/Magnetic-MOF(Cu) Nanocomposite: Application in Photocatalytic Degradation of Pesticides in Aquatic Solutions. J. Environ. Manag. 2023, 345, 118755. [Google Scholar] [CrossRef] [PubMed]
- Sraw, A.; Kaur, T.; Thakur, I.; Verma, A.; Wanchoo, R.K.; Toor, A.P. Photocatalytic Degradation of Pesticide Monocrotophos in Water Using W-TiO2 in Slurry and Fixed Bed Recirculating Reactor. J. Mol. Struct. 2023, 1265, 133392. [Google Scholar] [CrossRef]
- Navarra, W.; Sacco, O.; Daniel, C.; Venditto, V.; Vaiano, V.; Vignati, D.A.L.; Bojic, C.; Libralato, G.; Lofrano, G.; Carotenuto, M. Photocatalytic Degradation of Atrazine by an N-Doped TiO2/Polymer Composite: Catalytic Efficiency and Toxicity Evaluation. J. Environ. Chem. Eng. 2022, 10, 108167. [Google Scholar] [CrossRef]
- Van Thuan, D.; Chu, T.T.H.; Thanh, H.D.T.; Le, M.V.; Ngo, H.L.; Le, C.L.; Thi, H.P. Adsorption and Photodegradation of Micropollutant in Wastewater by Photocatalyst TiO2/Rice Husk Biochar. Environ. Res. 2023, 236, 116789. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.; Shaya, J.; Tesana, S.; Golovko, V.B.; Wang, S.Y.; Liao, Y.Y.; Lu, C.S.; Chen, C.C. Visible-Light Driven Photocatalytic Degradation of Pirimicarb by Pt-Doped Agins2 Nanoparticles. Catalysts 2020, 10, 857. [Google Scholar] [CrossRef]
- Shu, S.; Wang, H.; Guo, X.; Wang, Y.; Zeng, X. Efficient Photocatalytic Degradation of Sulfamethazine by Cu-CuxO/TiO2 Composites: Performance, Photocatalytic Mechanism and Degradation Pathways. Sep. Purif. Technol. 2023, 323, 124458. [Google Scholar] [CrossRef]
- Chandra, S.; Jagdale, P.; Medha, I.; Tiwari, A.K.; Bartoli, M.; De Nino, A.; Olivito, F. Biochar-Supported TiO2-Based Nanocomposites for the Photocatalytic Degradation of Sulfamethoxazole in Water—A Review. Toxics 2021, 9, 313. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Jaimes, L.P.; Cedillo-González, E.I.; Luévano-Hipólito, E.; Acuña-Bedoya, J.D.; Hernández-López, J.M. Degradation of Primary Nanoplastics by Photocatalysis Using Different Anodized TiO2 Structures. J. Hazard. Mater. 2021, 413, 125452. [Google Scholar] [CrossRef] [PubMed]
- Petrisková, P.; Monfort, O.; Satrapinskyy, L.; Dobročka, E.; Plecenik, T.; Plesch, G.; Papšík, R.; Bermejo, R.; Lenčéš, Z. Preparation and Photocatalytic Activity of TiO2 Nanotube Arrays Prepared on Transparent Spinel Substrate. Ceram. Int. 2021, 47, 12970–12980. [Google Scholar] [CrossRef]
- Bellè, U.; Invernizzi, M.; Polvara, E.; Lucotti, A.; Diamanti, M.V.; Sironi, S.; Pedeferri, M. A Novel Nanotubular TiO2-Based Plug-Flow Reactor for Gas Phase Photocatalytic Degradation of Toluene. Chem. Eng. J. 2022, 437, 135323. [Google Scholar] [CrossRef]
- Nishanthi, S.T.; Iyyapushpam, S.; Sundarakannan, B.; Subramanian, E.; Pathinettam Padiyan, D. Inter-Relationship between Extent of Anatase Crystalline Phase and Photocatalytic Activity of TiO2 Nanotubes Prepared by Anodization and Annealing Method. Sep. Purif. Technol. 2014, 131, 102–107. [Google Scholar] [CrossRef]
- Li, J.; Cheng, D.; Chen, Z.; Yang, L.; Zheng, L.; Wei, Z.; Ma, T.; Zhang, J.; Luo, Y. Oxygen Vacancy/Ti3+ Engineered TiO2 Nanotube Arrays Prepared by in-Situ Exfoliation with H2 Bubbles: A Visible-Light-Driven Self-Supporting Photocatalyst for Detoxfication of Chloraphenicol. J. Environ. Chem. Eng. 2021, 9, 106670. [Google Scholar] [CrossRef]
- Fenoll, J.; Hellín, P.; Flores, P.; Martínez, C.M.; Navarro, S. Degradation Intermediates and Reaction Pathway of Carbofuran in Leaching Water Using TiO2 and ZnO as Photocatalyst under Natural Sunlight. J. Photochem. Photobiol. A Chem. 2013, 251, 33–40. [Google Scholar] [CrossRef]
- Lopez-Alvarez, B.; Torres-Palma, R.A.; Peñuela, G. Solar Photocatalitycal Treatment of Carbofuran at Lab and Pilot Scale: Effect of Classical Parameters, Evaluation of the Toxicity and Analysis of Organic by-Products. J. Hazard. Mater. 2011, 191, 196–203. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 27999, 3-Ketocarbofuran. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/3-Ketocarbofuran (accessed on 13 July 2024).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 27975, 3-Hydroxycarbofuran. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/3-Hydroxycarbofuran (accessed on 13 July 2024).
Unchanged Parameters | Modified Parameter | CBF Degradation (%) | |
---|---|---|---|
[CBF]0 = 15 mg/L Active surface area 4 cm2 | Light intensity (W/m2) | UPLC-PDA | UV-Vis |
1300 | 90.3 | 75.1 | |
1100 | 86.1 | 65.1 | |
500 | 83.1 | 56.3 | |
[CBF]0 = 15 mg/L Light intensity 1300 W/m2 | Active surface area (cm2) | UPLC-PDA | UV-Vis |
4 | 90.3 | 75.1 | |
3 | 82.5 | 60.6 | |
2 | 73.2 | 49.4 | |
1 | 35.5 | 17.2 | |
Active surface area 4 cm2 Light intensity 1300 W/m2 | [CBF]0 (mg/L) | UPLC-PDA | UV-Vis |
15.0 | 90.3 | 75.1 | |
10.0 | 93.7 | 83.1 | |
5.0 | 96.5 | 86.9 | |
2.5 | 97.8 | 90.1 |
Total Average Length of the Roots [cm] ± SD | RGV (%) | RLV (%) | GI (%) | |
---|---|---|---|---|
Control * | 1.32 ± 0.43 | 100.00 | 100.00 | 100.00 |
0 min | 2.39 ± 0.32 | 53.33 | 181.04 | 96.56 |
30 min | 1.02 ± 0.33 | 60.00 | 77.08 | 46.25 |
90 min | 0.66 ± 0.23 | 26.67 | 50.27 | 13.41 |
150 min | 0.69 ± 0.23 | 26.67 | 52.17 | 13.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tošić, M.; Savić, J.; Valenta Šobot, A.; Živković, S.; Dimitrijević, A.; Ilić, N.; Dimitrijević-Branković, S.; Momčilović, M. Photocatalytic Degradation of Carbofuran in Water Using Laser-Treated TiO2: Parameters Influence Study, Cyto- and Phytotoxicity Assessment. Toxics 2024, 12, 566. https://doi.org/10.3390/toxics12080566
Tošić M, Savić J, Valenta Šobot A, Živković S, Dimitrijević A, Ilić N, Dimitrijević-Branković S, Momčilović M. Photocatalytic Degradation of Carbofuran in Water Using Laser-Treated TiO2: Parameters Influence Study, Cyto- and Phytotoxicity Assessment. Toxics. 2024; 12(8):566. https://doi.org/10.3390/toxics12080566
Chicago/Turabian StyleTošić, Miloš, Jasmina Savić, Ana Valenta Šobot, Sanja Živković, Aleksandra Dimitrijević, Nevena Ilić, Suzana Dimitrijević-Branković, and Miloš Momčilović. 2024. "Photocatalytic Degradation of Carbofuran in Water Using Laser-Treated TiO2: Parameters Influence Study, Cyto- and Phytotoxicity Assessment" Toxics 12, no. 8: 566. https://doi.org/10.3390/toxics12080566
APA StyleTošić, M., Savić, J., Valenta Šobot, A., Živković, S., Dimitrijević, A., Ilić, N., Dimitrijević-Branković, S., & Momčilović, M. (2024). Photocatalytic Degradation of Carbofuran in Water Using Laser-Treated TiO2: Parameters Influence Study, Cyto- and Phytotoxicity Assessment. Toxics, 12(8), 566. https://doi.org/10.3390/toxics12080566