Optimization of Toxicity, Biodegradability, and Skin Irritation in Formulations Containing Mixtures of Anionic and Nonionic Surfactants Combined with Silica Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surfactants and Nanoparticles
R-O(CH2-CH2O)n-CH2-COO-X | R(-O-CH2-CH2)n-OH |
Ether carboxylic derivative surfactants (EC-R12–14E10, EC-R12–14E3, EC-R8E5) | Fatty-alcohol ethoxylates (FAE-R12–14E11) |
2.2. Acute Toxicity Tests
2.2.1. Luminescence Inhibition Assay in Vibrio fischeri
2.2.2. Germination Test on Lepidus sativum
2.3. Biodegradation Tests
2.3.1. Static Biodegradation Test
2.3.2. Manometric Respirometry Test
2.4. Irritation Potential Using the Zein Method
3. Results and Discussion
3.1. Toxicity
3.1.1. Toxicity for Individual Surfactants
3.1.2. Toxicity of Surfactant Mixtures
3.2. Biodegradation
3.2.1. Static Biodegradation Test
- DOCi is the dissolved organic carbon at the beginning of the test;
- DOCf is the dissolved organic carbon at the end of the test.
3.2.2. Manometric Biodegradation Test
- BODt is the biological oxygen demand measured using the Oxitop-C head;
- BODbt is the biological oxygen demand of the blank;
- ThOD is the theoretical total oxygen required to transform all of test substances into CO2 and water.
3.3. Potential Skin Irritation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schreiner, T.B.; Dias, M.M.; Barreiro, M.F.; Pinho, S.P. Saponins as Natural Emulsifiers for Nanoemulsions. J. Agric. Food Chem. 2022, 70, 6573–6590. [Google Scholar] [CrossRef] [PubMed]
- Farn, R.J. Chemistry and Technology of Surfactants; Farn, R.J., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2006. [Google Scholar]
- Khalfallah, A. Structure and Applications of Surfactants. In Surfactants—Fundamental Concepts and Emerging Perspectives; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- El Zokm, G.M.; El Saharty, A.A.; El-Said, G.F.; Hussein, M.M.A.; Ghazal, M.A.; Nasra, A.E.S.; Okbah, M.A. A Comparative Study of Surfactant Distribution and Fate (Western and Eastern) Egyptian Mediterranean Coasts Focusing on Its Environmental Toxicity. Mar. Environ. Res. 2024, 198, 106535. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Wen, Q.; Liu, Y.; Zhou, K.; Shang, Y.; Wang, F.; Lian, C.; Liu, H. Microscopic Origin of Surfactant Irritation: An Experimental and Computational Study. Langmuir 2024, 40, 23102–23110. [Google Scholar] [CrossRef] [PubMed]
- Jena, G.; Dutta, K.; Daverey, A. Surfactants in Water and Wastewater (Greywater): Environmental Toxicity and Treatment Options. Chemosphere 2023, 341, 140082. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 648/2004 of the European Parliament and of the Council of 31 March 2004 on Detergents. Off. J. Eur. Union 2004, 47, 1–35. [Google Scholar]
- Hu, J.; Zhang, X.; Wang, Z. A Review on Progress in QSPR Studies for Surfactants. Int. J. Mol. Sci. 2010, 11, 1020–1047. [Google Scholar] [CrossRef]
- Lechuga, M.; Fernández-Serrano, M.; Jurado, E.; Núñez-Olea, J.; Ríos, F. Acute Toxicity of Anionic and Non-Ionic Surfactants to Aquatic Organisms. Ecotoxicol. Environ. Saf. 2016, 125, 1–8. [Google Scholar] [CrossRef]
- Aloui, F.; Kchaou, S.; Sayadi, S. Physicochemical Treatments of Anionic Surfactants Wastewater: Effect on Aerobic Biodegradability. J. Hazard. Mater. 2009, 164, 353–359. [Google Scholar] [CrossRef]
- Scott, M.J.; Jones, M.N. The Biodegradation of Surfactants in the Environment. Biochim. Biophys. Acta (BBA) Biomembr. 2000, 1508, 235–251. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as Well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off. J. Eur. Union 2006, 49, 1–849. [Google Scholar]
- Organisation for Economic Co-Operation and Development. Test No. 301: Ready Biodegradability. In OECD Guidelines for the Testing of Chemicals, Section 3; OECD Publishing: Paris, France, 1992. [Google Scholar]
- Morris, S.A.V.; Thompson, R.T.; Glenn, R.W.; Ananthapadmanabhan, K.P.; Kasting, G.B. Mechanisms of Anionic Surfactant Penetration into Human Skin: Investigating Monomer, Micelle and Submicellar Aggregate Penetration Theories. Int. J. Cosmet. Sci. 2019, 41, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Karnwal, A.; Shrivastava, S.; Al-Tawaha, A.R.M.S.; Kumar, G.; Singh, R.; Kumar, A.; Mohan, A.; Yogita; Malik, T. Microbial Biosurfactant as an Alternate to Chemical Surfactants for Application in Cosmetics Industries in Personal and Skin Care Products: A Critical Review. BioMed Res. Int. 2023, 2023, 2375223. [Google Scholar] [CrossRef] [PubMed]
- Salager, J.-L.; Marquez, R.; Bullon, J.; Forgiarini, A. Formulation in Surfactant Systems: From-Winsor-to-HLDN. Encyclopedia 2022, 2, 778–839. [Google Scholar] [CrossRef]
- Lechuga, M.; Avila-Sierra, A.; Lobato-Guarnido, I.; García-López, A.I.; Ríos, F.; Fernández-Serrano, M. Mitigating the Skin Irritation Potential of Mixtures of Anionic and Non-Ionic Surfactants by Incorporating Low-Toxicity Silica Nanoparticles. J. Mol. Liq. 2023, 383, 122021. [Google Scholar] [CrossRef]
- Morais, R.P.; Hochheim, S.; de Oliveira, C.C.; Riegel-Vidotti, I.C.; Marino, C.E.B. Skin Interaction, Permeation, and Toxicity of Silica Nanoparticles: Challenges and Recent Therapeutic and Cosmetic Advances. Int. J. Pharm. 2022, 614, 121439. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.; Bott, J.; Warfving, N.; Nolde, J. Investigation on the Skin Penetration of Synthetic Amorphous Silica (SAS) Used in Cosmetic Products. Toxicol. Lett. 2024, 399, 80–104. [Google Scholar] [CrossRef]
- Ragib, A.A.; Chakma, R.; Wang, J.; Alanazi, Y.M.; El-Harbawi, M.; Arish, G.A.; Islam, T.; Siddique, A.B.; Islam, A.R.T.; Kormoker, T. The Past to the Current Advances in the Synthesis and Applications of Silica Nanoparticles. Nano-Struct. Nano-Objects 2024, 40, 101395. [Google Scholar] [CrossRef]
- Ríos, F.; Fernández-Arteaga, A.; Fernández-Serrano, M.; Jurado, E.; Lechuga, M. Silica Micro- and Nanoparticles Reduce the Toxicity of Surfactant Solutions. J. Hazard. Mater. 2018, 353, 436–443. [Google Scholar] [CrossRef]
- Lechuga, M.; Fernández-Serrano, M.; Ríos, F.; Fernández-Arteaga, A.; Jiménez-Robles, R. Environmental Impact Assessment of Nanofluids Containing Mixtures of Surfactants and Silica Nanoparticles. Environ. Sci. Pollut. Res. 2022, 29, 84125–84136. [Google Scholar] [CrossRef]
- Jyoti, D.; Sinha, R. Physiological Impact of Personal Care Product Constituents on Non-Target Aquatic Organisms. Sci. Total Environ. 2023, 905, 167229. [Google Scholar] [CrossRef]
- Liwarska-Bizukojc, E.; Miksch, K.; Malachowska-Jutsz, A.; Kalka, J. Acute Toxicity and Genotoxicity of Five Selected Anionic and Nonionic Surfactants. Chemosphere 2005, 58, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Asio, J.R.G.; Garcia, J.S.; Antonatos, C.; Sevilla-Nastor, J.B.; Trinidad, L.C. Sodium Lauryl Sulfate and Its Potential Impacts on Organisms and the Environment: A Thematic Analysis. Emerg. Contam. 2023, 9, 100205. [Google Scholar] [CrossRef]
- Badmus, S.O.; Amusa, H.K.; Oyehan, T.A.; Saleh, T.A. Environmental Risks and Toxicity of Surfactants: Overview of Analysis, Assessment, and Remediation Techniques. Environ. Sci. Pollut. Res. 2021, 28, 62085–62104. [Google Scholar] [CrossRef] [PubMed]
- ISO 11348-2:2007; International Organization for Standardization ISO 11348-2:2007—Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio Fischeri (Luminescent Bacteria Test)—Part 2: Method Using Liquid-Dried Bacteria. ISO: Geneva, Switzerland, 2007.
- ISO 18763:2016; International Organization for Standardization ISO 18763:2016—Soil Quality—Determination of the Toxic Effects of Pollutants on Germination and Early Growth of Higher Plants. ISO: Geneva, Switzerland, 2016.
- Ríos, F.; Tapia-Navarro, C.; Martínez-Gallegos, J.F.; Lechuga, M.; Fernández-Serrano, M. Joint Aerobic Biodegradation of Synthetic and Natural Textile Microfibers and Laundry Surfactants. J. Hazard. Mater. 2025, 482, 136619. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Sanchez, E.; Martin, M.; Soto, F.; Trujillo, F. Study of the Effects of LAS and Zein Concentrations on Protein Solubilization. J. Surfactants Deterg. 2016, 19, 1089–1092. [Google Scholar] [CrossRef]
- Götte, E. Skin Compatibility of Tensides Measured by Their Capacity for Dissolving Zein Protein. In Proceedings of the Fourth International Congress on Surface Active Substances, Brussels, Belgium, 7–12 September 1964; Volume 83, pp. 83–90. [Google Scholar]
- Ríos, F.; Lechuga, M.; Lobato-Guarnido, I.; Fernández-Serrano, M. Antagonistic Toxic Effects of Surfactants Mixtures to Bacteria Pseudomonas Putida and Marine Microalgae Phaeodactylum Tricornutum. Toxics 2023, 11, 344. [Google Scholar] [CrossRef]
- Bragin, G.E.; Davis, C.W.; Kung, M.H.; Kelley, B.A.; Sutherland, C.A.; Lampi, M.A. Biodegradation and Ecotoxicity of Branched Alcohol Ethoxylates: Application of the Target Lipid Model and Implications for Environmental Classification. J. Surfactants Deterg. 2020, 23, 383–403. [Google Scholar] [CrossRef]
- European Commission: Directorate-General for Health and Consumers. Toxicity and Assessment of Chemical Mixtures; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Hodges, G.; Roberts, D.W.; Marshall, S.J.; Dearden, J.C. Defining the Toxic Mode of Action of Ester Sulphonates Using the Joint Toxicity of Mixtures. Chemosphere 2006, 64, 17–25. [Google Scholar] [CrossRef]
- Altenburger, R.; Nendza, M.; Schüürmann, G. Mixture Toxicity and Its Modeling by Quantitative Structure-activity Relationships. Environ. Toxicol. Chem. 2003, 22, 1900–1915. [Google Scholar] [CrossRef]
- Jurado, E.; Herrera-Márquez, O.; Plaza-Quevedo, A.; Vicaria, J.M. Interaction between Non-Ionic Surfactants and Silica Micro/Nanoparticles. Influence on the Cleaning of Dried Starch on Steel Surfaces. J. Ind. Eng. Chem. 2015, 21, 1383–1388. [Google Scholar] [CrossRef]
- Vu, K.A.; Mulligan, C.N. An Overview on the Treatment of Oil Pollutants in Soil Using Synthetic and Biological Surfactant Foam and Nanoparticles. Int. J. Mol. Sci. 2023, 24, 1916. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Z.; Wang, J.; Li, S.; Li, B.; Jiang, L.; Wang, H.; Lü, Q.; Zhang, C.; Liu, W. Aqueous Foam Stabilized by Partially Hydrophobic Nanoparticles in the Presence of Surfactant. Colloids Surf. A Physicochem. Eng. Asp. 2015, 471, 54–64. [Google Scholar] [CrossRef]
- Moore, P.N.; Puvvada, S.; Blankschtein, D. Role of the Surfactant Polar Head Structure in Protein−Surfactant Complexation: Zein Protein Solubilization by SDS and by SDS/C12En Surfactant Solutions. Langmuir 2003, 19, 1009–1016. [Google Scholar] [CrossRef]
- Salomon, G.; Giordano-Labadie, F. Surfactant Irritations and Allergies. Eur. J. Dermatol. 2022, 32, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Corazza, M.; Lauriola, M.; Zappaterra, M.; Bianchi, A.; Virgili, A. Surfactants, Skin Cleansing Protagonists. J. Eur. Acad. Dermatol. Venereol. 2010, 24, 1–6. [Google Scholar] [CrossRef]
- Soleimani Zohr Shiri, M.; Henderson, W.; Mucalo, M.R. A Review of The Lesser-Studied Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble Metals, Os, Re, Ir and Rh. Materials 2019, 12, 1896. [Google Scholar] [CrossRef]
- Kumar, S.; Aswal, V.K.; Kohlbrecher, J. Size-Dependent Interaction of Silica Nanoparticles with Different Surfactants in Aqueous Solution. Langmuir 2012, 28, 9288–9297. [Google Scholar] [CrossRef]
Surfactant | Character | INCI Nomenclature | R | E | % Active Matter | HLB | CMC, mg·L−1 (±SD) |
---|---|---|---|---|---|---|---|
FAE-R12–14E11 | Nonionic | Laureth-11/Myreth-11 | 13 (a) | 9.9 (a) | 97.9 [17] | 14.3 [17] | 18.5 ± 2.3 [17] |
EC-R12–14E10 | Anionic | Laureth-11 Carboxylic Acid | 12–14 (a) | 10.0 (a) | 94.0 [17] | 9.5 [17] | 70.8 ± 7.2 [17] |
EC-R12–14E3 | Anionic | Laureth-4 Carboxylic Acid | 12–14 (a) | 3 (a) | 93.1 [17] | 5.5 [17] | 33.7 ± 3.1 [17] |
EC-R8E5 | Anionic | Capryleth-6 Carboxylic Acid | 8 (a) | 5 (a) | 89.0 [17] | 11–14 [17] | 97.9 ± 6.5 [17] |
Nanoparticle | INCI nomenclature | Dm, nm | S, m2·g−1 | d, g·L−1 | |||
A200 | Silica | 12 [17] | 200 ± 25 [17] | 50 [17] |
Surfactant | EC50, V. fischeri mg·L−1 | EC50, L. sativum mg·L−1 (Root) | EC50, L. sativum mg·L−1 (Stem) |
---|---|---|---|
FAE-R12–14E11 | 13.26 ± 3.26 | 338.17 ± 13.21 | 97.15 ± 7.14 |
EC-R12–14E10 | 14.18 ± 4.32 | 32.02 ± 8.90 | 60.11 ± 6.52 |
EC-R12–14E3 | 3.58 ± 1.28 | 35.40 ± 4.80 | 93.25 ± 8.90 |
EC-R8E5 | 32.76 ± 3.60 | 53.61 ± 7.20 | 64.77 ± 6.50 |
Surfactant A | Surfactant B | NP | EC50, V. fischeri mg·L−1 | EC50, L. sativum mg·L−1 (Root) | EC50, L. sativum mg·L−1 (Stem) |
---|---|---|---|---|---|
FAE-R12–14E11 | EC-R12–14E10 | 20.95 ± 3.25 | 116.41 ± 9.80 | 66.78 ± 5.60 | |
FAE-R12–14E11 | EC-R12–14E3 | 10.78 ± 2.73 | 86.61 ± 6.21 | 62.69 ± 8.70 | |
FAE-R12–14E11 | EC-R8E5 | 20.64 ± 5.70 | 39.48 ± 2.75 | 52.58 ± 3.24 | |
FAE-R12–14E11 | A200 | 42.21 ± 3.21 | 788.04 ± 11.22 | 110.18 ± 6.70 | |
EC-R12–14E10 | A200 | 49.86 ± 6.95 | 514.37 ± 15.23 | 69.49 ± 3.25 | |
EC-R12–14E3 | A200 | 11.48 ± 4.28 | 50.69 ± 4.45 | 58.44 ± 4.45 | |
EC-R8E5 | A200 | 68.35 ± 5.40 | 100.79 ± 9.50 | 91.44 ± 6.42 | |
FAE-R12–14E11 | EC-R12–14E10 | A200 | 16.86 ± 2.30 | 430.87 ± 18.47 | 79.93 ± 6.24 |
FAE-R12–14E11 | EC-R12–14E3 | A200 | 15.09 ± 1.25 | 134.22 ± 10.60 | 174.52 ± 7.82 |
FAE-R12–14E11 | EC-R8E5 | A200 | 48.67 ± 6.70 | 204.77 ± 9.80 | 67.33 ± 5.40 |
Vibrio fischeri | ||||||
---|---|---|---|---|---|---|
Surf. A | Surf. B | TUA | TUB | TUmix | TUr | Type of Action |
FAE-R12–14E11 | EC-R12–14E10 | 0.79 | 0.74 | 1.53 | 2.07 | Less than additive (antagonism) |
FAE-R12–14E11 | EC-R12–14E3 | 0.41 | 1.51 | 1.91 | 1.27 | Less than additive (antagonism) |
FAE-R12–14E11 | EC-R8E5 | 0.78 | 0.32 | 1.09 | 3.47 | Concentration addition |
Lepidium sativum (Root) | ||||||
FAE-R12–14E11 | EC-R12–14E10 | 0.17 | 1.82 | 1.99 | 1.09 | Less than additive (antagonism) |
FAE-R12–14E11 | EC-R12–14E3 | 0.13 | 1.22 | 1.35 | 1.10 | Less than additive (antagonism) |
FAE-R12–14E11 | EC-R8E5 | 0.06 | 0.37 | 0.43 | 1.16 | More than additive (synergism) |
Lepidium sativum (Stem) | ||||||
FAE-R12–14E11 | EC-R12–14E10 | 0.34 | 0.56 | 0.90 | 1.62 | Concentration addition |
FAE-R12–14E11 | EC-R12–14E3 | 0.32 | 0.34 | 0.66 | 1.96 | More than additive (synergism) |
FAE-R12–14E11 | EC-R8E5 | 0.27 | 0.41 | 0.68 | 1.67 | More than additive (synergism) |
Surfactant A | Surfactant B | % Mineralization | t1/2, h | B, % |
---|---|---|---|---|
FAE-R12–14E11 | 61.30 ± 2.60 | 185.80 | 2.40 | |
EC-R12–14E10 | 69.35 ± 3.21 | 130.50 | 10.30 | |
EC-R12–14E3 | 57.35 ± 2.80 | 330.90 | 1.25 | |
EC-R8E5 | 71.20 ± 4.32 | 118.20 | 9.40 | |
FAE-R12–14E11 | EC-R12–14E10 | 61.49 ± 2.27 | 564.12 | 2.71 |
FAE-R12–14E11 | EC-R12–14E3 | 88.10 ± 3.90 | 265.30 | 3.35 |
FAE-R12–14E11 | EC-R8E5 | 93.49 ± 3.80 | 310.20 | 8.90 |
Solution | ThOD, mgO2·mg Substance−1 | % Min |
---|---|---|
FAE-R12–14E11 + A200 | 2.17 | 54.18 |
EC-R12–14E10 + A200 | 2.20 | 47.50 |
EC-R12–14E3 + A200 | 1.90 | 55.28 |
EC-R8E5 + A200 | 1.81 | 45.25 |
Surfactant A | Surfactant B | NP | ZN 0.5% | ZN 1% |
---|---|---|---|---|
FAE-R12–14E11 | 48.91 ± 3.15 | 55.6 ± 3.20 | ||
EC-R12–14E10 | 154.69 ± 6.25 | 201.1 ± 8.40 | ||
EC-R12–14E3 | 152.92 ± 7.25 | 183.5 ± 5.60 | ||
EC-R8E5 | 49.15 ± 3.60 | 157.9 ± 7.40 | ||
FAE-R12–14E11 | EC-R12–14E10 | 122.24 ± 5.60 | 152.8 ± 3.70 | |
FAE-R12–14E11 | EC-R12–14E3 | 55.18 ± 4.52 | 60.7 ± 5.25 | |
FAE-R12–14E11 | EC-R8E5 | 40.93 ± 3.20 | 61.4 ± 2.25 | |
FAE-R12–14E11 | A200 | 41.06 ± 4.15 | 73.9 ± 6.75 | |
EC-R12–14E3 | A200 | 266.08 ± 7.80 | 345.9 ± 9.45 | |
EC-R12–14E10 | A200 | 125.59 ± 6.40 | 213.5 ± 3.25 | |
EC-R8E5 | A200 | 62.45 ± 4.60 | 68.7 ± 6.40 | |
FAE-R12–14E11 | EC-R12–14E3 | A200 | 7.27 ± 1.25 | 8 ± 1.60 |
FAE-R12–14E11 | EC-R12–14E10 | A200 | 34.08 ± 6.35 | 40,9 ± 3.70 |
FAE-R12–14E11 | EC-R8E5 | A200 | 28.81 ± 2.20 | 46.1 ± 4.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lechuga, M.; Fernández-Serrano, M.; Núñez-Olea, J.; Martínez-Gallegos, J.F.; Ríos, F. Optimization of Toxicity, Biodegradability, and Skin Irritation in Formulations Containing Mixtures of Anionic and Nonionic Surfactants Combined with Silica Nanoparticles. Toxics 2025, 13, 43. https://doi.org/10.3390/toxics13010043
Lechuga M, Fernández-Serrano M, Núñez-Olea J, Martínez-Gallegos JF, Ríos F. Optimization of Toxicity, Biodegradability, and Skin Irritation in Formulations Containing Mixtures of Anionic and Nonionic Surfactants Combined with Silica Nanoparticles. Toxics. 2025; 13(1):43. https://doi.org/10.3390/toxics13010043
Chicago/Turabian StyleLechuga, Manuela, Mercedes Fernández-Serrano, Josefa Núñez-Olea, Juan Francisco Martínez-Gallegos, and Francisco Ríos. 2025. "Optimization of Toxicity, Biodegradability, and Skin Irritation in Formulations Containing Mixtures of Anionic and Nonionic Surfactants Combined with Silica Nanoparticles" Toxics 13, no. 1: 43. https://doi.org/10.3390/toxics13010043
APA StyleLechuga, M., Fernández-Serrano, M., Núñez-Olea, J., Martínez-Gallegos, J. F., & Ríos, F. (2025). Optimization of Toxicity, Biodegradability, and Skin Irritation in Formulations Containing Mixtures of Anionic and Nonionic Surfactants Combined with Silica Nanoparticles. Toxics, 13(1), 43. https://doi.org/10.3390/toxics13010043