Microplastics as a Threat to Aquatic Ecosystems and Human Health
Abstract
:1. Introduction
2. Microplastics—Nomenclature, Sources, and Creation of Microplastics
3. The Fate of Microplastics in the Aquatic Environment
Microplastics in Sediments, Seawater, and Freshwater
4. Occurrence of Microplastics in Aquatic Organisms
The Impact of Microplastics on the Functioning of Aquatic Organisms
5. Adsorption of Contaminants by Microplastics
Aquatic Organisms | Pollution | Toxicity | References |
---|---|---|---|
Blood clam (Tegillarca granosa) | Bisphenol A | Neurotoxicity, immunotoxicity, increase in neurotransmitter concentration, decrease in gene expression, affecting DNA methylation | [127,128] |
Copepods (Acartia tonsa, Calanus finmarchicus) | PAHs fluoranthene and phenanthrene | Bioaccumulation in lipid-rich tissues, MP-sorbed PAHs do not significantly accumulate or contribute to toxicity in marine organisms | [129] |
Goldfish (Carassius auratus) | PAH benzo(a)pyrene | Disrupted lipid metabolism, liver damage, significantly higher Casp3 mRNA expression, oxidative stress, which leads to apoptosis | [130] |
Mussel (Mytilus coruscus) | Dechlorane Plus | Bioaccumulation in gonads and gills, no significant effect was found | [131] |
Microalgae (Chlorella vulgaris) | Dechlorane Plus | Reduced photosynthetic efficiency (reduced Fv/Fm by 0.03%), higher growth inhibition (16.15%) and oxidative damage (increased ROS by 152%), co-exposure significantly downregulated amino acid metabolism and tricarboxylic acid cycle (TCA) cycle and upregulated fatty acid metabolism | [132] |
Atlantic cod (Gadus morhua) | PCB-126 | Bioaccumulation in livers and muscles, minor differences in the cyp1a expression in liver and skin histology | [133] |
European seabass (Dicentrarchus labrax) | DDE, BP-3, chlorpyrifos | Bioaccumulation in livers and muscles, no effect on fish condition indicators was observed | [111] |
Blue discus (Symphysodon aequifasciatus) | Cadmium | Oxidative stress, stimulation of innate immunity in young individuals, antagonistic interaction between the two stressors (MP and cadmium) | [134] |
Crucian carp (Carassius carassius) | Cadmium | Inflammation of liver and spleen cells, reduction in the diversity and number of intestinal microflora organisms, oxidative stress, a significant upregulation in the gene expression levels of il-8 and hsp70 | [135] |
Daphnia magna | Cadmium | Microplastic and Cd has additive effects on feeding and growth rates, resulting in a greater energy allocation shift | [136] |
Microalgae (Microcystis aeruginosa) | Arsenic | oxidative stress, fatty acid metabolism was significantly upregulated | [137] |
Clam (Ruditapes Philippinarum) | Mercury | Decreased filtration rates, gill and digestive gland pathology, immunotoxicity, oxidative stress biomarkers remained unchanged | [138] |
6. Human Health Impacts
7. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poluszyńska, J.; Ciesielczuk, T.; Biernacki, M.; Paciorkowski, M. The effect of temperature on the biodegradation of different types of packaging materials under test conditions. Arch. Environ. Prot. 2021, 47, 74–83. [Google Scholar] [CrossRef]
- do Sul, J.A.I.; Costa, M.F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 2014, 185, 352–364. [Google Scholar] [CrossRef]
- Aliabad, M.K.; Nassiri, M.; Kor, K. Microplastics in the surface seawaters of Chabahar Bay, Gulf of Oman (Makran Coasts). Mar. Pollut. Bull. 2019, 143, 125–133. [Google Scholar] [CrossRef]
- Plastics Europe. Plastics—The Facts 2022. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 6 July 2024).
- Plastics Europe. Plastics—The Fast Facts 2023. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (accessed on 6 July 2024).
- Munoz-Pineiro, M. Microplastics: Focus on Food and Health; EUR N/A; Publications Office of the European Union: Luxembourg, 2018; ISBN N/A, JRC110629. [Google Scholar]
- Carpenter, E.J.; Smith, K.L., Jr. Plastics on the Sargasso sea surface. Science 1972, 175, 1240–1241. [Google Scholar] [CrossRef] [PubMed]
- World Economic Forum. The New Plastics Economy: Rethinking the Future of Plastics. Available online: https://www.weforum.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics/ (accessed on 6 July 2024).
- Bodzek, M.; Pohl, A. Removal of microplastics in unit processes used in water and wastewater treatment: A review. Arch. Environ. Prot. 2022, 48, 102–128. [Google Scholar] [CrossRef]
- Barchiesi, M.; Chiavola, A.; Di Marcantonio, C.; Boni, M.R. Presence and fate of microplastics in the water sources: Focus on the role of wastewater and drinking water treatment plants. J. Water Process Eng. 2021, 40, 101787. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016, 14, e04501. [Google Scholar] [CrossRef]
- Au, S.Y.; Lee, C.M.; Weinstein, J.E.; van den Hurk, P.; Klaine, S.J. Trophic transfer of microplastics in aquatic ecosystems: Identifying critical research needs. Integr. Environ. Asses. 2017, 13, 505–509. [Google Scholar] [CrossRef]
- Carbery, M.; O’Connor, W.; Palanisami, T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ. Int. 2018, 115, 400–409. [Google Scholar] [CrossRef]
- Issac, M.N.; Kandasubramanian, B. Effect of microplastics in water and aquatic systems. Environ. Sci. Pollut. Res. 2021, 28, 19544–19562. [Google Scholar] [CrossRef]
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; IUCN: Gland, Switzerland, 2017; Volume 10. [Google Scholar]
- Gavigan, J.; Kefela, T.; Macadam-Somer, I.; Suh, S.; Geyer, R. Synthetic microfiber emissions to land rival those to waterbodies and are growing. PLoS ONE 2020, 15, e0237839. [Google Scholar] [CrossRef]
- Manshoven, S.; Smeets, A.; Malarciuc, C.; Tenhunen-Lunkka, A.; Mortensen, L.F. Microplastic Pollution from Textile Consumption in Europe, Eionet Report–ETC/CE 2022/1. Available online: https://www.eionet.europa.eu/etcs/etc-ce/products/etc-ce-products/etc-ce-report-1-2022-microplastic-pollution-from-textile-consumption-in-europe (accessed on 7 April 2024).
- Carr, S.A. Sources and dispersive modes of micro-fibers in the environment. Integr. Environ. Assess. Manag. 2017, 13, 466–469. [Google Scholar] [CrossRef]
- Li, W.C. The occurrence, fate, and effects of microplastics in the marine environment. In Microplastic Contamination in Aquatic Environments: An Emerging Matter of Environmental Urgency; Zeng, E.Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 133–173. [Google Scholar] [CrossRef]
- Jaikumar, G.; Brun, N.R.; Vijver, M.G.; Bosker, T. Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure. Environ. Pollut. 2019, 249, 638–646. [Google Scholar] [CrossRef]
- Herrera, A.; Acosta-Dacal, A.; Luzardo, O.P.; Martínez, I.; Rapp, J.; Reinold, S.; Gómez, M. Bioaccumulation of additives and chemical contaminants from environmental microplastics in European seabass (Dicentrarchus labrax). Sci. Total Environ. 2022, 822, 153396. [Google Scholar] [CrossRef] [PubMed]
- Cincinelli, A.; Martellini, T.; Guerranti, C.; Scopetani, C.; Chelazzi, D.; Giarrizzo, T. A Potpourri of Microplastics in the Sea Surface and Water Column of the Mediterranean Sea. Trends Anal. Chem. 2019, 110, 321–326. [Google Scholar] [CrossRef]
- Wright, L.S.; Napper, I.E.; Thompson, R.C. Potential Microplastic Release from Beached Fishing Gear in Great Britain’s Region of Highest Fishing Litter Density. Mar. Pollut. Bull. 2021, 173, 113115. [Google Scholar] [CrossRef] [PubMed]
- Manbohi, A.; Mehdinia, A.; Rahnama, R.; Hamzehpour, A.; Dehbandi, R. Distribution of microplastics in upstream and downstream surface waters of the Iranian rivers discharging to the southern Caspian Sea. Environ. Sci. Pollut. Res. 2023, 30, 92359–92370. [Google Scholar] [CrossRef]
- Luo, S.; Wu, H.; Xu, J.; Wang, X.; He, X.; Li, T. Effects of lakeshore landcover types and environmental factors on microplastic distribution in lakes on the Inner Mongolia Plateau, China. J. Hazard. Mater. 2024, 465, 133115. [Google Scholar] [CrossRef] [PubMed]
- Graca, B.; Szewc, K.; Zakrzewska, D.; Dołęga, A.; Szczerbowska-Boruchowska, M. Sources and fate of microplastics in marine and beach sediments of the Southern Baltic Sea—A preliminary study. Environ. Sci. Pollut. Res. 2017, 24, 7650–7661. [Google Scholar] [CrossRef]
- Godoy, V.; Prata, J.C.; Blázquez, G.; Almendros, A.I.; Duarte, A.C.; Rocha-Santos, T.; Calero, M.; Martín-Lara, M.Á. Effects of distance to the sea and geomorphological characteristics on the quantity and distribution of microplastics in beach sediments of Granada (Spain). Sci. Total Environ. 2020, 746, 142023. [Google Scholar] [CrossRef]
- Squadrone, S.; Pederiva, S.; Bezzo, T.; Sartor, R.M.; Battuello, M.; Nurra, N.; Abete, M.C. Microplastics as vectors of metals contamination in Mediterranean Sea. Environ. Sci. Pollut. Res. 2021, 29, 29529–29534. [Google Scholar] [CrossRef] [PubMed]
- Amrutha, K.; Warrier, A.K. The first report on the source-to-sink characterization of microplastic pollution from a riverine environment in tropical India. Sci. Total Environ. 2020, 739, 140377. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Su, L.; Craig, N.J.; Du, F.; Wu, C.; Shi, H. Comparison of microplastic pollution in different water bodies from urban creeks to coastal waters. Environ. Pollut. 2019, 246, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Kye, H.; Kim, J.; Ju, S.; Lee, J.; Lim, C.; Yoon, Y. Microplastics in Water Systems: A Review of Their Impacts on the Environment and Their Potential Hazards. Heliyon 2023, 9, e14359. [Google Scholar] [CrossRef] [PubMed]
- Nava, V.; Chandra, S.; Aherne, J.; Alfonso, M.B.; Antão-Geraldes, A.M.; Attermeyer, K.; Bao, R.; Bartrons, M.; Berger, S.A.; Biernaczyk, M.; et al. Plastic debris in lakes and reservoirs. Nature 2023, 619, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Ma, J.; Sun, Y.; Zhou, T.; Zhao, Y.; Yu, F. Microbial degradation and other environmental aspects of microplastics/plastics. Sci. Total Environ. 2020, 715, 136968. [Google Scholar] [CrossRef]
- Thakur, B.; Singh, J.; Singh, J.; Angmo, D.; Vig, A.P. Biodegradation of different types of microplastics: Molecular mechanism and degradation efficiency. Sci. Total Environ. 2023, 877, 162912. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Li, M.; Zhu, Z.; Wang, X.; Huang, Y.; Li, T.; Gong, H.; Yan, M. Biological degradation of plastics and microplastics: A recent perspective on associated mechanisms and influencing factors. Microorganisms 2023, 11, 1661. [Google Scholar] [CrossRef]
- Liu, S.Y.; Leung, M.M.L.; Fang, J.K.H.; Chua, S.L. Engineering a microbial ‘trap and release’mechanism for microplastics removal. Chem. Eng. J. 2021, 404, 127079. [Google Scholar] [CrossRef]
- Torena, P.; Alvarez-Cuenca, M.; Reza, M. Biodegradation of polyethylene terephthalate microplastics by bacterial communities from activated sludge. Can. J. Chem. Eng. 2021, 99, 69–82. [Google Scholar] [CrossRef]
- Ren, S.Y.; Ni, H.G. Biodeterioration of microplastics by bacteria isolated from mangrove sediment. Toxics 2023, 11, 432. [Google Scholar] [CrossRef]
- Pikoli, M.R.; Astuti, P.; Rahmah, F.A.; Sari, A.F.; Solihat, N.A. Biodegradation of microplastics by microorganisms isolated from two mature landfill leachates. Chiang Mai Univ. J. Nat. Sci. 2022, 21, e2022005. [Google Scholar] [CrossRef]
- He, D.; Zeng, Y.; Zhou, G. The influence of microplastics on the toxic effects and biodegradation of bisphenol A in the microalgae Chlorella pyrenoidosa. Aquat. Ecol. 2022, 56, 1287–1296. [Google Scholar] [CrossRef]
- Falah, W.; Chen, F.J.; Zeb, B.S.; Hayat, M.T.; Mahmood, Q.; Ebadi, A.; Toughani, M.; Li, E.Z. Polyethylene terephthalate degradation by microalga Chlorella vulgaris along with pretreatment. Mater. Plast. 2020, 57, 260–270. [Google Scholar] [CrossRef]
- Paço, A.; Duarte, K.; da Costa, J.P.; Santos, P.S.M.; Pereira, R.; Pereira, M.E.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci. Total Environ. 2017, 586, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Naji, A.; Esmaili, Z.; Mason, S.A.; Dick Vethaak, A. The occurrence of microplastic contamination in littoral sediments of the Persian Gulf, Iran. Environ. Sci. Pollut. Res. 2017, 24, 20459–20468. [Google Scholar] [CrossRef]
- Mu, J.; Qu, L.; Jin, F.; Zhang, S.; Fang, C.; Ma, X.; Wang, J. Abundance and distribution of microplastics in the surface sediments from the northern Bering and Chukchi Seas. Environ. Pollut. 2019, 245, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Filgueiras, A.V.; Gago, J.; Campillo, J.A.; León, V.M. Microplastic distribution in surface sediments along the Spanish Mediterranean continental shelf. Environ. Sci. Pollut. Res. 2019, 26, 21264–21273. [Google Scholar] [CrossRef]
- Wu, X.; Zhong, C.; Wang, T.; Zou, X.; Zang, Z.; Li, Q.; Chen, H. Occurrence and distribution of microplastics on recreational beaches of Haichow Bay, China. Environ. Sci. Pollut. Res. 2021, 28, 6132–6145. [Google Scholar] [CrossRef]
- Dodson, G.Z.; Shotorban, A.K.; Hatcher, P.G.; Waggoner, D.C.; Ghosal, S.; Noffke, N. Microplastic fragment and fiber contamination of beach sediments from selected sites in Virginia and North Carolina, USA. Mar. Pollut. Bull. 2020, 151, 110869. [Google Scholar] [CrossRef]
- Tasnim, J.; Ahmed, M.K.; Hossain, K.B.; Islam, M.S. Spatiotemporal distribution of microplastic debris in the surface beach sediment of the southeastern coast of Bangladesh. Heliyon 2023, 9, e21864. [Google Scholar] [CrossRef] [PubMed]
- Patchaiyappan, A.; Ahmed, S.Z.; Dowarah, K.; Jayakumar, S.; Devipriya, S.P. Occurrence, distribution and composition of microplastics in the sediments of South Andaman beaches. Mar. Pollut. Bull. 2020, 156, 111227. [Google Scholar] [CrossRef] [PubMed]
- Aslam, H.; Ali, T.; Mortula, M.M.; Attaelmanan, A.G. Evaluation of microplastics in beach sediments along the coast of Dubai, UAE. Mar. Pollut. Bull. 2020, 150, 110739. [Google Scholar] [CrossRef] [PubMed]
- Kor, K.; Ghazilou, A.; Ershadifar, H.; Kor, K.; Ghazilou, A.; Ershadifar, H. Microplastic pollution in the littoral sediments of the northern part of the Oman Sea. Mar. Pollut. Bull. 2020, 155, 111166. [Google Scholar] [CrossRef] [PubMed]
- Firdaus, M.; Trihadiningrum, Y.; Lestari, P. Microplastic pollution in the sediment of Jagir Estuary, Surabaya City, Indonesia. Mar. Pollut. Bull. 2020, 150, 110790. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Yin, L.; Li, Z.; Wen, X.; Luo, X.; Hu, S.; Liu, Y. Microplastic pollution in the rivers of the Tibet Plateau. Environ. Pollut. 2019, 249, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Ta, A.T.; Babel, S.; Haarstrick, A. Microplastics contamination in a high population density area of the Chao Phraya River, Bangkok. J. Eng. Technol. Sci. 2020, 52, 534–545. [Google Scholar] [CrossRef]
- Zhu, L.; Bai, H.; Chen, B.; Sun, X.; Qu, K.; Xia, B. Microplastic pollution in North Yellow Sea, China: Observations on occurrence, distribution and identification. Sci. Total Environ. 2018, 636, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zuo, L.Z.; Peng, J.P.; Cai, L.Q.; Fok, L.; Yan, Y.; Li, H.X.; Xu, X.R. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China. Sci. Total Environ. 2018, 644, 375–381. [Google Scholar] [CrossRef]
- Wang, Z.; Su, B.; Xu, X.; Di, D.; Huang, H.; Mei, K.; Dahlgren, R.A.; Zhang, M.; Shang, X. Preferential accumulation of small (<300 μm) microplastics in the sediments of a coastal plain river network in eastern China. Water Res. 2018, 144, 393–401. [Google Scholar] [CrossRef]
- Campanale, C.; Stock, F.; Massarelli, C.; Kochleus, C.; Bagnuolo, G.; Reifferscheid, G.; Uricchio, V.F. Microplastics and their possible sources: The example of Ofanto river in southeast Italy. Environ. Pollut. 2020, 258, 113284. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Hashmi, I. Detection in influx sources and estimation of microplastics abundance in surface waters of Rawal Lake, Pakistan. Heliyon 2022, 8, e09166. [Google Scholar] [CrossRef] [PubMed]
- Rajan, K.; Khudsar, F.A.; Kumar, R. Urbanization and population resources affect microplastic concentration in surface water of the River Ganga. J. Hazard. Mater. Adv. 2023, 11, 100342. [Google Scholar] [CrossRef]
- Çomaklı, E.; Bingöl, M.S.; Bilgili, A. Assessment of Microplastic Pollution in a Crater Lake at High Altitude: A Case Study in an Urban Crater Lake in Erzurum, Turkey. Water Air Soil Pollut. 2020, 231, 275. [Google Scholar] [CrossRef]
- Oni, B.A.; Ayeni, A.O.; Agboola, O.; Oguntade, T.; Obanla, O. Comparing microplastics contaminants in (dry and raining) seasons for Ox-Bow Lake in Yenagoa, Nigeria. Ecotoxicol. Environ. Saf. 2020, 198, 110656. [Google Scholar] [CrossRef]
- Grbić, J.; Helm, P.; Athey, S.; Rochman, C.M. Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources. Water Res. 2020, 174, 115623. [Google Scholar] [CrossRef] [PubMed]
- Tsang, Y.Y.; Mak, C.W.; Liebich, C.; Lam, S.W.; Sze, E.T.; Chan, K.M. Microplastic pollution in the marine waters and sediments of Hong Kong. Mar. Pollut. Bull. 2017, 115, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.A.; Weerasinghe, K.I.; Mayor, D.J.; Lampitt, R. Microplastics in commercial marine fish species in the UK–A case study in the River Thames and the River Stour (East Anglia) estuaries. Sci. Total Environ. 2024, 915, 170170. [Google Scholar] [CrossRef]
- Hamed, M.; Martyniuk, C.J.; Lee, J.S.; Shi, H.; Sayed, A.E.-D.H. Distribution, abundance, and composition of microplastics in market fishes from the Red and Mediterranean seas in Egypt. J. Sea Res. 2023, 194, 102407. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Q.; Li, Y.; Tan, S.; Kang, Z.; Yu, X.; Shi, H. Microplastic pollution in the Maowei Sea, a typical mariculture bay of China. Sci. Total Environ. 2019, 658, 62–68. [Google Scholar] [CrossRef]
- Mazlan, N.; Shukhairi, S.S.; Husin, M.J.M.; Shalom, J.; Saud, S.N.; Sani, M.S.A.; Sopian, N.A. Evaluation of microplastics isolated from sea cucumber Acaudina molpadioides in Pulau Langkawi, Malaysia. Heliyon 2023, 9, e16822. [Google Scholar] [CrossRef]
- Scott, N.; Porter, A.; Santillo, D.; Simpson, H.; Lloyd-Williams, S.; Lewis, C. Particle characteristics of microplastics contaminating the mussel Mytilus edulis and their surrounding environments. Mar. Pollut. Bull. 2019, 146, 125–133. [Google Scholar] [CrossRef]
- Provencher, J.F.; Bond, A.L.; Avery-Gomm, S.; Borrelle, S.B.; Rebolledo, E.L.B.; Hammer, S.; Van Franeker, J.A. Quantifying ingested debris in marine megafauna: A review and recommendations for standardization. Anal. Methods 2017, 9, 1454–1469. [Google Scholar] [CrossRef]
- Khan, F.R.; Shashoua, Y.; Crawford, A.; Drury, A.; Sheppard, K.; Stewart, K.; Sculthorp, T. ‘The Plastic Nile’: First Evidence of Microplastic Contamination in Fish from the Nile River (Cairo, Egypt). Toxics 2020, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Makhdoumi, P.; Amin, A.A.; Karimi, H.; Pirsaheb, M.; Kim, H.; Hossini, H. Occurrence of microplastic particles in the most popular Iranian bottled mineral water brands and an assessment of human exposure. J. Water Process. Eng. 2021, 39, 101708. [Google Scholar] [CrossRef]
- Makhdoumi, P.; Naghshbandi, M.; Ghaderzadeh, K.; Mirzabeigi, M.; Yazdanbakhsh, A.; Hossini, H. Micro-plastic occurrence in bottled vinegar: Qualification, quantification and human risk exposure. Process. Saf. Environ. Prot. 2021, 152, 404–413. [Google Scholar] [CrossRef]
- Heshmati, S.; Makhdoumi, P.; Pirsaheb, M.; Hossini, H.; Ahmadi, S.; Fattahi, H. Occurrence and Characterization of Microplastic Content in the Digestive System of Riverine Fishes. J. Environ. Manag. 2021, 299, 113620. [Google Scholar] [CrossRef]
- Grigorakis, S.; Mason, S.A.; Drouillard, K.G. Determination of the gut retention of plastic microbeads and microfibers in goldfish (Carassius auratus). Chemosphere 2017, 169, 233–238. [Google Scholar] [CrossRef]
- Ramos, J.; Barletta, M.; Costa, M. Ingestion of nylon threads by Gerreidae while using a tropical estuary as foraging grounds. Aquat. Biol. 2012, 17, 29–34. [Google Scholar] [CrossRef]
- McGoran, A.R.; Clark, P.F.; Morritt, D. Presence of microplastic in the digestive tracts of European flounder, Platichthys flesus, and European smelt, Osmerus eperlanus, from the River Thames. Environ. Pollut. 2017, 220, 744–751. [Google Scholar] [CrossRef]
- Zhang, D.D.; Fraser, M.A.; Huang, W.; Ge, C.J.; Wang, Y.; Zhang, C.F.; Guo, P. Microplastic pollution in water, sediment, and specific tissues of crayfish (Procambarus clarkii) within two different breeding modes in Jianli, Hubei province, China. Environ. Pollut. 2021, 272, 115939. [Google Scholar] [CrossRef] [PubMed]
- Collard, F.; Gasperi, J.; Gilbert, B.; Eppe, G.; Azimi, S.; Rocher, V.; Tassin, B. Anthropogenic particles in the stomach contents and liver of the freshwater fish Squalius cephalus. Sci. Total Environ. 2018, 643, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.A.; Bratton, S.P. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA. Environ. Pollut. 2016, 210, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh Rahmat Abadi, Z.; Abtahi, B.; Grossart, H.P.; Khodabandeh, S. Microplastic content of Kutum fish, Rutilus frisii kutum in the southern Caspian Sea. Sci. Total Environ. 2021, 752, 141542. [Google Scholar] [CrossRef] [PubMed]
- Maghsodian, Z.; Sanati, A.M.; Ramavandi, B.; Ghasemi, A.; Sorial, G.A. Microplastics accumulation in sediments and Periophthalmus waltoni fish, mangrove forests in southern Iran. Chemosphere 2021, 264, 128543. [Google Scholar] [CrossRef]
- Van der Hal, N.; Yeruham, E.; Angel, D.L. Dynamics in Microplastic Ingestion During the Past Six Decades in Herbivorous Fish on the Mediterranean Israeli Coast. In Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea, Naples, Italy, 28–30 September 2018; Cocca, M., Di Pace, E., Errico, M.E., Gentile, G., Montarsolo, A., Mossotti, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 159–165. [Google Scholar] [CrossRef]
- Devriese, L.I.; Van Der Meulen, M.D.; Maes, T.; Bekaert, K.; Paul-Pont, I.; Frère, L.; Robbens, J.; Vethaak, A.D. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar. Pollut. Bull. 2015, 98, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Desforges, J.-P.W.; Galbraith, M.; Ross, P.S. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol. 2015, 69, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, D.; Li, L.; Jabeen, K.; Shi, H. Microplastics in commercial bivalves from China. Environ. Pollut. 2015, 207, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Mathalon, A.; Hill, P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 2014, 81, 69–79. [Google Scholar] [CrossRef]
- Li, J.; Green, C.; Reynolds, A.; Shi, H.; Rotchell, J.M. Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environ. Pollut. 2018, 241, 35–44. [Google Scholar] [CrossRef]
- Naji, A.; Nuri, M.; Vethaak, A.D. Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environ. Pollut. 2018, 235, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Courtene-Jones, W.; Quinn, B.; Ewins, C.; Gary, S.F.; Narayanaswamy, B.E. Consistent microplastic ingestion by deep-sea invertebrates over the last four decades (1976–2015), a study from the North East Atlantic. Environ. Pollut. 2019, 244, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Berlino, M.; Mangano, M.C.; De Vittor, C.; Sarà, G. Effects of microplastics on the functional traits of aquatic benthic organisms: A global-scale meta-analysis. Environ. Pollut. 2021, 285, 117174. [Google Scholar] [CrossRef] [PubMed]
- Venghaus, D.; Barjenbruch, M. Microplastics in urban water management. Tech. Trans. 2017, 114, 137–146. [Google Scholar] [CrossRef]
- Nelms, S.E.; Barnett, J.; Brownlow, A.; Davison, N.J.; Deaville, R.; Galloway, T.S.; Godley, B.J. Microplastics in marine mammals stranded around the British coast: Ubiquitous but transitory? Sci. Rep. 2019, 9, 1075. [Google Scholar] [CrossRef] [PubMed]
- Franzellitti, S.; Canesi, L.; Auguste, M.; Wathsala, R.H.; Fabbri, E. Microplastic exposure and effects in aquatic organisms: A physiological perspective. Environ. Toxicol. Pharmacol. 2019, 68, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Barboza, L.G.A.; Vieira, L.R.; Branco, V.; Carvalho, C.; Guilhermino, L. Microplastics increase mercury bioconcentration in gills and bioaccumulation in the liver, and cause oxidative stress and damage in Dicentrarchus labrax juveniles. Sci. Rep. 2018, 8, 15655. [Google Scholar] [CrossRef] [PubMed]
- Barboza, L.G.A.; Lopes, C.; Oliveira, P.; Bessa, F.; Otero, V.; Henriques, B.; Raimundo, J.; Caetano, M.; Vale, C.; Guilhermino, L. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 2020, 717, 134625. [Google Scholar] [CrossRef]
- Zitouni, N.; Cappello, T.; Missawi, O.; Boughattas, I.; de Marco, G.; Belbekhouche, S.; Mokni, M.; Alphonse, V.; Guerbej, H.; Bousserrhine, N.; et al. Metabolomic Disorders Unveil Hepatotoxicity of Environmental Microplastics in Wild Fish Serranus scriba (Linnaeus 1758). Sci. Total Environ. 2022, 838, 155872. [Google Scholar] [CrossRef]
- Cocci, P.; Gabrielli, S.; Pastore, G.; Minicucci, M.; Mosconi, G.; Palermo, F.A. Microplastics Accumulation in Gastrointestinal Tracts of Mullus barbatus and Merluccius merluccius Is Associated with Increased Cytokine Production and Signaling. Chemosphere 2022, 307, 135813. [Google Scholar] [CrossRef]
- Bhagat, J.; Zang, L.; Nishimura, N.; Shimada, Y. Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Sci. Total Environ. 2020, 728, 138707. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Luo, J.; Wan, Y.; Zhang, J.; Lu, C.; Wang, M.; Dai, L.; Cao, X.; Yang, X.; Wang, Y. Polystyrene Nanoplastic Exposure Induces Developmental Toxicity by Activating the Oxidative Stress Response and Base Excision Repair Pathway in Zebrafish (Danio rerio). ACS Omega 2022, 7, 32153–32163. [Google Scholar] [CrossRef] [PubMed]
- Bashirova, N.; Poppitz, D.; Klüver, N.; Scholz, S.; Matysik, J.; Alia, A. A mechanistic understanding of the effects of polyethylene terephthalate nanoplastics in the zebrafish (Danio rerio) embryo. Sci. Rep. 2023, 13, 1891. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Gao, Z.; Yang, Y.; Li, M.; Chen, Q. Inhibition of Xenobiotics Transporters’ Efflux Ability after Nanoplastics Exposure in Larval Japanese Medaka. Water 2022, 14, 863. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, L.; Xu, H.; Xu, E.G.; Li, M.; Wang, Y. Long-Term Exposure to Polystyrene Nanoplastics Impairs the Liver Health of Medaka. Water 2022, 14, 2767. [Google Scholar] [CrossRef]
- Zhou, Y.; Gui, L.; Wei, W.; Xu, E.G.; Zhou, W.; Sokolova, I.M.; Li, M.; Wang, Y. Low particle concentrations of nanoplastics impair the gut health of medaka. Aquat. Toxicol. 2023, 256, 106422. [Google Scholar] [CrossRef] [PubMed]
- Porcino, N.; Bottari, T.; Mancuso, M. Is Wild Marine Biota Affected by Microplastics? Animals 2023, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guan, J.; Feng, Y.; Nie, L.; Xu, Y.; Xu, H.; Fu, F. Polystyrene microplastics induced nephrotoxicity associated with oxidative stress, inflammation, and endoplasmic reticulum stress in juvenile rats. Front. Nutr. 2023, 9, 1059660. [Google Scholar] [CrossRef]
- Tumwesigye, E.; Nnadozie, C.F.; Akamagwuna, F.C.; Noundou, X.S.; Nyakairu, G.W.; Odume, O.N. Microplastics as vectors of chemical contaminants and biological agents in freshwater ecosystems: Current knowledge status and future perspectives. Environ. Pollut. 2023, 330, 121829. [Google Scholar] [CrossRef]
- Llorca, M.; Ábalos, M.; Vega-Herrera, A.; Adrados, M.A.; Abad, E.; Farré, M. Adsorption and desorption behaviour of polychlorinated biphenyls onto microplastics surfaces in water/sediment systems. Toxics 2020, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Gorman, D.; Moreira, F.T.; Turra, A.; Fontenelle, F.R.; Combi, T.; Bícego, M.C.; de Castro Martins, C. Organic contamination of beached plastic pellets in the South Atlantic: Risk assessments can benefit by considering spatial gradients. Chemosphere 2019, 223, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Herrera, A.; Acosta-Dacal, A.; Pérez-Luzardo, O.; Martínez, I.; Rapp, J.; Reinold, S.; Gómez, M. Trophic transfer of DDE, BP-3 and chlorpyrifos from microplastics to tissues in Dicentrarchus labrax. Sci. Total Environ. 2023, 882, 163295. [Google Scholar] [CrossRef] [PubMed]
- Seyfi, S.; Katibeh, H.; Heshami, M. Investigation of the process of adsorption of heavy metals in coastal sands containing micro-plastics, with special attention to the effect of aging process and bacterial spread in micro-plastics. Arch. Environ. Prot. 2021, 47, 50–59. [Google Scholar] [CrossRef]
- Simionov, I.A.; Călmuc, M.; Iticescu, C.; Călmuc, V.; Georgescu, P.L.; Faggio, C.; Petrea, Ş.M. Human health risk assessment of potentially toxic elements and microplastics accumulation in products from the Danube River Basin fish market. Environ. Toxicol. Pharmacol. 2023, 104, 104307. [Google Scholar] [CrossRef] [PubMed]
- Atugoda, T.; Vithanage, M.; Wijesekara, H.; Bolan, N.; Sarmah, A.K.; Bank, M.S.; Ok, Y.S. Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environ. Int. 2021, 149, 106367. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Nugnes, R.; Russo, C.; Lavorgna, M.; Orlo, E.; Kundi, M.; Isidori, M. Polystyrene microplastic particles in combination with pesticides and antiviral drugs: Toxicity and genotoxicity in Ceriodaphnia dubia. Environ. Pollut. 2022, 313, 120088. [Google Scholar] [CrossRef] [PubMed]
- Rainieri, S.; Conlledo, N.; Larsen, B.K.; Granby, K.; Barranco, A. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio). Environ. Res. 2018, 162, 135–143. [Google Scholar] [CrossRef]
- Granby, K.; Rainieri, S.; Rasmussen, R.R.; Kotterman, M.J.J.; Sloth, J.J.; Cederberg, T.L.; Barranco, A.; Marques, A.; Larsen, B.K. The influence of microplastics and halogenated contaminants in feed on toxicokinetics and gene expression in European seabass (Dicentrarchus labrax). Environ. Res. 2018, 164, 430–443. [Google Scholar] [CrossRef]
- Qin, L.; Duan, Z.; Cheng, H.; Wang, Y.; Zhang, H.; Zhu, Z.; Wang, L. Size-Dependent Impact of Polystyrene Microplastics on the Toxicity of Cadmium through Altering Neutrophil Expression and Metabolic Regulation in Zebrafish Larvae. Environ. Pollut. 2021, 291, 118169. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chen, L.; Wu, B. Size-Specific Effects of Microplastics and Lead on Zebrafish. Chemosphere 2023, 337, 139383. [Google Scholar] [CrossRef] [PubMed]
- Guru, A.; Rady, A.; Darwish, N.M.; Malafaia, G.; Arokiyaraj, S.; Arockiaraj, J. Synergetic effects of polyethylene microplastic and abamectin pesticides on the eyes of zebrafish larvae and adults through activation of apoptosis signaling pathways. Environ. Toxicol. Pharmacol. 2023, 102, 104215. [Google Scholar] [CrossRef]
- Montero, D.; Rimoldi, S.; Torrecillas, S.; Rapp, J.; Moroni, F.; Herrera, A.; Gómez, M.; Fernández-Montero, Á.; Terova, G. Impact of polypropylene microplastics and chemical pollutants on European sea bass (Dicentrarchus labrax) gut microbiota and health. Sci. Total Environ. 2022, 805, 150402. [Google Scholar] [CrossRef]
- He, J.; Yang, X.; Liu, H. Enhanced toxicity of triphenyl phosphate to zebrafish in the presence of micro-and nano-plastics. Sci. Total Environ. 2021, 756, 143986. [Google Scholar] [CrossRef]
- Mu, X.; Qi, S.; Liu, J.; Yuan, L.; Huang, Y.; Xue, J.; Qian, L.; Wang, C.; Li, Y. Toxicity and behavioral response of zebrafish exposed to combined microplastic and bisphenol analogues. Environ. Chem. Lett. 2022, 20, 41–48. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of Textile Dyes on Health and the Environment and Bioremediation Potential of Living Organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Remy, F.; Collard, F.; Gilbert, B.; Compère, P.; Eppe, G.; Lepoint, G. When Microplastic Is Not Plastic: The Ingestion of Artificial Cellulose Fibers by Macrofauna Living in Seagrass Macrophytodetritus. Environ. Sci. Technol. 2015, 49, 11158–11166. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, W.; Sun, S.; Du, X.; Han, Y.; Shi, W.; Liu, G. Immunotoxicity and neurotoxicity of bisphenol A and microplastics alone or in combination to a bivalve species, Tegillarca granosa. Environ. Pollut. 2020, 265, 115115. [Google Scholar] [CrossRef]
- Weis, J.S.; Alava, J.J. (Micro)Plastics Are Toxic Pollutants. Toxics 2023, 11, 935. [Google Scholar] [CrossRef]
- Sørensen, L.; Rogers, E.; Altin, D.; Salaberria, I.; Booth, A.M. Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions. Environ. Pollut. 2020, 258, 113844. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Park, Y.S.; Kim, J.H.; Choi, C.Y. Toxic effects of polystyrene microbeads and benzo [α] pyrene on bioaccumulation, antioxidant response, and cell damage in goldfish Carassius auratus. Ecotox. Environ. Saf. 2024, 270, 115825. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Peng, X.; Guo, Y.; Hao, Q.; Hou, Y.; Yang, C. Effects of polystyrene microplastics on dechlorane plus bioaccumulation in the thick-shell mussel. Front. Environ. Sci. 2023, 11, 604. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, W.; Meng, L.; Zeb, A.; Mo, F.; Wang, J.; Shi, R. The interfacial interaction between Dechlorane Plus (DP) and polystyrene nanoplastics (PSNPs): An overlooked influence factor for the algal toxicity of PSNPs. Sci. Total Environ. 2023, 905, 167129. [Google Scholar] [CrossRef]
- Bogevik, A.S.; Ytteborg, E.; Madsen, A.K.; Jordal, A.E.O.; Karlsen, O.A.; Rønnestad, I. PCB-126 spiked to polyethylene microplastic ingested by juvenile Atlantic cod (Gadus morhua) accumulates in liver and muscle tissues. Mar. Pollut. Bull. 2023, 187, 114528. [Google Scholar] [CrossRef]
- Wen, B.; Jin, S.R.; Chen, Z.Z.; Gao, J.Z.; Liu, Y.N.; Liu, J.H.; Feng, X.S. Single and combined effects of microplastics and cadmium on the cadmium accumulation, antioxidant defence and innate immunity of the discus fish (Symphysodon aequifasciatus). Environ. Pollut. 2018, 243, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Yang, Q.; Xiang, D.; Chen, X.; Wen, Z.; Wang, X.; Xu, J. Combined impacts of microplastics and cadmium on the liver function, immune response, and intestinal microbiota of crucian carp (Carassius carassius). Ecotox. Environ. Saf. 2023, 261, 115104. [Google Scholar] [CrossRef]
- Zink, L.; Shearer, A.Y.; Wiseman, S.; Pyle, G.G. Effects of Exposure to Cadmium, Microplastics, and Their Mixture on Survival, Growth, Feeding, and Life History of Daphnia magna. Environ. Toxicol. Chem. 2023, 42, 1401–1408. [Google Scholar] [CrossRef]
- Wang Q, Liu W, Zeb A, Lian Y, Shi R, Li J, Zheng Z, Toxicity effects of polystyrene nanoplastics and arsenite on Microcystis aeruginosa. Sci. Total Environ. 2023, 874, 162496. [CrossRef]
- Sikdokur, E.; Belivermiş, M.; Sezer, N.; Pekmez, M.; Bulan, Ö.K.; Kılıç, Ö. Effects of microplastics and mercury on manila clam Ruditapes philippinarum: Feeding rate, immunomodulation, histopathology and oxidative stress. Environ. Pollut. 2020, 262, 114247. [Google Scholar] [CrossRef]
- Fadare, O.O.; Wan, B.; Guo, L.H.; Zhao, L. Microplastics from consumer plastic food containers: Are we consuming it? Chemosphere 2020, 253, 126787. [Google Scholar] [CrossRef] [PubMed]
- Pironti, C.; Ricciardi, M.; Motta, O.; Miele, Y.; Proto, A.; Montano, L. Microplastics in the environment: Intake through the food web, human exposure and toxicological effects. Toxics 2021, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Mahamud, A.S.U.; Anu, M.S.; Baroi, A.; Datta, A.; Khan, M.S.U.; Rahman, M.; Rahman, T. Microplastics in fishmeal: A threatening issue for sustainable aquaculture and human health. Aquac. Rep. 2022, 25, 101205. [Google Scholar] [CrossRef]
- Bouwmeester, H.; Hollman, P.C.; Peters, R.J. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environ. Sci. Technol. 2015, 49, 8932–8947. [Google Scholar] [CrossRef] [PubMed]
- Vethaak, A.D.; Legler, J. Microplastics and human health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef] [PubMed]
- Kadac-Czapska, K.; Trzebiatowska, P.J.; Mazurkiewicz, M.; Kowalczyk, P.; Knez, E.; Behrendt, M.; Grembecka, M. Isolation and identification of microplastics in infant formulas—A potential health risk for children. Food Chem. 2024, 440, 138246. [Google Scholar] [CrossRef] [PubMed]
- Barceló, D.; Picó, Y.; Alfarhan, A.H. Microplastics: Detection in human samples, cell line studies, and health impacts. Environ. Toxicol. Pharmacol. 2023, 101, 104204. [Google Scholar] [CrossRef] [PubMed]
- Baeza-Martínez, C.; Olmos, S.; González-Pleiter, M.; López-Castellanos, J.; García-Pachón, E.; Masiá-Canuto, M.; Bayo, J. First evidence of microplastics isolated in European citizens’ lower airway. J. Hazard. Mater. 2022, 438, 129439. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C. Airborne microplastics: Consequences to human health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef]
- Massardo, S.; Verzola, D.; Alberti, S.; Caboni, C.; Santostefano, M.; Eugenio Verrina, E.; Angeletti, A.; Lugani, F.; Ghiggeri, G.M.; Bruschi, M.; et al. MicroRaman spectroscopy detects the presence of microplastics in human urine and kidney tissue. Environ. Int. 2024, 184, 108444. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Notarstefano, V.; Svelato, A.; Belloni, A.; Gioacchini, G.; Blondeel, C.; Giorgini, E. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers 2022, 14, 2700. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shen, J.; Lin, L.; Chen, J.; Wang, L.; Deng, X.; Wang, C. Exposure to irregular microplastic shed from baby bottles activates the ROS/NLRP3/Caspase-1 signaling pathway, causing intestinal inflammation. Environ. Int. 2023, 181, 108296. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Lakshmanan, V.R. A Critical Review of the Recent Trends in Source Tracing of Microplastics in the Environment. Environ. Res. 2023, 239, 117394. [Google Scholar] [CrossRef]
Location | Number of Particles/kg d.m. | Particle Size | Types of Polymers | References |
---|---|---|---|---|
Persian Gulf, Iran, littoral sediments | 61 ± 49 | 10 µm–4.7 mm | PE, PET, NY | [43] |
Northern Bering and Chukchi Seas, surface sediments | 5.3–68.9 | 0.1–4.7 mm | PP, PET, RY | [44] |
Western Mediterranean continental shelf, Spain, surface sediments | 113.2 ± 88.9 | <0.5 mm | PS, PA, PMMA | [45] |
Haichow Bay, central coast, China, beach sediments | 106.50 ± 34.41 | 0.01–5 mm | PE, PP, PS, PET, nylon | [46] |
Virginia and North Carolina, USA, beach sediments | 1410 ± 810 | 0.5–5 mm | PE, PP, PVB, PET, PTFE, PS | [47] |
Southeast coast, Bangladesh, beach sediments | 242.86 | 0.2–5 mm | PE, PP, PS, PU, PET, PVC | [48] |
South Andaman beaches, India, sediments | 414.35 ± 87.4 | 500–1000 µm | PP, PVC, PS, PBR | [49] |
Dubai coast, UAE, beach sediments | 59.71 | - | PE, PP | [50] |
Northern Oman Sea, litorral sediments | 138.3 ± 4.5–930.3 ± 49.1 | 100–5000 µm | PE, PP, NY | [51] |
Wonorejo coast, Surabaya, Indonesia, sediments | 590 | - | LDPE, PE, PP | [52] |
Rivers of the Tibet Plateau, China, sediment | 50–195 | <1 mm | PET, PE, PP, PS, PA | [53] |
Chao Phraya River, Thailand, sediment | 2290 | 0.053–0.5 mm | PP, PE, PS | [54] |
North Yellow Sea, China, sediments | 37.1 ± 42.7 | <1 mm | PP | [55] |
Pearl River along Guangzhou City, China, sediments | 80–9597 | - | PP, PE | [56] |
Coastal plain river network in eastern China, sediments | 32,947 ± 15,342 | <300 μm | PP, PE, PS | [57] |
Location | Number of Particles/m3 | Particle Size | Types of Polymers | References |
---|---|---|---|---|
Rivers of the Tibet Plateau, China | 483–967 | <1 mm | PET, PE, PP, PS, PA | [53] |
Chao Phraya River, Thailand | 104–805.2 | 0.5–1 mm | PP, PE, PS, PTFE, EVA, cellophane | [54] |
Ofanto River, Italy | 0.9 ± 0.4–13 ± 5 | 300–5000 µm | PE, PP, PS, PVC, PUR | [58] |
Rawal Lake, Pakistan | 6.4–8.8 ± 0.5 | 0.1–5 mm | PE, PP, PS | [59] |
Ganges River, India | 92.85 ± 50.69 | 100–2000 µm | PET, PA, PE, PP, PVC, PS | [60] |
Rivers flowing into the southern Caspian Sea, Iran | 0.407–1.406 | ≤1 mm | PE, PS, PET | [24] |
Pearl River along Guangzhou City, China | 379–7924 | - | PP, PE | [56] |
Crater lake in Erzurum, Turkey | - | 8–15 μm | PP, PE | [61] |
Ox-Bow Lake, Nigeria | Dry season: 1004–8329 Raining season: 201–8369 | - | Dry season: PET, PVC Raining season: PVC, LDPE, PE, PET, PA, PES | [62] |
Lake Ontario, Canada | 0.8 particles/L | - | PET, PE, PVC, cellulose | [63] |
North Yellow Sea | 545 ± 282 | <1 mm | PE | [55] |
Deep Bay, Tolo Harbor, Tsing Yi, and Victoria Harbor, China | 51–27,909 particles/100 m3 | 0.03–4.96 mm | PP, LDPE, HDPE, EPDM, SAN | [64] |
Freshwater | ||||
---|---|---|---|---|
Aquatic Organism | Types of Plastics | Particle Size | Location | References |
Biota (Nile Tilapia) | PE, PET, PP | 7.5 ± 4.9 (items/organism) | Egypt | [71] |
Biota (riverine fish—guts) | PA, PE, PS | 8.12 ± 4.26 (items/organism) | Iran | [72,73] |
Biota (fish) | PS, PE, PA | 4.20 ± 3.32–12 ± 11.31 (items/organism) | Iran | [74] |
Goldfish (Carassius auratus) | Microbeads microfibers | 3 particles/50 retained | Canada | [75] |
Gerreidae fish (Eugerres brasilianus, Eucinostomus melanopterus and Diapterus rhombeus) | Blue nylon fragments | 4.9 and 33.4% of individuals | Tropical estuary in Northeast Brazil | [76] |
European flounder (Platichtyhys flesu) | NY, PA, PE | Concentration of MP fibers in the gut 75% | River Thames, UK | [77] |
European smelt (Osmerus eperlerus) | NY, PA, PE | Concentration of MP fibers in the gut 20% | River Thames, UK | [77] |
Crayfish (Procambarus clarkii) | Fiber and fragments | 0.17 ± 0.07–0.92 ± 0.19 (particles/individual) | China | [78] |
Squalius cephalus | Fiber and fragments | 2.41 mm | France | [79] |
Bluegill (Lepomis Macrochirus) and Longear (Lepomis Megalotis) | NY, PA, PE | Concentration of MPs 45% | Brazos River Basin, USA | [80] |
Seawater | ||||
Aquatic Organism | Types of Plastics | Particle Size | Location | References |
Rutilus frisii kutum | Fragments, fibers, Beads | 11.4 ± 1.68 (items/organism) | Iran (Caspian Sea) | [81] |
Periophthalmus waltoni | PS, PE, PET, PA | 15 (items/organism) | Iran (Arab/Persian Gulf) | [82] |
Siganus rivulatus | Fragments, fibers | 59.7 (items/individual) | Israel (Mediterranean Sea) | [83] |
Brown shrimp (Crangon crangon) | - | 1.23 ± 0.99 (items/ individual) | Southern North Sea (UK, France, Belgium, and The Netherlands) | [84] |
Crustacea (Euphausia pacifica) | - | 0.059 (items/ individual) | Northeast Pacific Ocean, Canada | [85] |
Bivalvia (Alectryonella plicatula) | - | 4.3–57.2 (items/ individual) | China | [86] |
Bivalvia (Mytilus edulis) | - | 34–178 (items/ individual) | Halifax Harbor, Canada | [87] |
Bivalvia (Mytilus edulis) | - | 1.1–6.4 (items/ individual) | Coastal waters of the United Kingdom | [88] |
Gastropoda (Cerithidea cingulata) | - | 17.7 ± 0.3 (items/ individual) | Iran (Persian Gulf) | [89] |
Gastropoda (Colus jeffreysianus) | - | 0.678 ± 0.044 (items/ individual) | Rockall Trough, North Atlantic Ocean | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witczak, A.; Przedpełska, L.; Pokorska-Niewiada, K.; Cybulski, J. Microplastics as a Threat to Aquatic Ecosystems and Human Health. Toxics 2024, 12, 571. https://doi.org/10.3390/toxics12080571
Witczak A, Przedpełska L, Pokorska-Niewiada K, Cybulski J. Microplastics as a Threat to Aquatic Ecosystems and Human Health. Toxics. 2024; 12(8):571. https://doi.org/10.3390/toxics12080571
Chicago/Turabian StyleWitczak, Agata, Laura Przedpełska, Kamila Pokorska-Niewiada, and Jacek Cybulski. 2024. "Microplastics as a Threat to Aquatic Ecosystems and Human Health" Toxics 12, no. 8: 571. https://doi.org/10.3390/toxics12080571
APA StyleWitczak, A., Przedpełska, L., Pokorska-Niewiada, K., & Cybulski, J. (2024). Microplastics as a Threat to Aquatic Ecosystems and Human Health. Toxics, 12(8), 571. https://doi.org/10.3390/toxics12080571