GIS- and Multivariate-Based Approaches for Assessing Potential Environmental Hazards in Some Areas of Southwestern Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Collecting Samples and Analytical Procedures
2.3. Contamination Indices
- = total measured concentration of heavy metal.
- is each metal’s background value.
2.4. Multivariate Analysis
2.5. Geostatistical Models
2.6. Validation of Geostatistical Analysis
3. Results and Discussion
3.1. Variation of Heavy Metals within the Study Area
3.2. Heavy Metals Distribution within the Investigated Area
3.3. Correlation between Selected Heavy Metals
3.4. Analysis of Factors Extracted from PCA
3.5. Cluster Analysis of Study Area
3.6. Hazard Assessment
3.6.1. Contamination Factor (CF)
3.6.2. Pollution Load Index (PLI)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shokr, M.S.; Abdellatif, M.A.; El Behairy, R.A.; Abdelhameed, H.H.; El Baroudy, A.A.; Mohamed, E.S.; Rebouh, N.Y.; Ding, Z.; Abuzaid, A.S.J.A. Assessment of Potential Heavy Metal Contamination Hazards Based on GIS and Multivariate Analysis in Some Mediterranean Zones. Agronomy 2022, 12, 3220. [Google Scholar] [CrossRef]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil Sediment Contam. Int. J. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Rahmawati, S.; Iresha, F.M.; Wacano, D.; Fauziah, I.F.; Amrullah, M.A. Evaluation of heavy metal exposure to soil and paddy plant around the closed municipal solid waste landfill: Case study at Gunung Tugel Landfill, Banyumas-Central Java. IOP Conf. Ser. Mater. Sci. Eng. 2018, 299, 012012. [Google Scholar] [CrossRef]
- Srigirisetty, S.; Jayasri, T.; Netaji, C.J.T.R.O.I. Open dumping of municipal solid waste-Impact on groundwater and soil. Tech. Res. Organ. India 2017, 4, 26–33. [Google Scholar]
- Al-Robai, S.A.J.S. Ecological Risk Evaluation of Heavy Metals in Soils near a Water Dam in Baljurashi, KSA, and Their Accumulation in Dodonaea viscosa. Sustainability 2023, 15, 15646. [Google Scholar] [CrossRef]
- Gjorgieva Ackova, D. Heavy metals and their general toxicity on plants. Plant Sci. Today 2018, 5, 15–19. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, G.; Yan, Y.; Yu, R.; Cui, J.; Wang, X.; Yan, Y. Source apportionment of heavy metals in urban road dust in a continental city of eastern China: Using Pb and Sr isotopes combined with multivariate statistical analysis. Atmospheric Environ. 2019, 201, 201–211. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; O’Connor, D.; Shen, Z.; Shi, P.; Ok, Y.S.; Tsang, D.C.; Wen, Y.; Luo, M. Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1386–1423. [Google Scholar] [CrossRef]
- Zabin, S.A.; Foaad, M.; Al-Ghamdi, A.Y.J.H.; Assessment, E.R. Non-carcinogenic risk assessment of heavy metals and fluoride in some water wells in the Al-Baha Region, Saudi Arabia. Hum. Ecol. Risk Assess. 2008, 14, 1306–1317. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Y.; Cheng, Y.; Zhao, Y.; Pan, Y.; Fu, G.; Dai, Y. Occurrence and risk assessment of heavy metals in sediments of the Xiangjiang River, China. Environ. Sci. Pollut. Res. 2017, 24, 2711–2723. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Gao, B.; Xu, D.; Gao, L.; Yin, S. Heavy metal pollution in sediments of the largest reservoir (Three Gorges Reservoir) in China: A review. Environ. Sci. Pollut. Res. 2017, 24, 20844–20858. [Google Scholar] [CrossRef] [PubMed]
- El Behairy, R.A.; El Baroudy, A.A.; Ibrahim, M.M.; Mohamed, E.S.; Rebouh, N.Y.; Shokr, M.S. Combination of GIS and multivariate analysis to assess the soil heavy metal contamination in some arid zones. Agronomy 2022, 12, 2871. [Google Scholar] [CrossRef]
- Alzahrani, Y.; Alshehri, F.; El-Sorogy, A.S.; Alzahrani, H. Environmental assessment of heavy metals in soils around Al-Janabeen Dam, southwest Saudi Arabia. J. King Saud Univ.-Sci. 2023, 35, 102503. [Google Scholar] [CrossRef]
- Senila, M. Metal and metalloid monitoring in water by passive sampling—A review. Rev. Anal. Chem. 2023, 42, 20230065. [Google Scholar] [CrossRef]
- Rolón-Cárdenas, G.A.; Hernández-Morales, A. Phytoremediation of Lead Present in Environment: A Review. In Lead Toxicity Mitigation: Sustainable Nexus Approaches; Springer: Cham, Switzerland, 2024; pp. 149–168. [Google Scholar]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Zhen, J.; Pei, T.; Xie, S. Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil. Sci. Total. Environ. 2019, 659, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Golden, N.; Zhang, C.; Potito, A.; Gibson, P.J.; Bargary, N.; Morrison, L. Use of ordinary cokriging with magnetic susceptibility for mapping lead concentrations in soils of an urban contaminated site. Sci. Total Environ. 2020, 20, 1357–1370. [Google Scholar] [CrossRef]
- Evans, N.; Van Ryswyk, H.; Los Huertos, M.; Srebotnjak, T. Robust spatial analysis of sequestered metals in a Southern California Bioswale. Sci. Total Environ. 2019, 650, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Zhang, L.; Lv, J.; Sun, X. The application of geostatistical analysis and receptor model for the spatial distribution and sources of potentially toxic elements in soils. Environ. Geochem. Health 2021, 43, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wang, Y. Non-parametric machine learning methods for interpolation of spatially varying non-stationary and non-Gaussian geotechnical properties. Geosci. Front. 2021, 12, 339–350. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Mazrou, Y.S.; El Baroudy, A.A.; Ding, Z.; Shokr, M.S. Multi-Indicator and geospatial based approaches for assessing variation of land quality in arid agroecosystems. Sustainability 2022, 14, 5840. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [PubMed]
- Jahin, H.S.; Abuzaid, A.S.; Abdellatif, A.D. Using multivariate analysis to develop irrigation water quality index for surface water in Kafr El-Sheikh Governorate, Egypt. Environ. Technol. Innov. 2020, 17, 100532. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Jahin, H.S. Combinations of multivariate statistical analysis and analytical hierarchical process for indexing surface water quality under arid conditions. J. Contam. Hydrol. 2022, 248, 104005. [Google Scholar] [CrossRef] [PubMed]
- Al-Saud, M.; Teutsch, G.; Schüth, C.; Rausch, R. Challenges for an integrated groundwater management in the Kingdom of Saudi Arabia. Int. J. Water Resour. Arid. Environ. 2011, 1, 65–70. [Google Scholar]
- Al-Barakah, F.N.; Aly, A.A.; Abaakhel, E.H.; Al-Rizkid, A.M.; Alghamdi, A.G.; Al-Sewailem, M.S. Comparison and hydrochemical characterization of groundwater resources in the Arabian Peninsula: A case study of Al-Baha and Al-Qassim in Saudi Arabia. Water Resour. 2020, 47, 877–891. [Google Scholar] [CrossRef]
- Greenwood, W.R. Geology of the Al ‘Aqiq Quadrangle, Sheet 20/41 D, Kingdom of Saudi Arabia; Directorate General of Mineral Resources; Geological Survey: Jiddah, Saudi Arabia, 1975.
- Shanti, A.M. Geology of the Arabian shield of Saudi Arabia; Scientific Publishing Centre, King Abdulaziz University: Jeddah, Saudi Arabia, 2009. [Google Scholar]
- US EPA. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils; United States Environmental Protection Agency: Washington, DC, USA, 1996.
- Trabzuni, D.M.; Ahmed, S.E.B.; Abu-Tarboush, H.M. Chemical composition, minerals and antioxidants of the heart of date palm from three Saudi cultivars. Food Nutr. Sci. 2014, 5, 1379. [Google Scholar] [CrossRef]
- El-Sorogy, A.S.; Youssef, M.; Al-Kahtany, K. Integrated assessment of the Tarut Island coast, Arabian Gulf, Saudi Arabia. Environ. Earth Sci. 2016, 75, 1336. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Tomlinson, D.; Wilson, J.; Harris, C.; Jeffrey, D. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Chon, H.-T.; Cho, C.-H.; Kim, K.-W.; Moon, H.-S. The occurrence and dispersion of potentially toxic elements in areas covered with black shales and slates in Korea. Appl. Geochem. 1996, 11, 69–76. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Jahin, H.S.; Shokr, M.S.; El Baroudy, A.A.; Mohamed, E.S.; Rebouh, N.Y.; Bassouny, M.A. A Novel Regional-Scale Assessment of Soil Metal Pollution in Arid Agroecosystems. Agronomy 2023, 13, 161. [Google Scholar] [CrossRef]
- Said, M.E.S.; Ali, A.M.; Borin, M.; Abd-Elmabod, S.K.; Aldosari, A.A.; Khalil, M.M.; Abdel-Fattah, M.K. On the use of multivariate analysis and land evaluation for potential agricultural development of the northwestern coast of Egypt. Agronomy 2020, 10, 1318. [Google Scholar] [CrossRef]
- Fan, S.; Wang, X.; Lei, J.; Ran, Q.; Ren, Y.; Zhou, J. Spatial distribution and source identification of heavy metals in a typical Pb/Zn smelter in an arid area of northwest China. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1661–1687. [Google Scholar] [CrossRef]
- Santra, P.; Kumar, M.; Panwar, N.; Yadav, R. Digital soil mapping: The future need of sustainable soil management. In Geospatial Technologies for Crops and Soils; Springer: Singapore, 2021; pp. 319–355. [Google Scholar]
- Abdellatif, M.A.; El Baroudy, A.A.; Arshad, M.; Mahmoud, E.K.; Saleh, A.M.; Moghanm, F.S.; Shaltout, K.H.; Eid, E.M.; Shokr, M.S. A GIS-based approach for the quantitative assessment of soil quality and sustainable agriculture. Sustainability 2021, 13, 13438. [Google Scholar] [CrossRef]
- Goenster-Jordan, S.; Jannoura, R.; Jordan, G.; Buerkert, A.; Joergensen, R.G. Spatial variability of soil properties in the floodplain of a river oasis in the Mongolian Altay Mountains. Geoderma 2018, 330, 99–106. [Google Scholar] [CrossRef]
- Sebei, A.; Chaabani, A.; Abdelmalek-Babbou, C.; Helali, M.A.; Dhahri, F.; Chaabani, F. Evaluation of pollution by heavy metals of an abandoned Pb-Zn mine in northern Tunisia using sequential fractionation and geostatistical mapping. Environ. Sci. Pollut. Res. 2020, 27, 43942–43957. [Google Scholar] [CrossRef] [PubMed]
- Mallik, S.; Mishra, U.; Paul, N. Groundwater suitability analysis for drinking using GIS based fuzzy logic. Ecol. Indic. 2021, 121, 107179. [Google Scholar] [CrossRef]
- Dad, J.M.; Shafiq, M.U. Spatial variability and delineation of management zones based on soil micronutrient status in apple orchard soils of Kashmir valley, India. Environ. Monit. Assess. 2021, 193, 797. [Google Scholar] [CrossRef] [PubMed]
- DOE International Affairs. National Norms and Standards for the Remediation of Contaminated Land and Soil Quality in the Republic of South Africa; Department of Environmental Affairs (DEA), National Environmental Management: Pretoria, South Africa, 2013.
- US Department of Health and Human Services; Public Health Service; Agency for Toxic Substances and Disease Registry. Toxicological Profile for Arsenic; US Department of Health and Human Services: Atlanta, GA, USA, 2000; pp. 1–14.
- Kubier, A.; Wilkin, R.T.; Pichler, T.J. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. Toxicological Profile for Cobalt; U.S. Department of Health and Human Services: Washington, DC, USA, 2004; p. 486.
- Mahey, S.; Kumar, R.; Sharma, M.; Kumar, V.; Bhardwaj, R. A critical review on toxicity of cobalt and its bioremediation strategies. SN Appl. Sci. 2020, 2, 1279. [Google Scholar] [CrossRef]
- Zaborowska, M.; Kucharski, J.; Wyszkowska, J. Biological activity of soil contaminated with cobalt, tin, and molybdenum. Environ. Monit. Assess. 2016, 188, 398. [Google Scholar] [CrossRef]
- Fishel, F. Pesticide toxicity profile: Copper-based pesticides. EDIS 2005, 2005. [Google Scholar] [CrossRef]
- Wu, R.; Yao, F.; Li, X.; Shi, C.; Zang, X.; Shu, X.; Liu, H.; Zhang, W. Manganese pollution and its remediation: A review of biological removal and promising combination strategies. Microorganisms 2022, 10, 2411. [Google Scholar] [CrossRef] [PubMed]
- Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Adv. 2022, 12, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- Ankush; Lamba, S.; Ritambhara; Diwedi, A.; Kumar, S.; Singh, V. Source and Distribution of Lead in Soil and Plant—A Review. In Lead Toxicity: Challenges and Solution; Springer: Cham, Switzerland, 2023; pp. 3–16. [Google Scholar]
- Zhang, B.; Zhao, H.; Shi, C.; Zhou, S.; Ni, J. Simultaneous removal of sulfide and organics with vanadium (V) reduction in microbial fuel cells. J. Chem. Technol. Biotechnol. 2009, 84, 1780–1786. [Google Scholar] [CrossRef]
- Watt, J.A.; Burke, I.T.; Edwards, R.A.; Malcolm, H.M.; Mayes, W.M.; Olszewska, J.P.; Pan, G.; Graham, M.C.; Heal, K.V.; Rose, N.L. Vanadium: A re-emerging environmental hazard. Environ. Sci. Technol. 2018, 52, 11973–11974. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Kazi, T.G.; Kolachi, N.F.; Baig, J.A.; Afridi, H.I.; Shah, A.Q.; Kumar, S.; Shah, F. Hazardous impact and translocation of vanadium (V) species from soil to different vegetables and grasses grown in the vicinity of thermal power plant. J. Hazard. Mater. 2011, 190, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Zhang, B.; Feng, C.; Zhang, Z.; Lei, Z.; Shimizu, K.; Cao, X.; Liu, H.; Liu, H. Microbial vanadium (V) reduction in groundwater with different soils from vanadium ore mining areas. Chemosphere 2018, 202, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hao, L.; Tian, C.; Yuan, S.; Feng, C.; Ni, J.; Borthwick, A. Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture. Bioresour. Technol. 2015, 192, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Bodek, I.; Lyman, W.J.; Reehl, W.F.; Rosenblatt, D.H. Environmental Inorganic Chemistry: Properties, Processes, and Estimation Methods; Pergamon Press: New York, NY, USA, 1988; Volume 10. [Google Scholar]
- Swartjes, F.A. Dealing with Contaminated Sites: From Theory towards Practical Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Mudelsee, M. Correlation. In Climate Time Series Analysis; Springer: Berlin/Heidelberg, Germany, 2010; Volume 42, pp. 285–338. [Google Scholar]
- Uren, N.C. Cobalt and Manganese; Springer: Dordrecht, The Netherlands, 2013; pp. 335–366. [Google Scholar]
- Shtangeeva, I.; Alber, D.; Bukalis, G.; Stanik, B.; Zepezauer, F. Multivariate statistical analysis of nutrients and trace elements in plants and soil from northwestern Russia. Plant Soil 2009, 322, 219–228. [Google Scholar] [CrossRef]
- Ekpo, F.; Nzegblue, E.; Asuquo, M. A comparative study of the influence of heavy metals on soil and crops growing within quarry environment at Akamkpa, Cross River State, Nigeria. Glob. J. Agric. Sci. 2012, 11, 1–4. [Google Scholar] [CrossRef]
- Ağca, N. Spatial distribution of heavy metal content in soils around an industrial area in Southern Turkey. Arab. J. Geosci. 2015, 8, 1111–1123. [Google Scholar] [CrossRef]
- Smith, A.; Cullis, B.; Thompson, R. Exploring variety-environment data using random effects AMMI models with adjustments for spatial field trend: Part 1: Theory. In Quantitative Genetics, Genomics and Plant Breeding; CABI Publishing: Wallingford, UK, 2002; pp. 323–335. [Google Scholar]
- Rai, V.; Vajpayee, P.; Singh, S.N.; Mehrotra, S. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci. 2004, 167, 1159–1169. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Jalhoum, M.E.; Hendawy, E.; El-Adly, A.M.; Nawar, S.; Rebouh, N.Y.; Saleh, A.; Shokr, M.S. Geospatial evaluation and bio-remediation of heavy metal-contaminated soils in arid zones. Front. Environ. Sci. 2024, 12, 1381409. [Google Scholar] [CrossRef]
Recommended Concentrations (mg kg−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Elements | Concentrations | N | Min. | Max. | Mean | Skewness | Kurtosis | Upper Crust Concentrations [34] | Recommended Concentrations [46] |
As | mg kg−1 | 32 | 0.1 | 22.0 | 7.1 ± 6.3 | 0.8 | −0.1 | 2 | 5.8 |
Cd | 0.1 | 1.1 | 0.8 ± 0.2 | −3.3 | 16.3 | 0.1 | 7.5 | ||
Co | 9 | 35.0 | 20.6 ± 6.6 | 0.4 | −0.6 | 11.6 | 300 | ||
Cr | 13 | 191.0 | 58.2 ± 34.4 | 2.0 | 6.1 | 35 | 6.5 | ||
Cu | 30 | 110.0 | 61.1 ± 20.5 | 0.9 | 0.0 | 14.3 | 16 | ||
Mn | 684 | 1565.0 | 1015.2 ± 212 | 0.6 | 0.0 | 527 | 740 | ||
Ni | 12 | 72.0 | 42.3 ± 17.2 | 0.0 | −0.9 | 62 | 91 | ||
Pb | 4 | 27.0 | 10.1 ± 5.5 | 1.8 | 3.5 | 17 | 20 | ||
V | 39 | 163.0 | 89.8 ± 33 | 0.7 | −0.5 | 53 | 150 | ||
Fe | 31,700 | 70,700 | 45,846.9 ± 10,041.7 | 0.6 | −0.5 | 59,100 | n/a | ||
Zn | 60 | 191.0 | 96.7 ± 24.7 | 1.9 | 6.2 | 52 | 240 |
Elements | Concentrations | Model | Nugget | Partial Sill | Sill | Nugget/ Sill | SPD | MSE | RMSSE |
---|---|---|---|---|---|---|---|---|---|
As | mg kg−1 | Stable | 0.5 | 0.4 | 0.90 | 0.55 | Moderate | −0.008 | 0.98 |
Cd | Circular | 0.51 | 0.41 | 0.92 | 0.55 | Moderate | 0.034 | 1.22 | |
Co | Circular | 0.54 | 0.46 | 1 | 0.54 | Moderate | 0.005 | 0.99 | |
Cr | Exponential | 0.41 | 0.64 | 1.05 | 0.39 | Moderate | 0.011 | 1.07 | |
Cu | Spherical | 0.7 | 0.27 | 0.97 | 0.72 | Moderate | −0.008 | 1.008 | |
Mn | Gaussian | 0.50 | 0.45 | 0.95 | 0.52 | Moderate | 0.006 | 1.004 | |
Ni | Circular | 0.51 | 0.48 | 0.99 | 0.51 | Moderate | 0.005 | 1.01 | |
Pb | Gaussian | 0.23 | 0.53 | 0.76 | 0.30 | Moderate | −0.003 | 0.99 | |
V | Exponential | 0.38 | 0.63 | 1.01 | 0.37 | Moderate | 0.017 | 0.98 | |
Fe | Exponential | 0.01 | 0.95 | 0.96 | 0.01 | Strong | 0.019 | 0.91 | |
Zn | Stable | 0.55 | 0.29 | 0.84 | 0.65 | Moderate | −0.03 | 1.05 |
Variables | As | Cd | Co | Cr | Cu | Mn | Ni | Pb | V | Zn | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
As | 1 | −0.007 | −0.309 | 0.099 | −0.425 * | −0.014 | 0.483 ** | −0.060 | −0.367 * | −0.360 * | −0.360 * |
Cd | −0.007 | 1 | 0.134 | −0.254 | 0.258 | 0.320 | −0.205 | 0.047 | 0.018 | 0.068 | 0.086 |
Co | −0.309 | 0.134 | 1 | 0.576 ** | 0.642 ** | 0.380 * | 0.399 * | −0.240 | 0.824 ** | 0.095 | 0.920 ** |
Cr | 0.099 | −0.254 | 0.576 ** | 1 | 0.235 | 0.004 | 0.716 ** | −0.137 | 0.469 ** | −0.048 | 0.466 ** |
Cu | −0.425 * | 0.258 | 0.642 ** | 0.235 | 1 | 0.238 | −0.050 | 0.033 | 0.474 ** | 0.391 * | 0.539 ** |
Mn | −0.014 | 0.320 | 0.380 * | 0.004 | 0.238 | 1 | 0.029 | −0.130 | 0.046 | −0.024 | 0.211 |
Ni | 0.483 ** | −0.205 | 0.399 * | 0.716 ** | −0.050 | 0.029 | 1 | −0.209 | 0.251 | −0.156 | 0.402 * |
Pb | −0.060 | 0.047 | −0.240 | −0.137 | 0.033 | −0.130 | −0.209 | 1 | −0.311 | 0.320 | −0.277 |
V | −0.367 * | 0.018 | 0.824 ** | 0.469 ** | 0.474 ** | 0.046 | 0.251 | −0.311 | 1 | −0.018 | 0.871 ** |
Zn | −0.360 * | 0.068 | 0.095 | −0.048 | 0.391 * | −0.024 | −0.156 | 0.320 | −0.018 | 1 | 0.189 |
Fe | −0.360 * | 0.086 | 0.920 ** | 0.466 ** | 0.539 ** | 0.211 | 0.402 * | −0.277 | 0.871 ** | 0.189 | 1 |
Factor Loading | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | |
Eigenvalue | 3.947 | 2.265 | 1.405 | 1.139 | 0.685 | 0.589 | 0.425 | 0.299 | 0.168 | 0.057 | 0.022 |
Variability (%) | 35.877 | 20.594 | 12.771 | 10.358 | 6.223 | 5.357 | 3.863 | 2.715 | 1.524 | 0.518 | 0.199 |
Cumulative % | 35.877 | 56.472 | 69.243 | 79.601 | 85.824 | 91.180 | 95.044 | 97.759 | 99.282 | 99.801 | 100.000 |
Elements | Concentrations | Component | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
As | mg kg −1 | −0.344 | −0.697 | 0.276 | 0.402 |
Cd | 0.082 | 0.420 | 0.657 | 0.256 | |
Co | 0.972 | 0.018 | 0.095 | 0.045 | |
Cr | 0.630 | −0.525 | −0.274 | 0.256 | |
Cu | 0.665 | 0.490 | −0.014 | 0.187 | |
Mn | 0.288 | 0.149 | 0.703 | 0.250 | |
Ni | 0.431 | −0.766 | −0.065 | 0.367 | |
Pb | −0.300 | 0.369 | −0.370 | 0.591 | |
V | 0.874 | −0.013 | −0.077 | −0.302 | |
Zn | 0.151 | 0.584 | −0.412 | 0.409 | |
Fe | 0.945 | 0.035 | −0.027 | −0.066 |
Clusters | Statistics | As | Cd | Co | Cr | Cu | Mn | Ni | Pb | V | Fe | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
mg kg−1 | ||||||||||||
C1 | n | 13 | ||||||||||
Min | 0.1 | 0.1 | 22 | 13 | 52 | 769 | 14 | 5 | 85 | 49,900 | 77 | |
Max | 15 | 1.1 | 35 | 191 | 110 | 1565 | 70 | 16 | 163 | 70,700 | 144 | |
Mean | 4.19 ± 4.54 a | 0.86 ± 0.25 a | 27.08 ± 4.21 a | 75.08 ± 42.51 a | 74.77 ± 20.21 a | 1109.31 ± 178.73 a | 48.31 ± 18.08 a | 8.62 ± 3.50 a | 116.23 ± 27.2 a | 56,276 ± 6075.24 a | 103.08 ± 17.63 a | |
Skewness | 9.16 ± 6.57 b | 0.82 ± 0.05 a | 16.16 ± 3.51 b | 46.58 ± 21.91 b | 51.74 ± 14.93 b | 950.84 ± 212.88 b | 38.11 ± 15.80 a | 11.11 ± 6.36 a | 71.79 ± 22.92 b | 38,710.53 ± 4090.35 b | 92.32 ± 28.11 a | |
Kurtosis | 1.138 | −2.616 | 0.387 | 1.588 | 0.602 | 0.861 | −0.547 | 0.986 | 0.384 | 1.098 | 0.936 | |
C2 | n | 19 | ||||||||||
Min | 0.1 | 0.7 | 9 | 17 | 30 | 684 | 12 | 4 | 39 | 31,700 | 60 | |
Max | 22 | 0.9 | 24 | 107 | 91 | 1425 | 72 | 27 | 139 | 47,300 | 191 | |
Mean | 9.16 ± 6.57 b | 0.82 ± 0.05 a | 16.16 ± 3.51 b | 46.58 ± 21.91 b | 51.74 ± 14.93 b | 950.84 ± 212.88 b | 38.11 ± 15.80 a | 11.11 ± 6.36 a | 71.79 ± 22.92 b | 38,710.53 ± 4090.35 b | 92.32 ± 28.11 a | |
Skewness | 0.57 | 0.22 | 0.24 | 1.34 | 1.04 | 1.01 | 0.28 | 1.57 | 1.7 | 0.38 | 2.46 | |
Kurtosis | −0.72 | 0.31 | 0.79 | 2.33 | 1.24 | 0.01 | −0.18 | 2.09 | 3.42 | −0.27 | 8.54 |
Pollution Level | As | Cd | Co | Cr | Cu | Mn | Ni | Pb | V | Fe | Zn | Area km2, % |
---|---|---|---|---|---|---|---|---|---|---|---|---|
mg kg−1 | ||||||||||||
M | 5.28 ± 5.83 | 0.81 ± 0.19 | 18.65 ± 6.22 | 45.15 ± 23.25 | 60.55 ± 23.74 | 972.30 ± 223.50 | 33.45 ± 14.11 | 10.05 ± 5.13 | 84.15 ± 30.72 | 43,245.00 ± 8942.95 | 97.40 ± 30.05 | 910.41, (63.41%) |
S | 10.25 ± 5.92 | 0.883 ± 0.08 | 23.83 ± 6.17 | 79.83 ± 39.67 | 62.00 ± 14.42 | 1086.75 ± 177.23 | 56.92 ± 10.90 | 10.17 ± 6.20 | 99.33 ± 35.68 | 50,183.33 ± 10,639.96 | 95.50 ± 12.34 | 525.19, (36.58%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, H.; El-Sorogy, A.S.; Okok, A.; Shokr, M.S. GIS- and Multivariate-Based Approaches for Assessing Potential Environmental Hazards in Some Areas of Southwestern Saudi Arabia. Toxics 2024, 12, 569. https://doi.org/10.3390/toxics12080569
Alzahrani H, El-Sorogy AS, Okok A, Shokr MS. GIS- and Multivariate-Based Approaches for Assessing Potential Environmental Hazards in Some Areas of Southwestern Saudi Arabia. Toxics. 2024; 12(8):569. https://doi.org/10.3390/toxics12080569
Chicago/Turabian StyleAlzahrani, Hassan, Abdelbaset S. El-Sorogy, Abdurraouf Okok, and Mohamed S. Shokr. 2024. "GIS- and Multivariate-Based Approaches for Assessing Potential Environmental Hazards in Some Areas of Southwestern Saudi Arabia" Toxics 12, no. 8: 569. https://doi.org/10.3390/toxics12080569
APA StyleAlzahrani, H., El-Sorogy, A. S., Okok, A., & Shokr, M. S. (2024). GIS- and Multivariate-Based Approaches for Assessing Potential Environmental Hazards in Some Areas of Southwestern Saudi Arabia. Toxics, 12(8), 569. https://doi.org/10.3390/toxics12080569