Limitations and Modifications of Skin Sensitization NAMs for Testing Inorganic Nanomaterials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanomaterials
2.2. Test Substance Preparation
2.3. Test Concentrations
2.4. Direct Peptide Reactivity Assay (DPRA)
2.5. LuSens Assay
2.6. h-CLAT Assay
2.7. Defined Approach
3. Results and Discussion
3.1. DPRA
3.2. LuSens
3.3. h-CLAT
3.4. Assessment of the Skin Sensitization Potential with DAs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar]
- Jagiello, K.; Sosnowska, A.; Stępnik, M.; Gromelski, M.; Płonka, K. Nano-Specific Alternative Methods in Human Hazard/Safety Assessment under Different EU Regulations, Considering the Animal Testing Bans Already in Place for Cosmetics and Their Ingredients; QSAR Lab Ltd.: Gdańsk, Poland, 2023. [Google Scholar]
- EFSA Scientific Committee; More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hernández-Jerez, A.; Hougaard Bennekou, S.; Koutsoumanis, K.; Lambré, C.; et al. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: Human and animal health. EFSA J. 2021, 19, e06768. [Google Scholar]
- Gomes, S.I.; Scott-Fordsmand, J.J.; Amorim, M.J. Alternative test methods for (nano)materials hazards assessment: Challenges and recommendations for regulatory preparedness. Nano Today 2021, 40, 101242. [Google Scholar] [CrossRef]
- Di Cristo, L.; Janer, G.; Dekkers, S.; Boyles, M.; Giusti, A.; Keller, J.G.; Wohlleben, W.; Braakhuis, H.; Ma-Hock, L.; Oomen, A.G.; et al. Integrated approaches to testing and assessment for grouping nanomaterials following dermal exposure. Nanotoxicology 2022, 16, 310–332. [Google Scholar]
- OECD. Guideline No. 497: Defined Approaches on Skin Sensitisation; OECD: Paris, France, 2023. [Google Scholar]
- Gerberick, G.F.; Vassallo, J.D.; Bailey, R.E.; Morrall, S.W.; Lepoittevin, J.-P. Development of a peptide reactivity assay for screening contact allergens. Toxicol. Sci. 2004, 81, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Dinkova-Kostova, A.T.; Holtzclaw, W.D.; Wakabayashi, N. Keap1, the sensor for electrophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein. Biochemistry 2005, 44, 6889–6899. [Google Scholar] [CrossRef] [PubMed]
- Gautam, A.; Singh, D.; Vijayaraghavan, R. Dermal Exposure of Nanoparticles: An Understanding. J. Cell Tissue Res. 2011, 11, 2703–2708. [Google Scholar]
- Ashikaga, T.; Yoshida, Y.; Hirota, M.; Yoneyama, K.; Itagaki, H.; Sakaguchi, H.; Miyazawa, M.; Ito, Y.; Suzuki, H.; Toyoda, H. Development of an in vitro skin sensitization test using human cell lines: The human Cell Line Activation Test (h-CLAT): I. Optimization of the h-CLAT protocol. Toxicol. In Vitro 2006, 20, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Hofer, S.; Hofstätter, N.; Punz, B.; Hasenkopf, I.; Johnson, L.; Himly, M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WIREs Nanomed. Nanobiotechnology 2022, 14, e1804. [Google Scholar] [CrossRef]
- Roach, K.A.; Stefaniak, A.B.; Roberts, J.R. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J. Immunotoxicol. 2019, 16, 87–124. [Google Scholar] [CrossRef]
- Bezerra, S.F.; Rodrigues, B.d.S.; da Silva, A.C.G.; de Ávila, R.I.; Brito, H.R.G.; Cintra, E.R.; Veloso, D.F.M.C.; Lima, E.M.; Valadares, M.C. Application of the adverse outcome pathway framework for investigating skin sensitization potential of nanomaterials using new approach methods. Contact Dermat. 2021, 84, 67–74. [Google Scholar] [CrossRef]
- Gautam, R.; Yang, S.; Maharjan, A.; Jo, J.; Acharya, M.; Heo, Y.; Kim, C. Prediction of Skin Sensitization Potential of Silver and Zinc Oxide Nanoparticles Through the Human Cell Line Activation Test. Front. Toxicol. 2021, 3, 649666. [Google Scholar] [CrossRef]
- Kim, E.-N.; Seo, J.-A.; Kim, B.-H.; Jeong, G.-S. Defining the reactivity of nanoparticles to peptides through direct peptide reactivity assay (DPRA) using a high pressure liquid chromatography system with a diode array detector. Toxicol. Res. 2023, 39, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Lee, D.; Lee, J.; Yang, J.-Y.; Seok, J.; Jung, K.; Lee, J. Evaluation of the skin sensitization potential of metal oxide nanoparticles using the ARE-Nrf2 Luciferase KeratinoSensTM assay. Toxicol. Res. 2021, 37, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Lee, D.H.; Choi, S.; Yang, J.-Y.; Jung, K.; Jeong, J.; Oh, J.H.; Lee, J.H. Skin Sensitization Potential and Cellular ROS-Induced Cytotoxicity of Silica Nanoparticles. Nanomaterials 2021, 11, 2140. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, S.-H.; Lee, J.H.; Yang, J.-Y.; Seok, J.-H.; Jung, K.; Lee, J.K. Flow cytometric evaluation of the potential of metal oxide nanoparticles for skin sensitization using 5-Bromo-2-deoxyuridine. Toxicol. Res. 2021, 37, 369–377. [Google Scholar] [CrossRef]
- Maharjan, A.; Gautam, R.; Lee, G.; Kim, D.; Lee, D.; Acharya, M.; Kim, H.; Heo, Y.; Kim, C. Assessment of skin sensitization potential of zinc oxide, aluminum oxide, manganese oxide, and copper oxide nanoparticles through the local lymph node assay: 5-bromo-deoxyuridine flow cytometry method. J. Toxicol. Environ. Health Part A 2024, 1–11. [Google Scholar] [CrossRef]
- OECD. Guidance Document No. 382: Study Report on Applicability of the Key Event-Based TG 442D for In Vitro Skin Sensitisation Testing of Nano-Materials, in Series on Testing and Assessment No. 382; OECD: Paris, France, 2023. [Google Scholar]
- Monteiro-Riviere, N.A.; Wiench, K.; Landsiedel, R.; Schulte, S.; Inman, A.O.; Riviere, J.E. Safety Evaluation of Sunscreen Formulations Containing Titanium Dioxide and Zinc Oxide Nanoparticles in UVB Sunburned Skin: An In Vitro and In Vivo Study. Toxicol. Sci. 2011, 123, 264–280. [Google Scholar] [CrossRef]
- Monteiro-Riviere, N.A. Safety of Nanoparticle Skin Penetration. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers; Dragicevic, N., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 363–376. [Google Scholar]
- Seleci, D.A.; Tsiliki, G.; Werle, K.; Elam, D.A.; Okpowe, O.; Seidel, K.; Bi, X.; Westerhoff, P.; Innes, E.; Boyles, M.; et al. Determining nanoform similarity via assessment of surface reactivity by abiotic and in vitro assays. NanoImpact 2022, 26, 100390. [Google Scholar] [CrossRef]
- Aleksic, M.; Meng, X. Protein Haptenation and Its Role in Allergy. Chem. Res. Toxicol. 2024, 37, 850–872. [Google Scholar] [CrossRef]
- Bahl, A.; Hellack, B.; Wiemann, M.; Giusti, A.; Werle, K.; Haase, A.; Wohlleben, W. Nanomaterial categorization by surface reactivity: A case study comparing 35 materials with four different test methods. NanoImpact 2020, 19, 100234. [Google Scholar] [CrossRef]
- Boraschi, D.; Alijagic, A.; Auguste, M.; Barbero, F.; Ferrari, E.; Hernadi, S.; Mayall, C.; Michelini, S.; Pacheco, N.I.N.; Prinelli, A.; et al. Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. Small 2020, 16, e2000598. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Chen, C. Bioavailability of nanomaterials: Bridging the gap between nanostructures and their bioactivity. Natl. Sci. Rev. 2022, 9, nwac119. [Google Scholar] [CrossRef] [PubMed]
- Tirumala, M.G.; Anchi, P.; Raja, S.; Rachamalla, M.; Godugu, C. Novel Methods and Approaches for Safety Evaluation of Nanoparticle Formulations: A Focus Towards In Vitro Models and Adverse Outcome Pathways. Front. Pharmacol. 2021, 12, 612659. [Google Scholar] [CrossRef]
- OECD. Test No. 442C: In Chemico Skin Sensitisation; OECD: Paris, France, 2024. [Google Scholar]
- OECD. Test No. 442D: In Vitro Skin Sensitisation; OECD: Paris, France, 2024. [Google Scholar]
- OECD. Test No. 442E: In Vitro Skin Sensitisation; OECD: Paris, France, 2024. [Google Scholar]
- Kolle, S.N.; Mathea, M.; Natsch, A.; Landsiedel, R. Assessing Experimental Uncertainty in Defined Approaches: Borderline Ranges for In Chemico and In Vitro Skin Sensitization Methods Determined from Ring Trial Data. Appl. In Vitro Toxicol. 2021, 7, 102–111. [Google Scholar] [CrossRef]
- Singh, C.; Friedrichs, S.; Ceccone, G.; Gibson, P.; Jensen, K.; Levin, M.; Goenaga Infante, H.; Carlander, D.; Rasmussen, K. NM-211, NM-212, NM-213. Characterisation and test item preparation. European Union Joint Research Centre, JRC89825. 2014. Available online: https://policycommons.net/artifacts/2163300/cerium-dioxide-nm-211-nm-212-nm-213/2918811/ (accessed on 17 July 2024).
- Yin, H.; Coleman, V.A.; Casey, P.S.; Angel, B.; Catchpoole, H.J.; Waddington, L.; McCall, M.J. A comparative study of the physical and chemical properties of nano-sized ZnO particles from multiple batches of three commercial products. J. Nanoparticle Res. 2015, 17, 96. [Google Scholar] [CrossRef]
- Alstrup Jensen, K.; Kembouche, Y.; Christiansen, E.; Jacobsen, N.; Wallin, H.; Guiot, C.; Spalla, O.; Witschger, O. Final Protocol for Producing Suitable Manufactured Nanomaterial Exposure Media. 2011. Available online: https://www.anses.fr/en/system/files/nanogenotox_deliverable_6.pdf (accessed on 17 July 2024).
- Alstrup Jensen, K.; Booth, A.; Kembouche, Y.; Loeschner, K.; Boraschi, D. NANoREG D 2.06 SOP for Probe-Sonicator Calibration of Delivered Acoustic Power and De-Agglomeration Efficiency for In Vitro and In Vivo Toxicological Testing; 2018. Available online: https://www.rivm.nl/ (accessed on 20 August 2024).
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Concepts of Nanoparticle Dose Metric and Response Metric. Environ. Health Perspect. 2007, 115, A290. [Google Scholar]
- Rushton, E.K.; Jiang, J.; Leonard, S.S.; Eberly, S.; Castranova, V.; Biswas, P.; Elder, A.; Han, X.; Gelein, R.; Finkelstein, J.; et al. Concept of Assessing Nanoparticle Hazards Considering Nanoparticle Dosemetric and Chemical/Biological Response Metrics. J. Toxicol. Environ. Health Part A 2010, 73, 445–461. [Google Scholar] [CrossRef]
- Ma-Hock, L.; Sauer, U.G.; Ruggiero, E.; Keller, J.; Wohlleben, W.; Landsiedel, R. The Use of Nanomaterial In Vivo Organ Burden Data for In Vitro Dose Setting. Small 2021, 17, 2005725. [Google Scholar] [CrossRef]
- DeLoid, G.; Cohen, J.M.; Darrah, T.; Derk, R.; Rojanasakul, L.; Pyrgiotakis, G.; Wohlleben, W.; Demokritou, P. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat. Commun. 2014, 5, 3514. [Google Scholar] [CrossRef]
- Keller, J.G.; Quevedo, D.F.; Faccani, L.; Costa, A.L.; Landsiedel, R.; Werle, K.; Wohlleben, W. Dosimetry in vitro—Exploring the sensitivity of deposited dose predictions vs. affinity, polydispersity, freeze-thawing, and analytical methods. Nanotoxicology 2021, 15, 21–34. [Google Scholar]
- Cohen, J.M.; Teeguarden, J.G.; Demokritou, P. An integrated approach for the in vitro dosimetry of engineered nanomaterials. Part. Fibre Toxicol. 2014, 11, 20. [Google Scholar] [CrossRef]
- Groothuis, F.A.; Heringa, M.B.; Nicol, B.; Hermens, J.L.; Blaauboer, B.J.; Kramer, N.I. Dose metric considerations in in vitro assays to improve quantitative in vitro–in vivo dose extrapolations. Toxicology 2013, 332, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Dimitrijevic, D.; Fabian, E.; Nicol, B.; Funk-Weyer, D.; Landsiedel, R. Toward Realistic Dosimetry In Vitro: Determining Effective Concentrations of Test Substances in Cell Culture and Their Prediction by an In Silico Mass Balance Model. Chem. Res. Toxicol. 2022, 35, 1962–1973. [Google Scholar] [CrossRef]
- Soenen, S.J.; Rivera-Gil, P.; Montenegro, J.-M.; Parak, W.J.; De Smedt, S.C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6, 446–465. [Google Scholar] [CrossRef]
- Wohlleben, W.; Kolle, S.N.; Hasenkamp, L.-C.; Böser, A.; Vogel, S.; von Vacano, B.; van Ravenzwaay, B.; Landsiedel, R. Artifacts by marker enzyme adsorption on nanomaterials in cytotoxicity assays with tissue cultures. J. Phys. Conf. Ser. 2011, 304, 012061. [Google Scholar] [CrossRef]
- Landsiedel, R.; Birk, B.; Demuth, P.; Fabian, E.; Hewitt, N.J.; Hollnagel, H.M.; Scheel, J. The Use of Toxicokinetic Information for Setting Concentrations of In Vitro Toxicity Tests and for Interpreting Their Results: A Proposed Workflow. Appl. In Vitro Toxicol. 2024, 10, 15–26. [Google Scholar] [CrossRef]
- Schulze, C.; Kroll, A.; Lehr, C.-M.; Schäfer, U.F.; Becker, K.; Schnekenburger, J.; Schulze-Isfort, C.; Landsiedel, R.; Wohlleben, W. Not ready to use—Overcoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology 2008, 2, 51–61. [Google Scholar] [CrossRef]
- European Commission, Joint Research Centre EURL ECVAM dataset on alternative methods to animal experimentation (DB-ALM). European Commission Joint Research Centre (JRC); 2019. [Dataset] PID. Available online: http://data.europa.eu/89h/b7597ada-148d-4560-9079-ab0a5539cad3 (accessed on 12 July 2024).
- Gabbert, S.; Mathea, M.; Kolle, S.N.; Landsiedel, R. Accounting for Precision Uncertainty of Toxicity Testing: Methods to Define Borderline Ranges and Implications for Hazard Assessment of Chemicals. Risk Anal. 2022, 42, 224–238. [Google Scholar] [CrossRef]
- Pradhan, S.; Hedberg, J.; Blomberg, E.; Wold, S.; Wallinder, I.O. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanoparticle Res. 2016, 18, 285. [Google Scholar] [CrossRef]
- Urbisch, D.; Mehling, A.; Guth, K.; Ramirez, T.; Honarvar, N.; Kolle, S.; Landsiedel, R.; Jaworska, J.; Kern, P.S.; Gerberick, F.; et al. Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul. Toxicol. Pharmacol. 2015, 71, 337–351. [Google Scholar] [CrossRef]
- Hemming, J.D.C.; Hosford, M.; Shafer, M.M. Application of the direct peptide reactivity assay (DPRA) to inorganic compounds: A case study of platinum species. Toxicol. Res. 2019, 8, 802–814. [Google Scholar] [CrossRef]
- Roberts, D.W.; Patlewicz, G.; Kern, P.S.; Gerberick, F.; Kimber, I.; Dearman, R.J.; Ryan, C.A.; Basketter, D.A.; Aptula, A.O. Mechanistic applicability domain classification of a local lymph node assay dataset for skin sensitization. Chem. Res. Toxicol. 2007, 20, 1019–1030. [Google Scholar] [CrossRef]
- Fujita, M.; Yamamoto, Y.; Watanabe, S.; Sugawara, T.; Wakabayashi, K.; Tahara, Y.; Horie, N.; Fujimoto, K.; Kusakari, K.; Kurokawa, Y.; et al. Cause of and countermeasures for oxidation of the cysteine-derived reagent used in the amino acid derivative reactivity assay. J. Appl. Toxicol. 2019, 39, 191–208. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, R.P.; Singh, A.; Mathai, E.; Sudhakar, D.; Tourneix, F.; Alépée, N.; Gautier, F. The dimer effect: A refinement approach towards skin sensitization assessment in-chemico using Amino acid Derivative Reactivity Assay. J. Appl. Toxicol. 2024; Epub ahead of print. [Google Scholar] [CrossRef]
- McLean, P.; Marshall, J.; García-Bilbao, A.; Beal, D.; Katsumiti, A.; Carrière, M.; Boyles, M.S. A comparison of dermal toxicity models; assessing suitability for safe(r)-by-design decision-making and for screening nanomaterial hazards. Toxicol. In Vitro 2024, 97, 105792. [Google Scholar] [CrossRef]
- Janer, G.; Ag-Seleci, D.; Sergent, J.A.; Landsiedel, R.; Wohlleben, W. Creating sets of similar nanoforms with the ECETOC NanoApp: Real-life case studies. Nanotoxicology 2021, 15, 1016–1034. [Google Scholar]
- Arts, J.H.E.; Hadi, M.; Irfan, M.-A.; Keene, A.M.; Kreiling, R.; Lyon, D.; Maier, M.; Michel, K.; Petry, T.; Sauer, U.G.; et al. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul. Toxicol. Pharmacol. 2015, 71, S1–S27. [Google Scholar] [CrossRef] [PubMed]
- Wohlleben, W.; Hellack, B.; Nickel, C.; Herrchen, M.; Hund-Rinke, K.; Kettler, K.; Riebeling, C.; Haase, A.; Funk, B.; Kühnel, D.; et al. The nanoGRAVUR framework to group (nano)materials for their occupational, consumer, environmental risks based on a harmonized set of material properties, applied to 34 case studies. Nanoscale 2019, 11, 17637–17654. [Google Scholar] [CrossRef] [PubMed]
- Forreryd, A.; Gradin, R.; Larne, O.; Rajapakse, N.; Deag, E.; Johansson, H. The GARD™skin assay: Investigation of the applicability domain for metals. ALTEX 2023, 40, 425–438. [Google Scholar]
- Loosli, F.; Rasmussen, K.; Rauscher, H.; Cross, R.K.; Bossa, N.; Peijnenburg, W.; Arts, J.; Matzke, M.; Svendsen, C.; Spurgeon, D.; et al. Refinement of the selection of physicochemical properties for grouping and read-across of nanoforms. NanoImpact 2022, 25, 100375. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-B.; Kim, Y.W.; Lim, S.K.; Roh, T.H.; Bang, D.Y.; Choi, S.M.; Lim, D.S.; Kim, Y.J.; Baek, S.-H.; Kim, M.-K.; et al. Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. J. Toxicol. Environ. Health Part B 2017, 20, 155–182. [Google Scholar] [CrossRef]
- ECHA, REACH Registration Dossier. Reg. in 2010. Available online: https://echa.europa.eu/information-on-chemicals/registered-substances (accessed on 15 July 2024).
- Park, Y.-H.; Jeong, S.H.; Yi, S.M.; Choi, B.H.; Kim, Y.-R.; Kim, I.-K.; Kim, M.-K.; Son, S.W. Analysis for the potential of polystyrene and TiO2 nanoparticles to induce skin irritation, phototoxicity, and sensitization. Toxicol. In Vitro 2011, 25, 1863–1869. [Google Scholar] [CrossRef]
- Natsch, A.; Landsiedel, R.; Kolle, S.N. A triangular approach for the validation of new approach methods for skin sensitization. ALTEX Altern. Anim. Exp. 2021, 38, 669–677. [Google Scholar] [CrossRef]
- Keller, J.G.; Peijnenburg, W.; Werle, K.; Landsiedel, R.; Wohlleben, W. Understanding Dissolution Rates via Continuous Flow Systems with Physiologically Relevant Metal Ion Saturation in Lysosome. Nanomaterials 2020, 10, 311. [Google Scholar] [CrossRef]
- OECD. Test No. 406: Skin Sensitisation; OECD: Paris, France, 2022. [Google Scholar]
- Emter, R.; Natsch, A. A fast Resazurin-based live viability assay is equivalent to the MTT-test in the KeratinoSens assay. Toxicol. In Vitro 2015, 29, 688–693. [Google Scholar] [CrossRef] [PubMed]
Test Substance | CAS-Number | Physicochemical Properties | Skin Sensitization Potential |
---|---|---|---|
CeO2 NM-212 | 1306-38-3 | 40 nm (SEM) very low water solubility (<0.001 wt.%) # | Cerium oxide is reported non-sensitizing in the GPMT [33] |
BaSO4 NM-220 | 7727-43-7 | 25 nm (SEM) # low water solubility (<0.05 wt.%) # | bulk material was reported non-sensitizing in the LLNA 1 |
SiO2 Levasil 200 (40%) | 7631-86-9 | 5–50 nm (REM/TEM) * soluble in water | reported non-sensitizing in the GPMT * and the LLNA 1 |
Quartz SiO2 DQ12 | n.a. | 500–750 nm * crystalline quartz practically insoluble * | reported non-sensitizing in the LLNA 1 |
SiO2 Aerosil R972 | 68611-44-9 | 16 nm + hydrophobized colloidal silica water solubility > 1 mg/L * | Aerosil R812 and R 8200 were reported non-skin sensitizing in the GPMT 1 |
SiO2 Aerosil 200 | 7631-86-9 | 9 nm (TEM/SEM) [25] hydrophilic fumed silica water solubility > 1 mg/L * | bulk material was reported non-sensitizing in the LLNA 1 |
TiO2 NIST® SRM® | 13463-67-7 | 19–37 nm + very low water solubility (0.001 g/L) * | reported non-sensitizing in the LLNA * |
TiO2 P25 Aeroxide | 13463-67-7 | 21 nm * hydrophilic titanium dioxide | reported non-sensitizing in the patch test and the GMPT * |
ZnO Z-Cote HP1 | 1314-13-2 | 190 nm [34] | ZnO nanomaterials were reported as non-sensitizing in patch test 1 |
Mean Peptide Depletion [%] | C-Peptide Depletion [%] 1 | Reactivity | Evaluation |
---|---|---|---|
>42.47 | >98.24 | high reactivity | positive |
>22.62; ≤42.47 | >23.09; ≤98.24 | moderate reactivity | positive |
>6.38; ≤22.62 | >13.89; ≤23.09 | low reactivity | positive |
>4.94; ≤8.32 | >10.55; ≤18.47 | borderline 2 | inconclusive |
≤6.38 | ≤13.89 | minimal or no reactivity | negative 3 |
Mean Fold Induction | Reactivity | Evaluation |
---|---|---|
>1.76 | activates keratinocytes | positive 1 |
>1.28; ≤1.76 | borderline 2 | inconclusive |
≤1.28 | does not activate keratinocytes | negative 3 |
Mean RFI (CD86) | Mean RFI (CD54) | Reactivity | Evaluation |
---|---|---|---|
>184 | >255 | activates dendritic cells | positive 1 |
>121; ≤184 | >156; ≤255 | borderline 2 | inconclusive |
≤121 | ≤156 | does not activate dendritic cells | negative 3 |
Test Substance | K-Peptide Depletion [%] | C-Peptide Depletion [%] | Mean Depletion [%] 1 | Result 2 |
---|---|---|---|---|
CeO2 NM-212 | 0.60 ± 0.46 | 3.28 ± 0.94 | 1.94 | negative 3 |
BaSO4 NM-220 | 0.00 ± 0.24 | 1.96 ± 0.82 | 0.98 | negative 3 |
SiO2 Levasil 200 (40%) | 0.25 ± 0.80 | −0.36 ± 0.28 | 0.12 | negative 3 |
SiO2 DQ12 | −0.41 ± 0.97 | −0.20 ± 0.64 | 0.00 | negative 3 |
SiO2 Aerosil R972 | −0.30 ± 0.63± | −2.00 ± 1.01 | 0.00 | negative 3 |
SiO2 Aerosil 200 | −0.55 ± 0.33 | −0.88 ± 1.44 | 0.00 | negative 3 |
TiO2 NIST® SRM® | −2.62 ± 0.84 | −1.67 ± 2.67 | 0.00 | negative 3 |
TiO2 P25 Aeroxide | −2.91 ± 0.39 | 1.16 ± 2.53 | 0.58 | negative 3 |
ZnO Z-Cote HP1 | −3.09 ± 2.75 | −6.76 ± 0.42 | 0.00 | negative 3 |
Test Substance | CV75 [µg/mL] | Imax | EC 1.50 [µg/mL] | Result |
---|---|---|---|---|
CeO2 NM-212 | 532 | 0.71 | n.a. 1 | negative |
BaSO4 NM-220 | n.a. 1 | 1.41 | n.a. 1 | inconclusive 2 |
Levasil 200 (40%) | 61.5 | 2.77 | 33 | positive |
SiO2 DQ12 | 498 | 3.32 | <179 3 | positive |
SiO2 Aerosil R972 | n.a. 1 | 1.81 | n.a. 1 | inconclusive 2 |
SiO2 Aerosil 200 | 15 | 1.85 | n.a. 1 | negative |
TiO2 NIST® SRM® | 351 | 1.01 | n.a. 1 | negative |
TiO2 P25 Aeroxide | 222 | 0.89 | n.a. 1 | negative |
ZnO Z-Cote HP1 | 13.7 | 5.17 | <7 3 | positive |
Test Substance | EC150 (CD86) | Imax (CD86) | EC200 (CD54) | Imax (CD54) | Evaluation |
---|---|---|---|---|---|
CeO2 NM-212 | n.a. | 140 | n.a. | 100 | negative/borderline for CD86 in one run 1 |
BaSO4 NM-220 | n.a. | 121 | n.a. | 97 | negative |
SiO2 Levasil 200 (40%) | n.a. | 87 | n.a. | 201 | inconclusive 2 |
SiO2 DQ12 | n.a. | 176 | <144 µg/mL | 970 | positive |
SiO2 Aerosil R972 | n.a. | 138 | n.a. | 120 | inconclusive 2 |
SiO2 Aerosil 200 | n.a. | 171 | n.a. | 235 | inconclusive 3 |
TiO2 NIST® SRM® | n.a. | 128 | n.a. | 132 | negative/borderline for CD86 in one run 1 |
TiO2 P25 Aeroxide | <357 µg/mL | 213 | n.a. | 152 | positive |
ZnO Z-Cote HP1 | n.a. | 163 | <144 µg/mL | 2585 | positive |
Test Substance | DPRA 1 | LuSens 2 | h-CLAT | Evaluation 2o3 5 |
---|---|---|---|---|
CeO2 NM-212 | n 1 inconclusive | n | n/br inconclusive | non sensitiser 5 inconclusive |
BaSO4 NM-220 | n 1 inconclusive | inconclusive 2 | n | non sensitiser 5 inconclusive |
SiO2 Levasil 200 (40%) | n 1 inconclusive | p | inconclusive 3 | inconclusive |
SiO2 DQ12 | n 1 inconclusive | p | p | sensitiser |
SiO2 Aerosil R972 | n 1 inconclusive | inconclusive 2 | inconclusive 3 | inconclusive |
SiO2 Aerosil 200 | n 1 inconclusive | n | inconclusive 4 | non sensitiser 5 inconclusive |
TiO2 NIST® SRM® | n 1 inconclusive | n | n/br inconclusive | non sensitiser 5 inconclusive |
TiO2 P25 Aeroxide | n 1 inconclusive | n | p | non sensitiser 5 inconclusive |
ZnO Z-Cote HP1 | n 1 inconclusive | p | p | sensitiser |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wareing, B.; Aktalay Hippchen, A.; Kolle, S.N.; Birk, B.; Funk-Weyer, D.; Landsiedel, R. Limitations and Modifications of Skin Sensitization NAMs for Testing Inorganic Nanomaterials. Toxics 2024, 12, 616. https://doi.org/10.3390/toxics12080616
Wareing B, Aktalay Hippchen A, Kolle SN, Birk B, Funk-Weyer D, Landsiedel R. Limitations and Modifications of Skin Sensitization NAMs for Testing Inorganic Nanomaterials. Toxics. 2024; 12(8):616. https://doi.org/10.3390/toxics12080616
Chicago/Turabian StyleWareing, Britta, Ayse Aktalay Hippchen, Susanne N. Kolle, Barbara Birk, Dorothee Funk-Weyer, and Robert Landsiedel. 2024. "Limitations and Modifications of Skin Sensitization NAMs for Testing Inorganic Nanomaterials" Toxics 12, no. 8: 616. https://doi.org/10.3390/toxics12080616
APA StyleWareing, B., Aktalay Hippchen, A., Kolle, S. N., Birk, B., Funk-Weyer, D., & Landsiedel, R. (2024). Limitations and Modifications of Skin Sensitization NAMs for Testing Inorganic Nanomaterials. Toxics, 12(8), 616. https://doi.org/10.3390/toxics12080616